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Abstract—Struggle for resources has always been an integral 

part of life of a process. The task of management of resources 

such as RAM, storage, CPU, GPU, etc. is handled by the 

operating system of the computer. Every millisecond is crucial 
when user experience and system performance are at stake. 

Machine learning has made an entry into the world of computers 

and has successfully conquered majority of the domains. This 

research paper attempts to study the various machine learning 

techniques used to automate and simplify the job of process 

scheduling in operating systems. Various algorithms, their 

approach towards the system (at hardware and software levels), 

time-scale compression, etc. previously researched and 

discovered are discussed in this text. This paper can be reliably 

used as a comprehensive summary of 3 different research papers 

and their outcomes regarding the concept of process scheduling, 

CPU scheduling, system optimization with machine learning at 

different levels (like User level, kernel level and hardware level), 

etc. A discussion about a dedicated resource (inside a computer) 

specifically for handling machine learning tasks has been made 

which has a near unity ratio of success. 
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I. INTRODUCTION 

 
Operating Systems (OS) are what defines the user 

experience, performance and multitasking capabilities of the 
computer. OSes form one of the most complex and intricate 
pieces of software, closely followed by the recently 
developing gaming mammoths. Operating systems have been 
in existence since the year 1956, made by General Motor’s 
Research division for IBM-704 Mainframe computer. And 
since then, OSes have evolved to be completely different than 
what they were during ’56. Current operating systems perform 
tasks like CPU scheduling, file management, memory 
management, provide security from viruses, provide the user 
interface, etc. Parallelly, the field of Machine Learning (ML) 
has also been evolving since past few years. Beginning with 
mathematically evolving formulae, to providing a real-life 
software assistant, ML has also grown to something which  
nobody could think of when the first OS was introduced. A 
combination of these 2 rapidly evolving domains of Computer 
Science will be extremely beneficial for both. Integrating 
Machine Learning into operating systems is one of the most  

 
 

 
difficult tasks as of today. The researchers or programmers 

must take into consideration hundreds of factors and their 
implications on the system in real life. 

It is a widely known fact that tasks like Machine Learning, 
Deep Learning, NLP (Natural Language Processing), or the whole 
Artificial Intelligence domain as a whole, require more computing 
power than a normal task (like opening a file or reading a file). 
From operating system’s point of view, performing machine 
learning is same as rendering a high-resolution image from disk to 
memory via GPU. This is because they both require the same 
amount of resources from the system. Hence, the OS tries to treat 
the ML task like a regular task, and this is where the problems 
begin. It is expected for any regular task to have a bust time, after 
which it has to end or be terminated forcefully. Machine learning 
tasks are bound to run for a much longer amount of time, or 
infinitely until system is turned off or it doesn’t crash. Therefore, 
treating an ML task like a regular task is the first thing that OSes 
do wrong. Another issue with current generation of operating 
systems is that, at root level, they treat all languages as equals. 
Meaning, for a Linux based operating system, at kernel level, C is 
same as C++ is same as Python. To summarize, OS treating high 
level languages to low level languages is the second thing that 
OSes do wrong. 
 

This survey paper aims to study, this combination of Machine 
Learning and Operating System, and comment on the credibility 
to do so. This paper also attempts to provide a practical solution to 
management of resources while the ML algorithms run in the 
background, by giving them dedicated hardware for it. This 
theoretically will not consume the resources provided for the user 
to consume because this dedicated hardware is not assessible to 
any other entity other than the ML algorithms and the operating 
system kernel. Further explanation and detailing on this topic are 
provided at the end of the text. 

 
II. METHODOLOGY 

 
The methodology that will be followed during this text is that 

each of the research papers that this text deals with, will be studied 

indivisually. Their offerings, their scope, their results, everything will 
be discussed at a survey level. Beginning with 

[5]. This research paper tells where Machine Leaning can be used in 
Operating Systems, learning configurations, challenges that 

researchers may face while integrating ML into Operating System 
and potential solutions to those challenges and problems. It says that 

current operating systems cannot  
‘change’ at runtime, making them incapable to dynamically adapt 
to applications’ changing behavior and needs. The learning 
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configurations that the operating systems use are categorized 
into 2 types, Timing Related and Size Relatedconfigurations. 
The author states using Objective-C instead of C++ will be 
much more beneficial here because Objective-C is focused on 
runtime-decisions for dispatching & heavily depends on its 
runtime library to handle inheritance and polymorphism, while 
in C++ the focus usually lies on static, compile time, 
decisions. 

 

III. RESEARCH PAPER 1: ‘LEARNED’ OPERATING SYSTEMS 

 
One of the most important facts provided in this paper is 

that it states the operating systems do not change at ‘runtime’. 
Now, this statement might be contradicting to the very concept 
of machine learning, i.e. ability of programs to adapt to 
changing situations. But, through this text, it can be explained 
by giving the logical explanation behind it. Machine learning 
algorithms work on data provided to them. Which means the 
data, or the instance of generation of data is in the past. 
Secondly, based on ‘n’ such data sets, the algorithm modifies 
the system behavior and the modified behavior is reflected 
into the system from the next run. That means the modification 
done to the system in the current run will be shown in the next 
run. Therefore, operating systems do not ‘change’ at runtime. 
The statement remains valid. 
 

The paper [5] discusses 3 different opportunities for 
machine learning to be integrated into operating systems. 
Namely, Learning Configurations, Learning Policies and 
Learning Mechanisms [5]. Some settings and tools are preset 
in OSes. They are configured to stay static. To modify them, 
one needs to manually edit them. Machine learning can 
automate this process. 
 

Configurations can be sub-divided into 2 parts, Timing 
Related Configurations and Size Related Configurations. 
Setting timing related configs is very difficult. Because system 
has to make a decision between less-aggressive thread 
scheduling (low CPU consumption but high effective CPU 
utilization) and more-aggressive thread scheduling i.e. more 
pre-empting and context switching threads (high CPU 
consumption as it is always under maximum load but low 
effective usage as majority threads handled are for context 
switching and not for process execution). This duality can be 
reduced using Machine Learning. Setting size related 
configurations is finding a balance between improving stored 
file system performance and available memory for other 
applications. This is also very difficult trade-off as large buffer 
cache improves the performance of the system but on the other 
hand reduces amount of free memory. This paper provides a 
formidable solution to this. Using Objective-C instead of C++ 
will be much more beneficial here because Objective-C is 
focused on runtime-decisions for dispatching & heavily 
depends on its runtime library to handle inheritance and 
polymorphism, while in C++ the focus usually lies on static, 
compile time, decisions. 
 

Policies are ways to choose which activities to perform. 
Similar to configurations, policies can be divided into 3 sub-
categories, Space Allocation Policies, Scheduling Policies and 
Cache Management Policies. Machine Learning models will 
be able to combine the benefits of Best Fit & ext policies 
(these are the polices currently used in Linux based operating 
systems). It is necessary to analyze how much space users 
requested, what space the OS allocated, how efficiently spaces 
are used and how much fragmentation is done. Also, 
modelshould be dynamic because of the necessity to adapt to 
changing user-behaviors. 
 

An OS needs to decide which (& how much) memory 
space to allot, whenever an application requests for memory. 
This task is executed based on general heuristics and aged 
algorithms. Techniques like Best-Fit policy, mmap system call 
in Linux, etc. can work for many workloads and usages, they 

are nowhere close to what Machine Learning can achieve for the 
same task. For ML to work, a model is needs to be created such 
that it will track which application uses how much memory, which 
sections of memory is occupies, what is the priority of resource 
allocation, etc. and form a general trend based on this data for 
every application. After ‘n’ trials, the model can predict the 
memory demand and accordingly keep those parts of memory 
blocks free for that application. 
 

The scheduling policies of the current gen OSes are very 
outdated and not suitable for extended heavy-usage which 
changes at rate more than the algorithm can handle. This results in 
unexpected crashing of applications and failing to be productive. 
Therefore, like learning policies, the scheduling algorithms should 
also be given ML treatment to improve CPU scheduling. 
Presently, most OS virtual memory systems try to swap memory 
pages (least used) using approximate LRU detection algorithms. 
Instead of using traditional LRU techniques, OSes can use ML 
models which can dynamically locate and update the policies 
which deal with cache management. 
 

Mechanisms are the implementations that enforce policies, and 
often depend to some extent on the hardware on which the 
operating system runs. For instance, a processes may be granted 
resources using the first come, first serve policy. This policy may 
be implemented using a queue of requests. Often the kernel 
provides mechanisms that are used to implement policies in 
servers. 
 

Like configurations and policies, mechanisms can also be 
divided into 2 sub-categories, first is Virtual Memory Address to 
Physical Memory Address Location Mapping mechanism; and 
second is mapping from File Name & Offset to Disk Logical 
Block and Address mechanism. The paper states that these 2 
mapping mechanisms are extremely crucial when dealing with 
performance of memory and storage systems. This is in-fact true 
because every bit of data that is transferred from main memory to 
secondary memory, and vice versa, for each and every task 
executed in the system, is done through these 2 mechanisms. 
Failure to perform at high speeds directly imply reduced system 
performance. It is possible to further improve the learning 
mechanisms’ performance and CPU cache hit-rate by storing the 
parameters used by the model in contiguous memory space. 
 

After reviewing the possible areas where machine learning can 
be implemented, it is necessary to audit the problems or 
difficulties that might be faced while doing so. The possible 
difficulties that might arise are Model Selection and Building, 
Training of the Model, Integration Difficulties and Security of the 
final operating system with the ML model integrated in the 
system. 
 

Model selection is a very crucial decision in the long run. A 
correctly selected model might improve the system performance 
and increase efficiency; but an incorrect selection might reduce 
the performance and deteriorate efficiency. Next, 
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it is also essential to think about a situation of unavailability of 
a model. It is very much possible that there is no model which 
matches the requirements of the project in-hand. In such cases, 
the developers are expected to build their own model and use 
it for the same. Global models can be used/made if its job is 
general purpose and doesn’t affect the system performance 
much. Example, pre-fetching of network modules, post-
processing of graphics data, etc. GPMs (General Purpose 
Model) can be used in such situations. If the model is going to 
tasks which directly affect the system performance, it is highly 
recommended to make very accurate and job-specific models, 
even if that particular model cannot be used elsewhere. The 
reason being fine-grained models always achieve better 
accuracy and performance in the long run than GPMs (which 
generally tend to break after some time due to over-training 
and more modification than the architecture allows). 
 

Training of the model has to be very operation specific. 
Model which will be dealing with CPU scheduling should not 
be trained in environment where memory management or file 
system management or any such domain adulteration will 
occur. Another important point to be kept in mind while 
training the model, is that, even if the model is trained using 
supervised or unsupervised learning methods; the way in 
which the model is tested is very much important. As a proven 
fact, reinforcement learning comes out to be the best among 
the 3 methods for testing models in real life scenarios. 
Secondly, it is possible to use theoretical facts to evaluate the 
model’s performance in testing. For example, if the model 
indicates increasing the clock speed of the CPU will increase 
the process execution time, it is necessary to check how much 
increase in frequency is the model indicating. If the frequency 
that the model says is more than the frequency the CPU can 
generate, the model is definitely not performing well. On the 
other hand, if the model is suggesting moving some processes 
to other cores for parallel execution will be beneficial (if the 
processes are mutually exclusive), then it can be said that the 
model is working correctly. 
 

On a superficial level, it is possible to divide all of the 

configurations and the policies into 2 categories. First category, in 
which these configurations and polices need to run only once in a 

while. Therefore, they have a liberty to take some time to increase 
their accuracy. Costly machine learning models which are very 

aggressive and take little time, but give excellent results, can be 
used here. Second category, where ‘decisions’ must be made very 

quickly, and their decisions affect the performance of the system 
for a small amount of time (or time for which the decision’s effect 

lasts). Configurations and policies pertaining to storage systems 
and networking devices can be included here. Realtime thread 

scheduling and core management algorithms can be included in 
this category. 
 

The paper also puts up a query regarding storage of these 
ML models. Accepted that good models can occupy hundreds 
of Megabytes of space; but nowhere it is mentioned that these 
models have to be stored in the RAM. These models which 
take up lots of space can be paged and can be accessed from 
there. Otherwise, if the system has powerful specifications, 
one or two important and frequently required models can be 
put onto RAM for increasing data-accessing speed. 

 
IV. RESEARCH PAPER 2: A MACHINE LEARNING APPROACH FOR 

IMPROVING PROCESS SCHEDULING – A SURVEY 

 

This is another survey paper which provides an in-depth 
information about previous attempts to improvise CPU 
scheduling, or process scheduling, by using machine learning 
techniques. This paper attempts to put forth the process scheduling 
from the resources’ point of view, in contrast to CPU point of 
view otherwise. One of the most important and critical bit of 
information present in the paper is that higher number of context 
switches do not indicate improved user experience (or even CPU 
performance for that matter). Instead, constant context switches 
may actually increase indivisual processes waiting time. Every 
context switch is associated with an additional overhead which 
consumes some of the CPU time for each instance. This results 
into loss of valuable processor time slices. 
 

The authors did an extensive research and gathered some vital 
information that will be required for the machine learning algorithms 

to process. Data was gathered in terms of attributes. Which attributes 
relate to which process – that gives all the details of the process, were 

found out. The process id, also known as PID, does not give complete 
information about the process and it’s process cycle when it is under 

execution inside CPU, was also found during this exercise. The 
processes were divided into 2 sub-categories ‘interactive processes’ 

and ‘non interactive processes’. After applying different ML 
techniques like Trees, Lazy, Rules, etc. and verifying by using 

different search methods such as Genetic Search, Best First Search 
and Rank Search, best attributes were found out for tracking the 

process inside the CPU. “Input Size” and “Page Reclaims” came out 
to be the best attributes among the 24 of the selected ones. An 

accurate prediction rate of 91.4% - 99.7% was achieved by these 2 
attributes. Another research paper [8], entitled ‘Automatic 

Classification of Processes in Operating Systems’, discusses a similar 
attempt to classify different processes into groups where each group 

has processes having similar behaviour. Machine learning techniques 
like Deep Learning and Deep Mining were used for classification. 

 

After finding the best attributes to track their process cycle in 
CPU, the processes were divided into 3 groups – Batch, Daemon 
and Interactive. Model was allowed to form groups by 
unsupervised learning algorithms and was manually analysed for 
verification. Manual check showed processes could be further 
divided into 6 groups (rather than 3): A (interactive applications), 
D (daemons), F (desktop features), N (network), C (text 
commands) and K. (kernel threads) Processes which do not fit into 
any of the above listed groups were put into O (other) category. 
 

The authors propose another scheduling method known as 

‘cognitive scheduling’ which calculated the usefulness of a process by 

using a parameter ‘utility value’. The method aimed at grouping the 
processes under different types of application types. Example, 

processes which request location, send the location to server, display 
relevant content, etc. will be grouped under some ‘mapping’ 

application; processes which calculate RGB count of every pixel, 
record them frame by frame into some excel sheet, perform some 

calculations based on that, etc. will be grouped under ‘image 
processing’ application; and many such cases. This grouping is done 

on the basis of the value returned by the ‘utility value’ parameter. 
Value ranges 
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will be preset and as and how the values are received, 
processes are grouped after checking the upper and lower 
limits of the particular range. 
 

A similar approach was presented in the paper which could 
incorporate current machine learning techniques for 
improvising process scheduling. Variable time slices were 
used to allocate CPU time to processes, reducing the number 
of context-switches which further consume some time for their 
own. Single integer field, special_time_slice (STS) was used 
to identify optimal CPU cycles per process. A restriction 
condition was imposed of minimizing the effective turnaround 
time for the processes. With 50 processes used for testing the 
model, improvement of 1.4%-5.8% was observed, and it was 
predicted that the numbers will be higher with increase in 
number of processes to be computed. 

 
V. RESEARCH PAPER 3: A DEDICATED SMALL 

COMPUTER FOR ARTIFICIAL INTELLIGENCE 
 

This paper [1] tries to provide a decent solution to the 

problems mentioned in the beginning of the text. The authors put 
forward a small computer, named SLIM (Small Lisp based 

Machine), whose only job is to process ML algorithms and store 
the result. Further analysis and computation will be done on 

another computer. Therefore, there is theoretically no lag for any 
ML process as such. Only extra time that might be required is the 

waiting time for the previous process to finish execution. 
 

Since this computer is dedicated only for Artificial 
Intelligence related tasks, the different languages that the 
computer will deal with are called AI languages. Some of 
them date back to 1980s where the term AI was starting to get 
evolved. Languages like Prolog or Lisp (Common Lisp, 
ETALisp, etc) are the most popular and widely used languages 
for AI programming in early days of artificial intelligence. 
SLIM was built to support these languages exclusively. The 
following were some of the features: 
 

1. It supported all variants of Lisp and Prolog. Modules 
written in core C and GP C were also supported. 
 

2. Open OS was built into SLIM. This gave pathway to 
open source project testing and applications to be checked for 
compatibility and performance recordings. 
 

3. Language libraries were not stored into RAM 
completely when in use. But partial importing was applied and 
only those files which were in use where taken on RAM, rest 
was stored in ROM as usual. 
 

These features were some of the most advanced techniques 
back then, difficult to implement and especially for newly 
discovered domains like AI. 
 

There were 2 versions of SLIM released. The first one was 
single-user and single-language system. ETALisp was the 
language that was supported. Common Lisp, Prolog 
(IF/Prolog), KCL (Kyoto Common Lisp) and C language 
libraries were supported in the second version of SLIM. As far 
as hardware is concerned, SLIM had plasma display, an 
MC68020 processor with clock speed of 20MHz, onboard 
memory of 8MB and 2MB of ROM. Another subsidiary 
processor MC68000 with clock speed of 10Mhz was dedicated 
to handle only I/O operations. The MC68020 was dedicated 
only towards processing AI algorithms, because of which the 

SLIM became a single-user multiprocessor system. It was a 6-
layer system with dual port (also known as dual channel) 
memory being the only link between the 3-layer groups. The 
main processor, MC68020, and the subsidiary processor, 
MC68000, had a common interval timer to keep these 2 
processors in synchronization with the memory; obviously to 
avoid memory wastage. The I/O operations were flagged as 
lightweight processes and the data processing operations were 
flagged as heavyweight operations. Main processor, one of the 
channels of the dual port memory and complete ROM was 
dedicated for heavyweight operations, while the remaining 
resources were open to be used for lightweight operations. 
 

Another unique feature of SLIM was that it supported MS-
DOS operating system. MS-DOS was chosen because no other 
operating system had as many powerful file management 
systems as it. With additional memory and a more powerful 
subsidiary processor, support for MS-DOS gave SLIM an 
additional functionality to locally host a file server. Since 
floppy disks were used for ROM, virtualization was limited to 
few kilobytes of data. 
 

Thus, introduction of a computer like SLIM which is 
dedicated solely towards processing of AI and ML algorithms 
paved pathway to ideas like running a remote server dedicated 
only towards AI, and this server would be lent to users so that 
there would be no need to upgrade their systems to run these 
algorithms; and many more. 
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