INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT) An International Open Access, Peer-reviewed, Refereed Journal

Study on Games over the product of two Hausdorff topological spaces

Kamalesh Kr. Lal Karn
Patan Multiple Campus
Lalitpur

Abstract

We play several games- outdoor and indoor. But it is very interesting to play a game over a topological space. In this paper, we have tried to play a game over the product $X \times Y$ of two Hausdorff topological spaces X \& Y.

Keywords: cozero set, compactness, rectangular, subparacompact closure covering etc.

1. Introduction:

We try to play a game over the product $X \times Y$ of two Hausdorff topological spaces $\mathrm{X} \& \mathrm{Y}$. Firstly, an important result has been obtained by playing the game $\mathrm{G}\left(\mathrm{DC}_{\mathrm{m}} . X\right)$ where DC_{m} is the class of all spaces which have a discrete closed cover consisting of m-compact space, by defining rectangles in such product space. Then lastly, with the help of a lemma over a space X which has a closure preserving closed cover by m-compact sets it is proved that $\operatorname{dim}(X \times Y) \leq \operatorname{dim} \mathrm{X}+\operatorname{dim} \mathrm{Y}$ where X be a collectionwise normal space, Y be a subparacompact space $\& X \times Y$ is normal.

2. Games over the product space

2.1 Definitions:

(a) A subset $A \times B$ of a topological product $X \times Y$ is said to be a rectangle. For a rectangle E in $X \times Y$, E ' and E ', denote the projection of E into X and Y repectively. So we have $E=E^{\prime} \times E^{\prime \prime}$. A rectangle E is said to be a cozero, zero, open and closed rectangle if E' and E', are cozero, zero, open and closed in $X \times Y$ respectively.
(b) A topological product $X \times Y$ is said to be strongly rectangular of each locally finite open cover of $X \times Y$ has locally finite refinement by cozero rectangles.
(c) A space is said to be m-compact if each of its open cover of power $\leq m$ has a finite subcover.

2.2 Theorem:

Let X be a collection-wise normal space and Y a subparacompact space with $\chi(Y) \leq m$. If player P has a winning strategy in the game $\mathrm{G}\left(\mathrm{DC}_{\mathrm{m}}, \mathrm{X}\right)$ where DC_{m} is the class of all spaces which have a discrete closed cover consisting of m -compact space, then every open cover of $X \times Y$ with power $\leq \mathrm{m}$ has a σ-discrete refinement by closed rectangles in $X \times Y$.

Proof:

Let s be a winning strategy of player P in $\mathrm{G}\left(\mathrm{Dc}_{\mathrm{m}}, \mathrm{X}\right)$. Let C be an arbitrary open cover of $X \times Y$ with $|\mathrm{C}| \leq \mathrm{m}$. we construct:
(i). a sequence $\left\{J_{n}: \mathrm{n} \leq 0\right\}$ collections of closed rectangles in $X \times Y$;
(ii). Sequence $\left\{<R_{n}, \Psi_{n}>: \mathrm{n} \geq 0\right\}$ of the pairs of collections R_{n} by closed rectangles in $X \times Y$.
(iii). The function $\psi_{n}: R_{n} \rightarrow R_{n-1}$ satisfyong the following five conditions:
(a). $\quad \mathrm{J}_{\mathrm{n}}$ is σ-discrete in $X \times Y$.
(b). $\quad \mathrm{R}_{\mathrm{n}}$ is σ-discrete in $X \times Y$.
(c). Each $F \in J_{n}$ is contained in some $G \in C$.
(d). \quad If $(x, y) \in R_{n-1}$
and $(x, y) \in J_{n}$
Then there is R_{n} such that
$(\mathrm{x}, \mathrm{y}) \in \mathrm{R}_{\mathrm{n}}$,
and $\psi_{n}\left(\mathrm{R}_{\mathrm{n}}\right)=\mathrm{R}_{\mathrm{n}-1}$
(e). for an $R \in R_{n}$,

Let $\quad U_{k}=X-R$,
and $\quad \mathrm{U}_{\mathrm{k}}=\mathrm{X}-\left(\psi_{k-1}, 0, \ldots, 0, \psi_{k}(R)\right)$, for $1 \leq \mathrm{k} \leq \mathrm{n}-1$.

We put
$\mathrm{E}_{1}=S(\phi):$
and $\quad E_{k+1}=S\left(U_{1}, \ldots, U_{k}\right)$ for $1 \leq k \leq n-1$.
Then the finite series $<E_{1}, U_{1}, \ldots, E_{n}, U_{n}>$ is admissible for $G\left(D C_{m}, X\right)$
Let $\quad \mathrm{J}_{\mathrm{n}}=\{\phi\}$
and $\quad \mathrm{R}_{\mathrm{n}}=\{X \times Y\}$
We suppose that he above $\left\{\mathrm{J}_{\mathrm{n}}, 1 \leq \mathrm{n}\right\}$ and $\left\{<\mathrm{R}_{\mathrm{n}}, \psi_{n}>: 1 \leq \mathrm{n}\right\}$ are already constructed.
We pick an $R \in R_{n}$.
Let $<\mathrm{E}_{1}, \mathrm{U}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}, \mathrm{U}_{\mathrm{n}}>$ be the admissible sequence in $\mathrm{G}\left(\mathrm{DC}_{\mathrm{m}}, \mathrm{X}\right)$.
Hence there is a discrete collection $\left\{C_{\alpha}: \alpha \in \Omega(R)\right\}$ by m-compact closed sets in R^{\prime} such that

$$
\mathrm{S}\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}\right) \cap R^{\prime}=\mathrm{U}\left\{C_{\alpha}: \alpha \in \Omega(R)\right\}
$$

We can choose a discrete collection $\left\{W_{\alpha}: \alpha \in \Omega(R)\right\}$ of open sets in R' such that

$$
C_{\alpha} \subset W_{\alpha}, \text { for all } \alpha \in \Omega(R)
$$

Since C_{α} is m-compact $|\mathrm{C}| \leq \mathrm{m}, \chi(\mathrm{y}) \leq \mathrm{m}$ and R^{n} is subparacompact.
There is a collection

$$
J_{n+1}^{\alpha}=\left\{\mathrm{Cl} U_{\lambda}^{\alpha, i} \times H_{\lambda}: i=1, \ldots, k_{\lambda} \text { and } \lambda \in \wedge(k)\right\}
$$

By closed rectangle in R , satisfying the following four conditions:
(1). \quad Each $U_{\lambda}^{\alpha, 1}$ is open in R^{\prime}.
(2). $C_{\alpha} \subset \cup\left\{U_{\lambda}^{\alpha, i}: i=1, \ldots, k_{\lambda}\right\} \subset W_{\alpha}$.
(3). \quad Each $\mathrm{Cl} U_{\lambda}^{\alpha, i} \times H_{\lambda}$ is contained in some $G \in C$.
(4). $\quad\left\{H_{\lambda}: \lambda \in \wedge(\alpha)\right\}$ is a σ - discrete closed cover of R^{n}. Then

$$
\mathrm{J}_{\mathrm{n}+1}(\mathrm{R})=\cup\left\{J_{n+1}^{\alpha}: \alpha \in \Omega(R)\right\} \text { is a } \sigma-\text { discrete in } X \times Y
$$

Put $\quad R_{\lambda}^{\alpha}=\left\{C l W_{\alpha}-\cup\left\{U_{\lambda}^{\alpha, i}: 1 \leq i \leq k\right\} \times H_{\lambda}\right\}$, for all $\left.\lambda \in \wedge(k)\right\}$.
Again put $\quad \mathrm{R}=\left(R^{\prime}-\cup\left\{W_{\alpha}: \alpha \in \Omega(R)\right\} \times \mathrm{R}^{\mathrm{n}}\right.$.
Moreover, we put

$$
\mathrm{R}_{\mathrm{n}+1}(\mathrm{R})=\left\{R \cup\left\{R_{\lambda}^{\alpha}: \lambda \in \wedge(\alpha)\right\} \text { and } \lambda \in \Omega(R)\right\}
$$

Then $\mathrm{R}_{\mathrm{n}+1}(\mathrm{R})$ is also a σ-discrete collection by closed rectangles in RType equation here..
We set

$$
\mathrm{J}_{\mathrm{n}+1}=\cup\left\{J_{n+1}(R): R \in R_{n}\right\}
$$

and $\quad \mathrm{R}_{\mathrm{n}+1}=\cup\left\{R_{n+1}(R): R \in R_{n}\right\}$.
The function $\psi_{n+1}\left(R_{n+1}(R)\right)=\{R\}$,

$$
\text { for all } R \in R \text {. }
$$

From (a), $\mathrm{J}_{\mathrm{n}+1}$ and $\mathrm{R}_{\mathrm{n}+1}$ are σ-discrete refinement of C by closed rectangles in $X \times Y$.

2.3 Lemma:

Let X be a space which has a closure preserving closed cover J by $\mathrm{m}=$ compact sets. Then to each closed set E of X one can assign a discrete collection $A(E)$ by m-compact closed subsets of E , satisfying the following two conditions:
(a). Each $\mathrm{D} \in \mathrm{A}(\mathrm{E})$ is contained in some $\mathrm{F} \in \mathrm{J}$.
(b). If $<\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots>$ is a decreasing sequence of closed sets of X such that
$\mathrm{E}_{1} \cap(\cup A(x))=\phi$.
and $\quad \mathrm{E}_{\mathrm{n}+1} \cap\left(\cup A\left(E_{n}\right)\right)=\phi$, for all $n \in N$,
then $\cap\left\{E_{n}: n \in N\right\}=\phi$.
Then following results obvious:
(a). If a space X has a σ-closure preserving closed cover by m-compact sets, then player P has a winning strategy in $\mathrm{G}\left(\mathrm{DC}_{\mathrm{m}}, \mathrm{X}\right)$.
(b). Let X be a normal space if player P has winning strategy $G\left(\operatorname{Dim}_{n}, X\right)$, then $\operatorname{dim} X \leq n$.

3. Conclusion:

Let $X \times Y$ be a normal space with $\operatorname{dim} \mathrm{X} \leq \mathrm{m}$ and $\operatorname{dim} \mathrm{Y} \leq \mathrm{n}$.
Let $\mathrm{A} \times B$ be a product space such that A is m-compact and $\chi(\mathrm{B}) \leq \mathrm{m}$. Since the projection of $\mathrm{A} \times B$ onto B is a closed map. $\mathrm{A} \times B$ is rectangular. It follows from the product theorem of B. A. Paskynov that $\operatorname{Dim}(\mathrm{A} \times B) \leq \operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}$ holds.

Thus, for all closed rectangle R in $X \times Y$ with $\mathrm{R} \in \mathrm{PC}_{\mathrm{m}}$ where PC_{m} denotes to the class of all product spaces with the first factor being m -compact.Type equation here.
We get

$$
\operatorname{dim} \mathrm{R} \leq \operatorname{dim} R^{\prime}-\operatorname{dim} \mathrm{R}^{\mathrm{n}} \leq \mathrm{m}+\mathrm{n} .
$$

Therefore, each closed sets P of $X \times Y$ with $\mathrm{P} \in \mathrm{D}\left(\mathrm{PC}_{\mathrm{m}}\right)$.
We get $\quad \operatorname{dim} P \leq m+n$.
From the above result (1) of previous lemma it follows
Since $X \times Y$ is normal, it also follows that

$$
\operatorname{Dim}(X \times Y) \leq \mathrm{m}+\mathrm{n}
$$

4. References:

[1] Paskynov, B. A. 1975, On the dimension of rectangular products, Soviet Math. Dokl. 16, pp. 344-347.
[2] Mortia, K. \& Hoshina, T. 1980On the rectangular products of topologieal spaces, Topology and its application II, pp. 47-57.
[3] Kumar, B.P. 1982 Lattice and topological approach to game theory Ph. D. thesis submitted to Bhagalpur University, Bhagalpur(Bihar).
[4] Von Neumann, J. \& Morgaustern, O. 1947 Theory of games and economic behavior, Princeton University Press, Princeton 1944. $2^{\text {nd }}$ ed. 1947.
[5] Dresher, M. A. W., Tucker, and P. Wolfe (eds.) 1957 Contributon to the theory of Games, III, Princeton, N.J. Princeton University Press.
[6] Kumar Sanjay \& Kumar B.P. 2004 : covering Properties of spaces defined by Games and its fuzzification; Proc. Of the conf. on Adv. in Maths. \& its Aplications.

