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Abstract: We play several games- outdoor and indoor. But it is very interesting to play a game over a topological space. In this paper, we 

have tried to play a game over the product 𝑋 × 𝑌 of two Hausdorff topological spaces X & Y. 
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1. Introduction: 

We try to play a game over the product 𝑋 × 𝑌 of two Hausdorff topological spaces X & Y. Firstly, an important result has been obtained 

by playing the game G(DCm. X) where DCm is the class of all spaces which have a discrete closed cover consisting of m-compact space, 

by defining rectangles in such product space. Then lastly, with the help of a lemma over a space X which has a closure preserving closed 

cover by m-compact sets it is proved that dim (𝑋 × 𝑌) ≤ dim X + dim Y where X be a collectionwise normal space, Y be a 

subparacompact space & 𝑋 × 𝑌 is normal. 

 

2. Games over the product space 

2.1 Definitions: 

(a) A subset 𝐴 × 𝐵 of a topological product 𝑋 × 𝑌 is said to be a rectangle. For a rectangle E in 𝑋 × 𝑌, E’ and E’’ 

denote the projection of E into X and Y repectively. So we have 𝐸 = 𝐸′ × 𝐸′′. A rectangle E is said to be a cozero, zero, 

open and closed rectangle if E’ and E’’ are cozero, zero, open and closed in 𝑋 × 𝑌 respectively. 

 

(b) A topological product 𝑋 × 𝑌 is said to be strongly rectangular of each locally finite open cover of 𝑋 × 𝑌 has locally 

finite refinement by cozero rectangles. 

 

(c) A space is said to be m-compact if each of its open cover of power ≤ m has a finite subcover. 

 

 

 

2.2 Theorem: 

Let X be a collection-wise normal space and Y a subparacompact space with 𝜒 (𝑌) ≤ 𝑚. If player P has a winning 

strategy in the game G (DCm, X) where DCm is the class of all spaces which have a discrete closed cover consisting of 

m-compact space, then every open cover of 𝑋 × 𝑌 with power ≤ m has a 𝜎-discrete refinement by closed rectangles in 

𝑋 × 𝑌. 
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Proof: 

 Let s be a winning strategy of player P in G (Dcm, X). Let C be an arbitrary open cover of 𝑋 × 𝑌 with |C| ≤ m. 

we construct: 

(i).  a sequence {𝐽𝑛: n ≤ 0} collections of closed rectangles in 𝑋 × 𝑌; 

(ii). Sequence {< 𝑅𝑛, ψ𝑛 >∶ n ≥ 0} of the pairs of collections R𝑛 by closed rectangles in 𝑋 × 𝑌. 

(iii). The function 𝜓𝑛 ∶  𝑅𝑛  →   𝑅𝑛−1 satisfyong the following five conditions: 

 (a). Jn is 𝜎-discrete in 𝑋 × 𝑌. 

 (b). Rn is 𝜎-discrete in 𝑋 × 𝑌. 

 (c). Each F ∈ Jn is contained in some G ∈ C. 

 (d). If (x, y) ∈ Rn-1  

  and (x, y) ∈ Jn 

 Then there is Rn  such that  

 (x, y) ∈ Rn, 

 and 𝜓𝑛(Rn) = Rn-1  

(e). for an R ∈ Rn, 

Let  Uk  = X - R, 

and  Uk = X – (𝜓𝑘−1, 0, … , 0, 𝜓𝑘(𝑅)), for 1 ≤ k ≤ n-1. 

 

We put  

E1 = 𝑆(𝜙): 

and  Ek+1 = S(U1, …, Uk) for 1 ≤ k ≤ n-1. 

Then the finite series < E1, U1, …, En, Un > is admissible for G(DCm, X) 

Let Jn = {𝜙} 

and  Rn = {𝑋 × 𝑌} 

We suppose that he above {Jn, 1 ≤ n} and {< Rn, 𝜓𝑛 > : 1 ≤ n} are already constructed. 

We pick an R ∈ Rn. 

Let  < E1, U1, …, En, Un> be the admissible sequence in G(DCm, X). 

Hence there is a discrete collection {𝐶𝛼: 𝛼 ∈  Ω(𝑅)} by m-compact closed sets in 𝑅′ such that  

   S(U1, …, Un) ∩  𝑅′ = ∪ {𝐶 𝛼
∶ 𝛼 ∈ Ω(𝑅)} 

 We can choose a discrete collection {𝑊𝛼 ∶ 𝛼 ∈ Ω(𝑅)}  of open sets in R’ such that  

 𝐶𝛼 ⊂  𝑊𝛼  , for all 𝛼 ∈ Ω(𝑅). 

Since 𝐶𝛼 is m-compact |C| ≤ m, 𝜒(y) ≤ m and Rn is subparacompact. 

There is a collection 

𝐽𝑛+1
𝛼  = {Cl 𝑈𝜆

𝛼,𝑖 × 𝐻𝜆 ∶ 𝑖 = 1, … , 𝑘𝜆 𝑎𝑛𝑑 𝜆 ∈ ∧ (𝑘)} 

By closed rectangle in R, satisfying the following four conditions: 

 (1). Each 𝑈𝜆
𝛼,1

 is open in 𝑅′. 

 (2).  𝐶𝛼 ⊂ ∪ {𝑈𝜆
𝛼,𝑖: 𝑖 = 1, … , 𝑘𝜆} ⊂  𝑊𝛼. 

 (3). Each Cl 𝑈𝜆
𝛼,𝑖 ×  𝐻𝜆 is contained in some 𝐺 ∈ 𝐶. 

 (4).  {𝐻𝜆 ∶ 𝜆 ∈ ∧ (𝛼)} is a 𝜎- discrete closed cover of Rn. Then  

  Jn+1 (R) = ∪ {𝐽𝑛+1
𝛼 ∶ 𝛼 ∈ Ω (𝑅)} is a 𝜎 − 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 in 𝑋 × 𝑌.  

Put  𝑅𝜆
𝛼 = {𝐶𝑙 𝑊𝛼 − ∪ {𝑈𝜆

𝛼,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} × 𝐻𝜆}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈ ∧ (𝑘)}. 

Again put  R = (𝑅′ - ∪ { 𝑊𝛼 : 𝛼 ∈ Ω (𝑅)} × Rn. 

Moreover, we put  

 Rn+1 (R) = {𝑅 ∪ {𝑅𝜆
𝛼 ∶ 𝜆 ∈ ∧ (𝛼)}𝑎𝑛𝑑 𝜆 ∈ Ω (𝑅)} 

Then Rn+1 (R) is also a 𝜎-discrete collection by closed rectangles in RType equation here.. 
We set 

  Jn+1 = ∪ {𝐽𝑛+1(𝑅) ∶ 𝑅 ∈  𝑅𝑛}; 

 and  Rn+1 = ∪ {𝑅𝑛+1 (𝑅) ∶ 𝑅 ∈  𝑅𝑛}. 

The function 𝜓𝑛+1 (𝑅𝑛+1(𝑅)) = {𝑅}, 

    for all R ∈ R. 

From (a), Jn+1 and Rn+1 are  𝜎-discrete refinement of C by closed rectangles in 𝑋 × 𝑌. 
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2.3 Lemma: 

 Let X be a space which has a closure preserving closed cover J by m=compact sets. Then to each closed set E of X one 

can assign a discrete collection A(E) by m-compact closed subsets of E, satisfying the following two conditions: 

  (a).  Each D ∈ A(E) is contained in some F ∈ J. 

  (b). If <E1, E2, …> is a decreasing sequence of closed sets of X such that     

 E1 ∩ (∪ 𝐴(𝑥)) = 𝜙. 

  and  En+1 ∩ (∪ 𝐴(𝐸𝑛)) = 𝜙, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑁, 

  then  ∩ {𝐸𝑛 ∶ 𝑛 ∈ 𝑁} = 𝜙. 

Then following results obvious: 

  (a).  If a space X has a 𝜎-closure preserving closed cover by m-compact sets, then 

   player P has a winning strategy in G(DCm, X). 

  (b). Let X be a normal space if player P has winning strategy 

    G(Dimn, X), then dim X ≤ n. 

 

3. Conclusion:  

 Let 𝑋 × 𝑌 be a normal space with dim X ≤ m and dim Y ≤ n. 

 Let A× 𝐵 be a product space such that A is m-compact and 𝜒 (B) ≤  m. Since the projection of A× 𝐵 onto B is 

a closed map. A× 𝐵 is rectangular. It follows from the product theorem of B. A. Paskynov that  

  Dim(A× 𝐵) ≤ dim A + dim B holds. 

  

 Thus, for all closed rectangle R in 𝑋 × 𝑌 with R ∈ PCm where PCm denotes to the class of all product spaces 

with the first factor being m-compact.Type equation here. 
We get   

  dim R ≤ dim 𝑅′ – dim Rn ≤ m + n. 

 Therefore, each closed sets P of 𝑋 × 𝑌 with P ∈ D (PCm). 

We get  dim P ≤ m + n. 

   From the above result (1) of previous lemma it follows  

Since 𝑋 × 𝑌 is normal, it also follows that 

   Dim (𝑋 × 𝑌) ≤ m + n 
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