
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004163 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1270

Integration of Machine Learning into

Operating Systems: A Survey

Mayuresh Kulkarni Torana Kamble
Department of Computer Engineering Assistant Professor, Department of Computer Engineering

Bharati Vidyapeeth College of Engineering Bharati Vidyapeeth College of Engineering

Navi Mumbai, India Navi Mumbai, India

Abstract—Struggle for resources has always been an integral

part of life of a process. The task of management of resources

such as RAM, storage, CPU, GPU, etc. is handled by the

operating system of the computer. Every millisecond is crucial
when user experience and system performance are at stake.

Machine learning has made an entry into the world of computers

and has successfully conquered majority of the domains. This

research paper attempts to study the various machine learning

techniques used to automate and simplify the job of process

scheduling in operating systems. Various algorithms, their

approach towards the system (at hardware and software levels),

time-scale compression, etc. previously researched and

discovered are discussed in this text. This paper can be reliably

used as a comprehensive summary of 3 different research papers

and their outcomes regarding the concept of process scheduling,

CPU scheduling, system optimization with machine learning at

different levels (like User level, kernel level and hardware level),

etc. A discussion about a dedicated resource (inside a computer)

specifically for handling machine learning tasks has been made

which has a near unity ratio of success.

Keywords—component; formatting; style; styling; insert (key

words)

I. INTRODUCTION

Operating Systems (OS) are what defines the user

experience, performance and multitasking capabilities of the
computer. OSes form one of the most complex and intricate
pieces of software, closely followed by the recently
developing gaming mammoths. Operating systems have been
in existence since the year 1956, made by General Motor’s
Research division for IBM-704 Mainframe computer. And
since then, OSes have evolved to be completely different than
what they were during ’56. Current operating systems perform
tasks like CPU scheduling, file management, memory
management, provide security from viruses, provide the user
interface, etc. Parallelly, the field of Machine Learning (ML)
has also been evolving since past few years. Beginning with
mathematically evolving formulae, to providing a real-life
software assistant, ML has also grown to something which
nobody could think of when the first OS was introduced. A
combination of these 2 rapidly evolving domains of Computer
Science will be extremely beneficial for both. Integrating
Machine Learning into operating systems is one of the most

difficult tasks as of today. The researchers or programmers

must take into consideration hundreds of factors and their
implications on the system in real life.

It is a widely known fact that tasks like Machine Learning,
Deep Learning, NLP (Natural Language Processing), or the whole
Artificial Intelligence domain as a whole, require more computing
power than a normal task (like opening a file or reading a file).
From operating system’s point of view, performing machine
learning is same as rendering a high-resolution image from disk to
memory via GPU. This is because they both require the same
amount of resources from the system. Hence, the OS tries to treat
the ML task like a regular task, and this is where the problems
begin. It is expected for any regular task to have a bust time, after
which it has to end or be terminated forcefully. Machine learning
tasks are bound to run for a much longer amount of time, or
infinitely until system is turned off or it doesn’t crash. Therefore,
treating an ML task like a regular task is the first thing that OSes
do wrong. Another issue with current generation of operating
systems is that, at root level, they treat all languages as equals.
Meaning, for a Linux based operating system, at kernel level, C is
same as C++ is same as Python. To summarize, OS treating high
level languages to low level languages is the second thing that
OSes do wrong.

This survey paper aims to study, this combination of Machine
Learning and Operating System, and comment on the credibility
to do so. This paper also attempts to provide a practical solution to
management of resources while the ML algorithms run in the
background, by giving them dedicated hardware for it. This
theoretically will not consume the resources provided for the user
to consume because this dedicated hardware is not assessible to
any other entity other than the ML algorithms and the operating
system kernel. Further explanation and detailing on this topic are
provided at the end of the text.

II. METHODOLOGY

The methodology that will be followed during this text is that

each of the research papers that this text deals with, will be studied

indivisually. Their offerings, their scope, their results, everything will
be discussed at a survey level. Beginning with

[5]. This research paper tells where Machine Leaning can be used in
Operating Systems, learning configurations, challenges that

researchers may face while integrating ML into Operating System
and potential solutions to those challenges and problems. It says that

current operating systems cannot
‘change’ at runtime, making them incapable to dynamically adapt
to applications’ changing behavior and needs. The learning

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004163 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1271

configurations that the operating systems use are categorized
into 2 types, Timing Related and Size Relatedconfigurations.
The author states using Objective-C instead of C++ will be
much more beneficial here because Objective-C is focused on
runtime-decisions for dispatching & heavily depends on its
runtime library to handle inheritance and polymorphism, while
in C++ the focus usually lies on static, compile time,
decisions.

III. RESEARCH PAPER 1: ‘LEARNED’ OPERATING SYSTEMS

One of the most important facts provided in this paper is

that it states the operating systems do not change at ‘runtime’.
Now, this statement might be contradicting to the very concept
of machine learning, i.e. ability of programs to adapt to
changing situations. But, through this text, it can be explained
by giving the logical explanation behind it. Machine learning
algorithms work on data provided to them. Which means the
data, or the instance of generation of data is in the past.
Secondly, based on ‘n’ such data sets, the algorithm modifies
the system behavior and the modified behavior is reflected
into the system from the next run. That means the modification
done to the system in the current run will be shown in the next
run. Therefore, operating systems do not ‘change’ at runtime.
The statement remains valid.

The paper [5] discusses 3 different opportunities for
machine learning to be integrated into operating systems.
Namely, Learning Configurations, Learning Policies and
Learning Mechanisms [5]. Some settings and tools are preset
in OSes. They are configured to stay static. To modify them,
one needs to manually edit them. Machine learning can
automate this process.

Configurations can be sub-divided into 2 parts, Timing
Related Configurations and Size Related Configurations.
Setting timing related configs is very difficult. Because system
has to make a decision between less-aggressive thread
scheduling (low CPU consumption but high effective CPU
utilization) and more-aggressive thread scheduling i.e. more
pre-empting and context switching threads (high CPU
consumption as it is always under maximum load but low
effective usage as majority threads handled are for context
switching and not for process execution). This duality can be
reduced using Machine Learning. Setting size related
configurations is finding a balance between improving stored
file system performance and available memory for other
applications. This is also very difficult trade-off as large buffer
cache improves the performance of the system but on the other
hand reduces amount of free memory. This paper provides a
formidable solution to this. Using Objective-C instead of C++
will be much more beneficial here because Objective-C is
focused on runtime-decisions for dispatching & heavily
depends on its runtime library to handle inheritance and
polymorphism, while in C++ the focus usually lies on static,
compile time, decisions.

Policies are ways to choose which activities to perform.
Similar to configurations, policies can be divided into 3 sub-
categories, Space Allocation Policies, Scheduling Policies and
Cache Management Policies. Machine Learning models will
be able to combine the benefits of Best Fit & ext policies
(these are the polices currently used in Linux based operating
systems). It is necessary to analyze how much space users
requested, what space the OS allocated, how efficiently spaces
are used and how much fragmentation is done. Also,
modelshould be dynamic because of the necessity to adapt to
changing user-behaviors.

An OS needs to decide which (& how much) memory
space to allot, whenever an application requests for memory.
This task is executed based on general heuristics and aged
algorithms. Techniques like Best-Fit policy, mmap system call
in Linux, etc. can work for many workloads and usages, they

are nowhere close to what Machine Learning can achieve for the
same task. For ML to work, a model is needs to be created such
that it will track which application uses how much memory, which
sections of memory is occupies, what is the priority of resource
allocation, etc. and form a general trend based on this data for
every application. After ‘n’ trials, the model can predict the
memory demand and accordingly keep those parts of memory
blocks free for that application.

The scheduling policies of the current gen OSes are very
outdated and not suitable for extended heavy-usage which
changes at rate more than the algorithm can handle. This results in
unexpected crashing of applications and failing to be productive.
Therefore, like learning policies, the scheduling algorithms should
also be given ML treatment to improve CPU scheduling.
Presently, most OS virtual memory systems try to swap memory
pages (least used) using approximate LRU detection algorithms.
Instead of using traditional LRU techniques, OSes can use ML
models which can dynamically locate and update the policies
which deal with cache management.

Mechanisms are the implementations that enforce policies, and
often depend to some extent on the hardware on which the
operating system runs. For instance, a processes may be granted
resources using the first come, first serve policy. This policy may
be implemented using a queue of requests. Often the kernel
provides mechanisms that are used to implement policies in
servers.

Like configurations and policies, mechanisms can also be
divided into 2 sub-categories, first is Virtual Memory Address to
Physical Memory Address Location Mapping mechanism; and
second is mapping from File Name & Offset to Disk Logical
Block and Address mechanism. The paper states that these 2
mapping mechanisms are extremely crucial when dealing with
performance of memory and storage systems. This is in-fact true
because every bit of data that is transferred from main memory to
secondary memory, and vice versa, for each and every task
executed in the system, is done through these 2 mechanisms.
Failure to perform at high speeds directly imply reduced system
performance. It is possible to further improve the learning
mechanisms’ performance and CPU cache hit-rate by storing the
parameters used by the model in contiguous memory space.

After reviewing the possible areas where machine learning can
be implemented, it is necessary to audit the problems or
difficulties that might be faced while doing so. The possible
difficulties that might arise are Model Selection and Building,
Training of the Model, Integration Difficulties and Security of the
final operating system with the ML model integrated in the
system.

Model selection is a very crucial decision in the long run. A
correctly selected model might improve the system performance
and increase efficiency; but an incorrect selection might reduce
the performance and deteriorate efficiency. Next,

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004163 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1272

it is also essential to think about a situation of unavailability of
a model. It is very much possible that there is no model which
matches the requirements of the project in-hand. In such cases,
the developers are expected to build their own model and use
it for the same. Global models can be used/made if its job is
general purpose and doesn’t affect the system performance
much. Example, pre-fetching of network modules, post-
processing of graphics data, etc. GPMs (General Purpose
Model) can be used in such situations. If the model is going to
tasks which directly affect the system performance, it is highly
recommended to make very accurate and job-specific models,
even if that particular model cannot be used elsewhere. The
reason being fine-grained models always achieve better
accuracy and performance in the long run than GPMs (which
generally tend to break after some time due to over-training
and more modification than the architecture allows).

Training of the model has to be very operation specific.
Model which will be dealing with CPU scheduling should not
be trained in environment where memory management or file
system management or any such domain adulteration will
occur. Another important point to be kept in mind while
training the model, is that, even if the model is trained using
supervised or unsupervised learning methods; the way in
which the model is tested is very much important. As a proven
fact, reinforcement learning comes out to be the best among
the 3 methods for testing models in real life scenarios.
Secondly, it is possible to use theoretical facts to evaluate the
model’s performance in testing. For example, if the model
indicates increasing the clock speed of the CPU will increase
the process execution time, it is necessary to check how much
increase in frequency is the model indicating. If the frequency
that the model says is more than the frequency the CPU can
generate, the model is definitely not performing well. On the
other hand, if the model is suggesting moving some processes
to other cores for parallel execution will be beneficial (if the
processes are mutually exclusive), then it can be said that the
model is working correctly.

On a superficial level, it is possible to divide all of the

configurations and the policies into 2 categories. First category, in
which these configurations and polices need to run only once in a

while. Therefore, they have a liberty to take some time to increase
their accuracy. Costly machine learning models which are very

aggressive and take little time, but give excellent results, can be
used here. Second category, where ‘decisions’ must be made very

quickly, and their decisions affect the performance of the system
for a small amount of time (or time for which the decision’s effect

lasts). Configurations and policies pertaining to storage systems
and networking devices can be included here. Realtime thread

scheduling and core management algorithms can be included in
this category.

The paper also puts up a query regarding storage of these
ML models. Accepted that good models can occupy hundreds
of Megabytes of space; but nowhere it is mentioned that these
models have to be stored in the RAM. These models which
take up lots of space can be paged and can be accessed from
there. Otherwise, if the system has powerful specifications,
one or two important and frequently required models can be
put onto RAM for increasing data-accessing speed.

IV. RESEARCH PAPER 2: A MACHINE LEARNING APPROACH FOR

IMPROVING PROCESS SCHEDULING – A SURVEY

This is another survey paper which provides an in-depth
information about previous attempts to improvise CPU
scheduling, or process scheduling, by using machine learning
techniques. This paper attempts to put forth the process scheduling
from the resources’ point of view, in contrast to CPU point of
view otherwise. One of the most important and critical bit of
information present in the paper is that higher number of context
switches do not indicate improved user experience (or even CPU
performance for that matter). Instead, constant context switches
may actually increase indivisual processes waiting time. Every
context switch is associated with an additional overhead which
consumes some of the CPU time for each instance. This results
into loss of valuable processor time slices.

The authors did an extensive research and gathered some vital
information that will be required for the machine learning algorithms

to process. Data was gathered in terms of attributes. Which attributes
relate to which process – that gives all the details of the process, were

found out. The process id, also known as PID, does not give complete
information about the process and it’s process cycle when it is under

execution inside CPU, was also found during this exercise. The
processes were divided into 2 sub-categories ‘interactive processes’

and ‘non interactive processes’. After applying different ML
techniques like Trees, Lazy, Rules, etc. and verifying by using

different search methods such as Genetic Search, Best First Search
and Rank Search, best attributes were found out for tracking the

process inside the CPU. “Input Size” and “Page Reclaims” came out
to be the best attributes among the 24 of the selected ones. An

accurate prediction rate of 91.4% - 99.7% was achieved by these 2
attributes. Another research paper [8], entitled ‘Automatic

Classification of Processes in Operating Systems’, discusses a similar
attempt to classify different processes into groups where each group

has processes having similar behaviour. Machine learning techniques
like Deep Learning and Deep Mining were used for classification.

After finding the best attributes to track their process cycle in
CPU, the processes were divided into 3 groups – Batch, Daemon
and Interactive. Model was allowed to form groups by
unsupervised learning algorithms and was manually analysed for
verification. Manual check showed processes could be further
divided into 6 groups (rather than 3): A (interactive applications),
D (daemons), F (desktop features), N (network), C (text
commands) and K. (kernel threads) Processes which do not fit into
any of the above listed groups were put into O (other) category.

The authors propose another scheduling method known as

‘cognitive scheduling’ which calculated the usefulness of a process by

using a parameter ‘utility value’. The method aimed at grouping the
processes under different types of application types. Example,

processes which request location, send the location to server, display
relevant content, etc. will be grouped under some ‘mapping’

application; processes which calculate RGB count of every pixel,
record them frame by frame into some excel sheet, perform some

calculations based on that, etc. will be grouped under ‘image
processing’ application; and many such cases. This grouping is done

on the basis of the value returned by the ‘utility value’ parameter.
Value ranges

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 4 April 2020 | ISSN: 2320-2882

IJCRT2004163 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1273

will be preset and as and how the values are received,
processes are grouped after checking the upper and lower
limits of the particular range.

A similar approach was presented in the paper which could
incorporate current machine learning techniques for
improvising process scheduling. Variable time slices were
used to allocate CPU time to processes, reducing the number
of context-switches which further consume some time for their
own. Single integer field, special_time_slice (STS) was used
to identify optimal CPU cycles per process. A restriction
condition was imposed of minimizing the effective turnaround
time for the processes. With 50 processes used for testing the
model, improvement of 1.4%-5.8% was observed, and it was
predicted that the numbers will be higher with increase in
number of processes to be computed.

V. RESEARCH PAPER 3: A DEDICATED SMALL

COMPUTER FOR ARTIFICIAL INTELLIGENCE

This paper [1] tries to provide a decent solution to the

problems mentioned in the beginning of the text. The authors put
forward a small computer, named SLIM (Small Lisp based

Machine), whose only job is to process ML algorithms and store
the result. Further analysis and computation will be done on

another computer. Therefore, there is theoretically no lag for any
ML process as such. Only extra time that might be required is the

waiting time for the previous process to finish execution.

Since this computer is dedicated only for Artificial
Intelligence related tasks, the different languages that the
computer will deal with are called AI languages. Some of
them date back to 1980s where the term AI was starting to get
evolved. Languages like Prolog or Lisp (Common Lisp,
ETALisp, etc) are the most popular and widely used languages
for AI programming in early days of artificial intelligence.
SLIM was built to support these languages exclusively. The
following were some of the features:

1. It supported all variants of Lisp and Prolog. Modules
written in core C and GP C were also supported.

2. Open OS was built into SLIM. This gave pathway to
open source project testing and applications to be checked for
compatibility and performance recordings.

3. Language libraries were not stored into RAM
completely when in use. But partial importing was applied and
only those files which were in use where taken on RAM, rest
was stored in ROM as usual.

These features were some of the most advanced techniques
back then, difficult to implement and especially for newly
discovered domains like AI.

There were 2 versions of SLIM released. The first one was
single-user and single-language system. ETALisp was the
language that was supported. Common Lisp, Prolog
(IF/Prolog), KCL (Kyoto Common Lisp) and C language
libraries were supported in the second version of SLIM. As far
as hardware is concerned, SLIM had plasma display, an
MC68020 processor with clock speed of 20MHz, onboard
memory of 8MB and 2MB of ROM. Another subsidiary
processor MC68000 with clock speed of 10Mhz was dedicated
to handle only I/O operations. The MC68020 was dedicated
only towards processing AI algorithms, because of which the

SLIM became a single-user multiprocessor system. It was a 6-
layer system with dual port (also known as dual channel)
memory being the only link between the 3-layer groups. The
main processor, MC68020, and the subsidiary processor,
MC68000, had a common interval timer to keep these 2
processors in synchronization with the memory; obviously to
avoid memory wastage. The I/O operations were flagged as
lightweight processes and the data processing operations were
flagged as heavyweight operations. Main processor, one of the
channels of the dual port memory and complete ROM was
dedicated for heavyweight operations, while the remaining
resources were open to be used for lightweight operations.

Another unique feature of SLIM was that it supported MS-
DOS operating system. MS-DOS was chosen because no other
operating system had as many powerful file management
systems as it. With additional memory and a more powerful
subsidiary processor, support for MS-DOS gave SLIM an
additional functionality to locally host a file server. Since
floppy disks were used for ROM, virtualization was limited to
few kilobytes of data.

Thus, introduction of a computer like SLIM which is
dedicated solely towards processing of AI and ML algorithms
paved pathway to ideas like running a remote server dedicated
only towards AI, and this server would be lent to users so that
there would be no need to upgrade their systems to run these
algorithms; and many more.

REFERENCES

[1] Hiromitsu Hirakawa, Hitoshi Ogawa, Masayuki Fujiwara, A Dedicated

Small Computer for Artificial Intelligence, Ritsumeikan University,
Department of Computer Science and Systems Engineering

[2] Siddharth Dias, Sidharth Naik, Sreepraneeth K, Sumedha Raman,

Namratha M, A Machine Learning Approach for Improving Process
Scheduling: A Survey, International Journal of Computer Trends and

Technology (IJCTT) – Volume 43 Number 1 – January 2017

[3] Atul Negi, Kishore Kumar P, Applying Machine Learning Techniques to

improve Linux Process Scheduling, Department of Computer and

Information Sciences University of Hyderabad

[4] Naila Aslam, Nadeem Sarwar, Amna Batool, Designing a Model for

improving CPU Scheduling by using Machine Learning, International

Journal of Computer Science and Information Security (IJCSIS), Vol.
14, No. 10, October 2016

[5] Yiying Zhang, Yutong Huang, ‘Learned’ Operating Systems, Purdue

University

[6] Terek Helmy, Sadam Al-Azani, Omar Bin-Obaidellah, A Machine

Learning-Based Approach to Estimate the CPU-Burst Time for
Processes in the Computational Grids, 2015 Third International

Conference on Artificial Intelligence, Modelling and Simulation

[7] Charles Leech, University of Southampton, UK, Charan Kumar and

Amit Acharya, IIT Hyderabad, India, Shen Yang, Geoff V. Merit and
Bashir Al-Hashimi, University of Southampton, UK, Runtime

Performance and Power Optimization of Parallel Disparity Estimation
on Many-Core Platforms, ACM Trans. Embed. Comput. Syst. 17, 2,
Article 41 (November 2017)

[8] Araujo, Priscila Vriesman, Carlos Alberto Maziero, and Júlio César

Nievola. “Classificação Automática de Processosem Sistemas
Operacionais. Diss. Dissertação de mestrado”, 74 p. Pós-
GraduaçãoemInformática, PontifíciaUniversidadeCatólica do Paraná,

Curitiba, 2011.

http://www.ijcrt.org/

