ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Study on Games over the product of two Hausdorff topological spaces

Kamalesh Kr. Lal Karn Patan Multiple Campus Lalitpur

Abstract: We play several games- outdoor and indoor. But it is very interesting to play a game over a topological space. In this paper, we have tried to play a game over the product $X \times Y$ of two Hausdorff topological spaces X & Y.

Keywords: cozero set, compactness, rectangular, subparacompact closure covering etc.

1. Introduction:

We try to play a game over the product $X \times Y$ of two Hausdorff topological spaces X & Y. Firstly, an important result has been obtained by playing the game $G(DC_m, X)$ where DC_m is the class of all spaces which have a discrete closed cover consisting of m-compact space, by defining rectangles in such product space. Then lastly, with the help of a lemma over a space X which has a closure preserving closed cover by m-compact sets it is proved that dim $(X \times Y) \le \dim X + \dim Y$ where X be a collectionwise normal space, Y be a subparacompact space & $X \times Y$ is normal.

2. Games over the product space

2.1 Definitions:

(a) A subset $A \times B$ of a topological product $X \times Y$ is said to be a rectangle. For a rectangle E in $X \times Y$, E' and E'' denote the projection of E into X and Y repectively. So we have $E = E' \times E''$. A rectangle E is said to be a cozero, zero, open and closed rectangle if E' and E'' are cozero, zero, open and closed in $X \times Y$ respectively.

(b) A topological product $X \times Y$ is said to be strongly rectangular of each locally finite open cover of $X \times Y$ has locally finite refinement by cozero rectangles.

(c) A space is said to be m-compact if each of its open cover of power \leq m has a finite subcover.

2.2 Theorem:

Let X be a collection-wise normal space and Y a subparacompact space with $\chi(Y) \le m$. If player P has a winning strategy in the game G (DC_m, X) where DC_m is the class of all spaces which have a discrete closed cover consisting of m-compact space, then every open cover of $X \times Y$ with power $\le m$ has a σ -discrete refinement by closed rectangles in $X \times Y$.

Proof:

Let s be a winning strategy of player P in G (Dc_m, X). Let C be an arbitrary open cover of $X \times Y$ with $|C| \le m$. we construct:

- (i). a sequence $\{J_n: n \le 0\}$ collections of closed rectangles in $X \times Y$;
- (ii). Sequence $\{\langle R_n, \psi_n \rangle : n \ge 0\}$ of the pairs of collections R_n by closed rectangles in $X \times Y$.

(iii). The function $\psi_n : R_n \to R_{n-1}$ satisfying the following five conditions:

- (a). J_n is σ -discrete in $X \times Y$.
- (b). R_n is σ -discrete in $X \times Y$.
- (c). Each $F \in J_n$ is contained in some $G \in C$.
- (d). If $(x, y) \in R_{n-1}$ and $(x, y) \in J_n$ Then there is R_n such that $(x, y) \in R_n$, and $\psi_n(R_n) = R_{n-1}$ (e). for an $R \in R_n$,
- Let $U_k = X R$,
- and $U_k = X (\psi_{k-1}, 0, ..., 0, \psi_k(R))$, for $1 \le k \le n-1$.

We put

 $\mathbf{E}_1 = S(\boldsymbol{\phi}):$

and $E_{k+1} = S(U_1, ..., U_k)$ for $1 \le k \le n-1$.

Then the finite series $\langle E_1, U_1, ..., E_n, U_n \rangle$ is admissible for G(DC_m, X)

Let $J_n = \{\phi\}$

and $R_n = \{X \times Y\}$

We suppose that he above $\{J_n, 1 \le n\}$ and $\{\langle R_n, \psi_n \rangle : 1 \le n\}$ are already constructed. We pick an $R \in R_n$.

Let $\langle E_1, U_1, ..., E_n, U_n \rangle$ be the admissible sequence in $G(DC_m, X)$.

Hence there is a discrete collection $\{C_{\alpha} : \alpha \in \Omega(R)\}$ by m-compact closed sets in R' such that $S(U_1, ..., U_n) \cap R' = \bigcup \{C_{\alpha} : \alpha \in \Omega(R)\}$

We can choose a discrete collection $\{W_{\alpha} : \alpha \in \Omega(R)\}$ of open sets in R' such that

 $C_{\alpha} \subset W_{\alpha}$, for all $\alpha \in \Omega(R)$.

Since C_{α} is m-compact $|C| \le m$, $\chi(y) \le m$ and \mathbb{R}^n is subparacompact. There is a collection

 $J_{n+1}^{\alpha} = \{ \operatorname{Cl} U_{\lambda}^{\alpha,i} \times H_{\lambda} : i = 1, \dots, k_{\lambda} \text{ and } \lambda \in \wedge (k) \}$

By closed rectangle in R, satisfying the following four conditions:

(1). Each $U_{\lambda}^{\alpha,1}$ is open in R'.

(2).
$$C_{\alpha} \subset \cup \{U_{\lambda}^{\alpha,i}: i = 1, ..., k_{\lambda}\} \subset W_{\alpha}.$$

- (3). Each Cl $U_{\lambda}^{\alpha,i} \times H_{\lambda}$ is contained in some $G \in C$.
- (4). $\{H_{\lambda} : \lambda \in \land (\alpha)\}$ is a σ -discrete closed cover of \mathbb{R}^{n} . Then

 $J_{n+1}(R) = \bigcup \{J_{n+1}^{\alpha} : \alpha \in \Omega(R)\} \text{ is a } \sigma - discrete \text{ in } X \times Y.$

Put $R_{\lambda}^{\alpha} = \{ Cl W_{\alpha} - \cup \{ U_{\lambda}^{\alpha,i} : 1 \le i \le k \} \times H_{\lambda} \}, for all \lambda \in \land (k) \}.$ put $R = (R' - \cup \{ W_{\alpha} : \alpha \in \Omega (R) \} \times R^{n}.$

Again put R Moreover, we put

$$\mathbf{R}_{n+1}(\mathbf{R}) = \{ R \cup \{ R_{\lambda}^{\alpha} : \lambda \in \land (\alpha) \} and \ \lambda \in \Omega \ (R) \}$$

Then R_{n+1} (R) is also a σ -discrete collection by closed rectangles in RType equation here.. We set

 $J_{n+1} = \bigcup \{J_{n+1}(R) : R \in R_n\};$ and $R_{n+1} = \bigcup \{R_{n+1}(R) : R \in R_n\}.$ The function $\psi_{n+1}(R_{n+1}(R)) = \{R\},$

for all
$$R \in R$$
.

From (a), J_{n+1} and R_{n+1} are σ -discrete refinement of C by closed rectangles in $X \times Y$.

2.3 Lemma:

Let X be a space which has a closure preserving closed cover J by m=compact sets. Then to each closed set E of X one can assign a discrete collection A(E) by m-compact closed subsets of E, satisfying the following two conditions:

(a). Each $D \in A(E)$ is contained in some $F \in J$.

(b). If
$$\langle E_1, E_2, \ldots \rangle$$
 is a decreasing sequence of closed sets of X such that

$$\mathrm{E}_1 \cap \big(\cup A(x) \big) = \phi.$$

and $E_{n+1} \cap (\cup A(E_n)) = \phi$, for all $n \in N$, then $\cap \{E_n : n \in N\} = \phi$.

Then following results obvious:

- (a). If a space X has a σ -closure preserving closed cover by m-compact sets, then player P has a winning strategy in G(DC_m, X).
- (b). Let X be a normal space if player P has winning strategy $G(Dim_n, X)$, then dim $X \le n$.

3. Conclusion:

Let $X \times Y$ be a normal space with dim $X \le m$ and dim $Y \le n$.

Let $A \times B$ be a product space such that A is m-compact and $\chi(B) \le m$. Since the projection of $A \times B$ onto B is a closed map. $A \times B$ is rectangular. It follows from the product theorem of B. A. Paskynov that

 $\operatorname{Dim}(A \times B) \leq \operatorname{dim} A + \operatorname{dim} B$ holds.

Thus, for all closed rectangle R in $X \times Y$ with $R \in PC_m$ where PC_m denotes to the class of all product spaces with the first factor being m-compact. Type equation here.

We get

 $\dim \mathbf{R} \leq \dim \mathbf{R}' - \dim \mathbf{R}^{\mathbf{n}} \leq \mathbf{m} + \mathbf{n}.$

Therefore, each closed sets P of $X \times Y$ with $P \in D(PC_m)$.

We get $\dim P \le m + n$.

From the above result (1) of previous lemma it follows

Since $X \times Y$ is normal, it also follows that

 $\operatorname{Dim}\left(X \times Y\right) \le m + n$

4. References:

- [1] Paskynov, B. A. 1975, On the dimension of rectangular products, Soviet Math. Dokl. 16, pp. 344-347.
- [2] Mortia, K. & Hoshina, T. 1980On the rectangular products of topological spaces, Topology and its application II, pp. 47-57.
- [3] Kumar, B.P. 1982 Lattice and topological approach to game theory Ph. D. thesis submitted to Bhagalpur University, Bhagalpur(Bihar).
- [4] Von Neumann, J. & Morgaustern, O. 1947 Theory of games and economic behavior, Princeton University Press, Princeton 1944. 2nd ed. 1947.
- [5] Dresher, M. A. W., Tucker, and P. Wolfe (eds.) 1957 Contributon to the theory of Games, III, Princeton, N.J. Princeton University Press.
- [6] Kumar Sanjay & Kumar B.P. 2004 : covering Properties of spaces defined by Games and its fuzzification; Proc. Of the conf. on Adv. in Maths. & its Aplications.