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Abstract:  Network Security is one of the important concepts in data security as the data to be made secure. To make data secure, there exist 

number of algorithm like AES(Advanced Encryption Standard). The security can be enhanced by using standardized and proven-secure block 

ciphers as advanced encryption standard (AES) for data encryption and authentication. However, these security functions take a large amount of 

processing power and power/energy consumption. In this paper, we present our hardware optimization strategies for AES for high-speed 

ultralow-power ultralow-energy IoT applications with multiple levels of security. Our design supports multiple security levels through different 

key sizes, power and energy optimization for both datapath and key expansion. The estimated power results show that our implementation may 

achieve an energy per bit comparable with the lightweight standardized algorithm PRESENT of less than 1 pJ/b at 10 MHz at 0.6 V with 

throughput of 28 Mb/s in ST FDSOI 28-nm technology. In terms of security evaluation, our proposed datapath, 32-b key out of 128 b cannot be 

revealed by correlation power analysis attack using less than 20 000 traces. 

________________________________________________________________________________________________________ 

I. INTRODUCTION 

 A wireless Sensor Network is simple defined as a large collection of sensor nodes, equipped with its own sensor, processor and 

radio transceiver. A wireless sensor network has been widely used in different application areas to know the battlefield situation 

data, monitoring building parameters and reports about malfunction in a system. Cryptography, often called encryption, is the 

practice of creating and using a cryptosystem or cipher to prevent all but the intended recipient from reading or using the 

information or application encrypted. A cryptosystem is a technique used to encode a message. The recipient can view the 

encrypted message only by decoding it with the correct algorithm and keys.  

Cryptography is used primarily for communication sensitive material across computer network. The process of encryption takes 

a clear text document and applies a key and a mathematical algorithm to it, converting it into crypto text. In crypto-text the 

document is unreadable unless the reader possesses the key that can undo the encryption. In 1997 the national Institute of Standard 

and Technology (NIST), a branch of the US government, started a process to identify a replacement for the Data Encryption 

Standard(DES). It was generally recognized that DES was not secure of advances in computer processing power. It was generally 

recognized that DES was not secure because of advance in computer processing power. The goal of NIST was to define a 

replacement for DES that could be used for non-military information security application by US government agencies. Of course, it 

was recognized that commercial and other non-government users would benefit from the work of NIST and that the work would be 

generally adopted as a commercial standard. The NIST invited cryptography and data security specialist from around the world to 

participate in the discussion and selection process.  

Five encryption algorithms were adopted for study. Through a process of consensus the encryption algorithm proposed by the 

Belgium cryptographers Joan Daeman and Vincent Rijmen was selected. Prior to selection Daeman and Rijmen used the name 

Rijndael (derived from their names) for the algorithm. After adoption the encryption algorithm was given the name Advanced 

Encryption Standard (AES) which is in common use today. In 2000 the NIST formally adopted the AES encryption algorithm and 

published it as a federal standard under the designation FIPS-197. The full FIPS-197 standard is available on the NIST web site 

(see the Resources section below). As expected, many providers of encryption software and hardware have incorporated AES 

encryption into their products. 

The AES encryption algorithm is a block cipher that uses an encryption key and a several rounds of encryption. A block cipher 

is an encryption algorithm that works on a single block of data at a time. In the case of standard AES encryption the block is 128 

bits, or 16 bytes, in length. The term “rounds” refers to the way in which the encryption algorithm mixes the data re-encrypting it 

ten to fourteen times depending on the length of the key. This is described in the Wikipedia article on AES encryption. The AES 

algorithm itself is not a computer program or computer source code. It is a mathematical description of a process of obscuring data. 

A number of people have created source code implementations of AES encryption, including the original authors. 

AES encryption uses a single key as a part of the encryption process. The key can be 128 bits (16 bytes), 192 bits (24 bytes), or 

256 bits (32 bytes) in length. The term 128-bit encryption refers to the use of a 128-bit encryption key. With AES both the 

encryption and the decryption are performed using the same key. This is called a symmetric encryption algorithm. Encryption 

algorithms that use two different keys, a public and a private key, are called asymmetric encryption algorithms. An encryption key 

is simply a binary string of data used in the encryption process. Because the same encryption key is used to encrypt and decrypt 

data, it is important to keep the encryption key a secret and to use keys that are hard to guess. Some keys are generated by software 

used for this specific task. Another method is to derive a key from a pass phrase. Good encryption systems never use a pass phrase 

alone as an encryption key. 

II. BACKGROUND  

III. A. Preliminary on Advanced Encryption Standard 

 The Advanced Encryption Standard (AES) algorithm operates on plaintext block of 128 bits. The 16-byte input data is internally 

organized into an array of four rows by four columns, called the state matrix (Ms ). The input data is encrypted by applying a 

sequence of transformations to the state matrix, as detailed by the pseudo code in Algorithm 1.The flow chart in Figure 1 shows the 
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dominant resources used for the hardware implementation of each transformation module, where the gate utilization data is 

obtained by synthesizing the AES Verilog code from [20]. The operations performed and the resources consumed for each module 

are described as follows. 

 SubBytes: Each byte Si, j of the state matrix Ms will be independently updated by a nonlinear transformation f in this 
module. The mapping f is performed by a substitution-box (S-box), which takes one byte of input from Ms and 
transforms it into another byte at the same position. The SubBytes module accounts for half of the total gates in AES, 
with registers used as fixed storage elements of the look-up table (LUT). Each S-box is preconfigured with an 8-bit 

word in each memory location addressable by an 8-bit input. Hence the LUT size is 2^8 ・ 8 = 2048 bits. The 

percentage of hardware resources utilized by this module may vary depending on how the S-box is implemented. If the 
S-box is implemented by combinational logic circuit, XOR gates become the dominant resources, which account for 
more than 70% of gate utilization for the AES implementation, as reported in [7]. 

  ShiftRows: The nth row of Ms will be cyclically shifted to the left by n bytes. As shown by arrows on the entries of 
Ms in Figure 1, the top row is not shifted; the second row is shifted by one byte position; the third row by two; and the 
fourth row by three. In ASIC design, the ShiftRows transformation can be performed in-place by storing the content of 
Ms in shift registers, hence no additional logic gate is incurred. 

  MixColumns: Each column of Ms is multiplied by a constant matrix Mmc consisting of three integer values 1, 2 and 3, 
as shown in Figure 1. The multiplication of a variable byte by an integer 1, 2 or 3 of Mmc results in an unchanged byte, 
a 1-bit left shifted byte or the XOR of the byte with a 1-bit left shifted version of itself, respectively. Hence, this 
invertible linear transformation replaces all four bytes in a column of Ms such that each byte is mixed with all four 
bytes in the column. This module contains only XOR gates and it accounts for nearly half of the total number of gates. 

 

 AddRoundKey: The 16-byte round keys are organized in a similar 4×4 array Mk as the state matrix. Each entry of Mk 

is denoted as Ki, j . In this operation, each byte Si, j of Ms will be replaced by the result of a bitwise-XOR operation 
with a byte Ki, j in the same row and column of the round key matrix Mk . Therefore, the AddRoundKey module is 
again built by merely XOR gates, which accounts for 3.3% of the total gates. 

 
Fig. 1. Flow chart of AES algorithm with gate utilization analysis. 

 

In conclusion, the basic operations involved in AES are XOR, shift, and table look up although the percentage utilization of the 

logic gates used for each module may vary from design to design. 

B. Non-Volatile Logic-in-Memory Architecture 

Conventionally, all the data is kept in the memory separated from the processor but connected with the I/Os. During the 

execution, all data needs to be migrated to the processor and written back thereafter. This will cause I/O congestion and impact the 

system performance for data-intensive application. In addition, significant standby power will be consumed in holding the large 

volume of data. 

Theoretically, the bandwidth problem can be overcome by adding more I/Os operating at higher frequency. However, this 

solution is limited by the scalability of CMOS technology and has non-trivial cost penalty. Alternatively, the required data 

communication traffic between memory and processor can be reduced. Instead of feeding the processor with a large volume of raw 

data, the data can be preprocessed so that the processor needs to deal only with a smaller amount of intermediate results, thereby 

reducing the communication traffic. The logic-in-memory architecture merges logic with memory to allow some preprocessing to 

be done locally. Taking the leakage reduction into consideration, the logic in- memory architectures associated with NVM are 

presented in [8] and [9]. Figure 2 shows the cell-level circuit for the logic-in-memory architecture of [8]. The logic function 

realized in this example circuit is an in-memory full-adder with both sum logic and carry logic. Instead of reading out the operands, 

the sum and carry results can be obtained directly after the read operation, as indicated by t he red arrow. 
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Fig. 2. Conventional in-memory computing architecture at memory celllevel [8]. 

III. Our Proposed Architecture 

Our proposed architecture is presented in Fig. 3. The encryption path includes four parts: a state register; four S-boxes; a 

MixColumn; and an output register which also acts as a temporary register to store intermediate results. The key expansion 

consists of two key registers and a key transformation module to support all key sizes specified in AES. Our design is a 32-b 

datapath architecture, which means the input data and the input key are divided into 32-b chunks. Each pair of 32-b data and 32-b 

key is loaded together. This takes four cycles to load the 128-b key and 128-b data and XOR them into the state register. 

 For 192-b keys and 256-b keys, after the first 128 b are loaded, the encryption is started while the other bits of the key are 

continuously loaded to maximize the throughput. There are two feedback paths, on in the key expansion and the other in the 

encryption path. The state register needs to be updated every four cycles with new 128-b data, while the previously expanded 

word is sent back to the key registers to generate the new expanded key. The details of the optimizations in our proposed 

architecture are presented in the next sections. 

 
Fig 3 : Our proposed AES architecture. 

 

IV. Experimental Result 

Our proposed architecture and a lightweight cryptography algorithm PRESENT are modeled in VHDL, synthesized using 

Synopsys DC Compiler, and fully implemented using Cadence Innovus into the test chip SNACk using ST FDSOI 28-nm 

technology. The maximum target frequency is set to 60 MHz that provides the maximum throughput of 170 and 106 Mb/s for 

AES encryption core and PRESENT encryption core,respectively. This throughput meets the demand of mediumand high-

throughput IoT applications. AES encryption module and PRESENT encryption module are combined into the block cipher 

module in SNACk test chip for comparison. The power consumption at different corner cases is estimated using the post signoff 

extraction. The following sections present our power estimation results on SNACk chip and the security evaluation that we 

implemented using Synopsys PrimeTime Power. 

A. Configuration and Test Environment of SNACK 

Fig. 4 shows the interface of the encryption module in the SNACk test chip. It contains the test environment for our proposed 

AES encryption architecture and also a lightweight cryptography algorithm PRESENT for comparison. It has a 32-b data 

interface with the possibility of selecting different key sizes and the cipher type between AES encryption core and PRESENT 

encryption core. AES encryption core supports all the encryption modes specified in AES standard including 128-, 192-, and 256-

b keys. PRESENT encryption core with the same interface contains two modes: 80- and 128-b keys. The two designs were 

implemented using the same technology. The test environment for block cipher module in SNACk chip is presented in Fig. 9. The 

plaintext and the key are loaded from the host through SPI interface. Inside SNACk chip, there is an SPI decoder with the APB-

like interface to write the test data into the correct memories including the configuration registers, the key memory, the plaintext 

memory, and the reference memory. After loading all necessary data, the encryption test is done by activating the control finite 

state machine. If the encryption is done correctly, the running signal will toggle. 
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Fig 4: Block cipher module in SNACk test chip. 

The encryption process continues running repeatedly until the control finite state machine receives the stop signal through 

the SPI interface. All the power estimation results in the next section are obtained using this test configuration. 
 

 
Fig 5 : Block cipher module in SNACk test chip 

B. Power Estimation Results 

Using the test environment in SNACk chip, it is possible to test two encryption cores with different key lengths at 

different supply voltages and different operating frequencies. The same key and the plaintexts were sent to each encryption 

module The activity of the post signoff timing simulation for each encryption module was captured for the whole encryption 

period. Then, the activity data were used to do power estimation in PrimeTime with FDSOI 28-nm technology libraries provided 

by ST. The technology librarie were characterized for the supply voltage from 0.6 to 1.3 V for different working conditions. Figs. 

10 and 11 show the leakage power and the dynamic power of different encryption modes at 10 MHz withthe supply voltage 

ranging from 0.6 up to 1.3 V at different corners at 125 °C. It is obvious that the worst case in terms of power consumption is the 

fast corner. Furthermore, it is clear that there are different leakage powers at different corners, while dynamic powers stay 

unchanged across different corners.  

The leakage powers increase significantly when we increase the supply voltage especially in the fast corner. Within the 

same algorithm, the leakage power has minor differences for different key sizes; however, the leakage power of AES module is 

fOR 2.5 to 3 times the leakage power of PRESENT module.  

This corresponds to the difference in area of two modules. AES module occupies 3.6 times more area than PRESENT module. In 

terms of dynamic power, because of our optimization for different configuration by using separated clock gating for different key 

storage, AES module with 128-b key has 20% less dynamic power than AES module with 192- and 256-b keys, while the 

difference between AES 192- and AES 256-bkeys is a small margin.  

The difference among three cornerstested is small. The power consumption decreases gradually when we decrease the 

supply voltage. The best case in our power estimation results is at 0.6 V where the leakage in different key configuration for the 

two algorithms is close to each other. At the supply voltage of 0.6 V at typical corner in the worst case of power consumption (at 

125 °C), AES module consumes the power from 61.5 to 65.6 μW in total an the PRESENT module consumes the power of about 

24 μW; while in the typical case at 25 °C, our AES module and our PRESENT module consumes only less than 20 and 12 μW, 

respectively. 
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Fig 6: Leakage power at 10 MHz at different supply voltages at different corners. 

 
Fig 7: Dynamic power at 10 MHz at different supply voltages 

C. Security Evaluation 

We also perform correlation power analysis (CPA) attack, one of the most effective side channel attacks, on our design using the 

last round key hypothesis. The attack is based on the power trace extracted through the post signoff power estimation. A 

simulation of 20 000 encryptions of our design in 128-b key encryption mode is executed to capture the ciphertext and the power 

traces. 

 For comparison, we do the same hardware implementation process with a full parallel design from OpenCores. In general, the 

more parallel level of the datapath, the harder it is to attack the design because parallelism is one way of hiding countermeasures. 

8-b datapath without protection is more exposed to this type of attack because the number of traces required to perform the attack 

is very small. According to DPA contest, even a round-based datapath with full 128-b parallel computation on field-

programmable gate array, with good measuremenequipment, only 800 traces are required to reveal the key of the cryptographic 

devices.  

Fig 8 presents the results of our experiment on post signoff power traces. The AES 128-b datapath needs about 4000 traces to 

reveal 16 B of the secrete key while with our architecture, even with 20 000 traces, only 12 B are revealed. Four bytes are hidden 

because at the end of each round, the data registers are overridden with new data. This hides the correlation of the activity of the 

last 4 B of the key which increase the resistance of our design to the last round CPA. 
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Fig 8: Number of correct guessed key bytes (in 128-b key mode) by last round CPA attack. 

 
Fig 9: Block chip module in SNACK test chip 

 

CONCLUSION  

In this paper, we presented multiple optimization strategies for AES 32-b datapath to achieve a low-cost high-throughput 

ultralow-power ultralow-energy design with multiple levels of security. The area of our proposed architecture is saved by are 

organization of both datapath and key expansion to minimize the number of registers and control logics. The power consumption is 

reduced by choosing the S-boxes for low power, by minimizing the activity in the key expansion and in the datapath, and by 

applying a clock gating strategy to data storage registers. The throughput is maximized by using eight S-boxes and doing key 

expansion in parallel with the encryption path. Multiple key sizes of the encryption module provide different security levels which 

help IoT applications to adapt to a wider range of security protocols and mechanisms. 

We also showed that our optimization strategies are not only beneficial for area, throughput, and power/energy consumption but 

also the security feature. With the optimization in the encryption datapath, 32 b of the secrete key cannot be revealed through CPA 

attacks with 20 000 traces using last round hypotheses. In terms of power and energy consumption, at 0.6 V at 25 °C, our design 

can achieve a power consumption of less than 20 μW for all key configurations with the energy consumption of less than 1 pJ/b 

with the throughput of 28 Mb/s at 10 MHz. In this condition, our AES implementation has nearly the same energy consumption in 

comparison with the lightweight cryptography algorithm PRESENT on the same technology node: ST FDSOI 28-nm technology. 

With high throughput ultralow-power, ultralow-energy consumption, our design is obviously suitable for future ultralow-power IoT 

applications. 
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