Strong dominating sets and Strong Domination Polynomial of Complete Graphs

Angelin Kavitha Raj ${ }^{1} \mathbf{S}$ and Robinson Chelladurai \mathbf{S}^{2}
${ }^{1}$ Department of Mathematics, Sadakathullah Appa College, Tirunelveli.
${ }^{2}$ Department of Mathematics, Scott Christian College, Nagercoil

Abstract

Let $G=(V, E)$ be a simple graph. A set $S \subseteq V$ is called a dominating set if every vertex $v \in V$ is either a member of S or adjacent to a member of S. A set $S \subseteq V$ is a strong dominating set of G if for every $u \in V-S$, there exists $a v \in S$ such that $u v \in E$ and deg $(u) \leq \operatorname{deg}(v)$. Let k_{m} be complete graph with order m. Let $S d\left(K_{m}^{j}\right)$ be the family of strong dominating sets of a complete graph K_{m} with the number of elements in the set j, and let $S d\left(K_{m}, j\right)=\left|S d\left(K_{m}^{j}\right)\right|$. In this paper, we establish K_{m} and obtain a iterative formula for $S d\left(K_{m} j\right)$. Using this iterative formula, we consider the polynomial $S D\left(K_{m}, x\right)=\sum_{j=1}^{m} S d\left(K_{m}, j\right) x^{j}$, which we call strong domination polynomial of complete graphs and obtain some examples of this polynomial.

1 Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=m$. A set $S \subseteq V$ is called a dominating set if every vertex $\mathrm{v} \in \mathrm{V}$ is either a member of S or adjacent to a member of S . A set $\mathrm{S} \subseteq \mathrm{V}$ is a strong dominating set of G if for every $u \in V-S$, there $v \in S$ such that $u v \in E$ and $\operatorname{deg}(u) \leq \operatorname{deg}(v)$. The minimum cardinality of strong dominating set is called minimum strong domination number and is denoted by $\gamma_{\mathrm{sd}}(\mathrm{G})$. Alkhani and Peng found the dominating sets and domination polynomial of cycles and certain graphs [2], [3]. Abdul Jalil M. Khalaf and Sahib Shayyal Kahat found the dominating sets and domination polynomial of complete graph with missing edges [1]. Gehet, Khalf and Hasni found the dominating set and domination polynomial of stars and wheels [4] [5]. Let H_{m} be a graph with order m and let H_{m}^{j} be the family of dominating sets of a graph H_{m} with the number of elements in the set
j and let $\mathrm{d}\left(\mathrm{H}_{\mathrm{m}, \mathrm{j}} \mathrm{j}\right)=\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{j}}\right|$. We call the polynomial $D\left(H_{m,} x\right)=\sum_{j=\gamma(H)}^{n} d\left(H_{m}, j\right) x^{j}$, the domination polynomial of graph G [3]. Let K_{m}^{j} be the family of strong dominating sets of a complete graph K_{m} with the number of elements in the set j and let $\mathrm{Sd}\left(\mathrm{K}_{\mathrm{m}, \mathrm{j}}\right)=\left|\mathrm{K}_{\mathrm{m}}^{\mathrm{j}}\right|$. We call the polynomial $\operatorname{SD}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{x}\right)=\sum_{\mathrm{j}=\gamma_{\mathrm{sd}}\left(\mathrm{K}_{\mathrm{m}}\right)}^{\gamma_{m}} \operatorname{Sd}\left(\mathrm{~K}_{\mathrm{m}}, \mathrm{j}\right) \mathrm{x}^{\mathrm{j}}$, the strong domination polynomial of complete graph. In the next section we establish the families of strong dominating sets of K_{m} with the number of elements in the set j by the families of strong dominating sets of $\mathrm{K}_{\mathrm{m}-1}$ with number of elements j and $\mathrm{j}-1$. We explore the strong domination polynomial of complete graphs in section 3 .

As usual we use $\binom{n}{i}$ or nC_{i} for the combination n to i and we denote the set $\{1,2, \ldots, n\}$ simply by [n], and we denote deg (u) to degree of the vertex u and let
$\Delta(\mathrm{G})=\max \{\operatorname{deg}(\mathrm{u}) \mid \forall \mathrm{u} \in \mathrm{V}(\mathrm{G})\}$ and
$\delta(\mathrm{G})=\min \{\operatorname{deg}(\mathrm{u}) \mid \forall \mathrm{u} \in \mathrm{V}(\mathrm{G})\}$

2. Strong Dominating sets of complete graphs

Let $K_{m}, m \geq 3$ be the complete graph with m vertices, $V\left[K_{m}\right]=[\mathrm{m}]$ and $\mathrm{E}\left(\mathrm{K}_{\mathrm{m}}\right)=\left\{(\mathrm{v}, \mathrm{u}): \forall \mathrm{v}, \mathrm{u} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)\right\}$. Let $\mathrm{K}_{\mathrm{m}}{ }^{\mathrm{j}}$ be the family of strong dominating sets of K_{m} with the number of elements j . We shall explore the strong dominating sets of complete graph. To prove our main results we need the following Lemmas.
Lemma 1 . The following properties hold for all graph G.
(i) $\quad\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{m}}\right|=1$
(ii) $\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{m}-\mid}\right|=1$
(iii) $\left|H_{m}^{j}\right|=0$ if $j>m$
(iv) $\quad\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{o}}\right|=0$

Proof. Let $G=(V, E)$ be a simple graph of order m, then
(i) $\quad \mathrm{H}_{\mathrm{m}}^{\mathrm{m}}=\{\mathrm{H}\}$. Therefore, $\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{m}}\right|=1$. (ii) $\quad \mathrm{H}_{\mathrm{m}}^{\mathrm{m}-1}=\{\mathrm{H}-\mathrm{u} \mid \forall \mathrm{u} \in \mathrm{H}\}$, Therefore $\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{m}-1}\right|=\mathrm{m}$
(iii) There does not exists $\mathrm{K} \subseteq \mathrm{H}$ such that $|\mathrm{V}(\mathrm{K})|>|\mathrm{V}(\mathrm{H})|$. Therefore, $\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{j}}\right|=0$, if $\mathrm{j}>\mathrm{m}$.
(iv) There does not exists $\mathrm{K} \subseteq \mathrm{H}$ such that $|\mathrm{V}(\mathrm{K})|=0, \phi$ is not strong dominating set of H .

Therefore $\left|\mathrm{Hm}^{0}\right|=0$.

Lemma 2 [4]. The following properties are hold by definition of combination
$\left(\binom{n}{i}=\frac{n}{i!(n-i)!}\right.$ (or) $\left.n c_{i}=\frac{n!}{i!(n-i)!}\right)$ for all $n \in Z^{+}$.
(i) $\binom{\mathrm{n}}{\mathrm{n}}=1$
(ii) $\binom{\mathrm{n}}{\mathrm{n}-1}=\mathrm{n}$
(iii) $\binom{\mathrm{n}}{1}=\mathrm{n}$
(iv) $\binom{\mathrm{n}}{0}=1$
(v) $\binom{\mathrm{n}}{\mathrm{i}}=0$ if $\mathrm{i}>\mathrm{n}$.

Theorem 1. Let K_{m} be complete graph with order m, then $\operatorname{Sd}\left(K_{m}, j\right)=\binom{m}{j}, \forall m \in Z^{+}$and $j=1,2, \ldots n$.
Proof. Let K_{m} be a complete graph, since every vertex $u \in K_{m}$ there exists a $v \in K_{m}$ such that $u v \in E$ and $\operatorname{deg}(\mathrm{u}) \leq \operatorname{deg}(\mathrm{v})$ then every subset of K_{m} with the number of elements of the set $\mathrm{j}, \forall 1 \leq \mathrm{j} \leq \mathrm{m}$ is strong dominating sets of K_{m}, therefore $\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=\binom{\mathrm{m}}{\mathrm{j}}$.

Theorem 2. Let K_{m} be complete graph with order m, then $\operatorname{Sd}\left(K_{m}, j\right)=\operatorname{Sd}\left(K_{m-1}, j\right)+\operatorname{Sd}\left(K_{m-1}, j-1\right) \forall j>1$ $\mathrm{m}>1$.

Proof. We have $\operatorname{Sd}\left(K_{m}, j\right)=\binom{m}{j}$. To prove $\binom{m}{j}=\binom{m-1}{j}+\binom{m-1}{j-1}$
We have $\binom{m}{j}=\frac{m!}{j!(m-j)!}$

$$
\text { Now, } \begin{aligned}
\binom{m-1}{j} & =\frac{(m-1)!}{j!(m-1-j)!} \\
& =\frac{(m-1)!}{j(j-1)!(m-1-j)!}
\end{aligned}
$$

Now, $\binom{m-1}{j-1}=\frac{(m-1)!}{(j-1)!(m-1-j+1)!}$

$$
\binom{m-1}{j-1}=\frac{(m-1)!}{(j-1)!(m-j)(m-j+1)!}
$$

Now, $\binom{m-1}{j}+\binom{m-1}{j-1}=\frac{(m-1)!}{j(j-1)!(m-1-j)!}+\frac{(m-1)!}{(j-1)!(m-j)(m-j-1)!}$

$$
=(m-1)!\left[\frac{1}{j(j-1)!(m-1-j)!}+\frac{1}{(j-1)!(m-j)(m-j-1)!}\right]
$$

$$
=(m-1)!\left[\frac{m-j+j}{j(j-1)!(m-j)(m-j-1)!}\right]
$$

$$
=\frac{m!}{j!(m-j)!}
$$

$$
=\binom{\mathrm{m}}{\mathrm{j}}
$$

$$
=\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)
$$

Therefore, $\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}-1}, \mathrm{j}\right)+\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}-1}, \mathrm{j}-1\right)=\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)$.
Theorem 3.The following characteristics hold for co efficient of $\operatorname{SD}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{x}\right), \forall \mathrm{m} \in \mathrm{Z}^{+}$.
(i) $\quad \operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, 1\right)=\mathrm{m}$.
(ii) $\quad \operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{m}-\mathrm{j}\right)$.
(iii) If m is even number, then $\operatorname{Sd}\left(\mathrm{Km}, \frac{\mathrm{m}}{2}+1\right)=\mathrm{Sd}\left(\mathrm{Km}, \frac{\mathrm{m}}{2}-1\right)$.
(iv) $\quad \gamma_{\mathrm{Sd}}\left(\mathrm{K}_{\mathrm{m}}\right)=1$.
(v) $\quad \operatorname{Sd}\left(K_{m}, 2\right)=\frac{m(m-1)}{2}$ if $m \geq 2$.

Proof. Let K_{m} be a complete graph, then
(i) We have $\quad \operatorname{Sd}\left(K_{m}, j\right)=\binom{m}{j}$

$$
\begin{aligned}
\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, 1\right) & =\binom{\mathrm{m}}{1} \\
= & \frac{\mathrm{m}!}{1!(\mathrm{m}-1)!} \\
= & \frac{\mathrm{m}(\mathrm{~m}-1)!}{(\mathrm{m}-1)!}=\mathrm{m}
\end{aligned}
$$

Therefore, $\operatorname{Sd}\left(K_{m}, 1\right)=m$.
(ii) We have $\binom{m}{1}=\binom{m}{m-1}$

$$
\text { Let } \operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=\frac{\mathrm{m}!}{\mathrm{j}!(\mathrm{m}-\mathrm{j})!}
$$

Now, $\operatorname{Sd}\left(K_{m}, m-j\right)=\frac{m!}{(m-j)!(m-m+j)!}$

$$
\begin{aligned}
& =\frac{m!}{(m-j)!j!} \\
& =\operatorname{Sd}\left(K_{m}, j\right)
\end{aligned}
$$

Therefore, $\operatorname{Sd}\left(K_{m}, j\right)=\operatorname{Sd}\left(K_{m}, m-j\right)$.
(iii) If m is even number.

$$
\begin{array}{r}
\text { Now } \operatorname{Sd}\left(\operatorname{Km}, \frac{\mathrm{m}}{2}+1\right)=\operatorname{Sd}\left(K_{\mathrm{m}}, \frac{\mathrm{~m}+2}{2}\right)=\binom{\mathrm{m}}{\frac{\mathrm{~m}+2}{2}} \\
=\frac{\mathrm{m}!}{\left(\frac{\mathrm{m}+2}{2}\right)!\left(\mathrm{m}-\frac{\mathrm{m}-2}{2}\right)!}=\frac{\mathrm{m}!}{\left(\frac{\mathrm{m}+2}{2}\right)!\left(\frac{\mathrm{m}-2}{2}\right)!}
\end{array}
$$

Now, $\operatorname{Sd}\left(K_{m}, \frac{m}{2}-1\right)=\operatorname{Sd}\left(K_{m}, \frac{m-2}{2}\right)$

$$
\begin{aligned}
& =\binom{m}{\frac{m-2}{2}} \\
& =\frac{m!}{\left(\frac{m-2}{2}\right)!\left(m-\frac{m+2}{2}\right)!} \\
& =\frac{m!}{\left(\frac{m-2}{2}\right)!\left(\frac{m+2}{2}\right)!}=\operatorname{Sd}\left(K_{m}, \frac{m}{2}+1\right)
\end{aligned}
$$

Therefore, $\operatorname{Sd}\left(K_{m}, \frac{m}{2}+1\right)=\operatorname{Sd}\left(K_{m}, \frac{m}{2}-1\right)$, if m is even
(iv) Since $\{u\}, \forall u \in V\left(K_{m}\right)$ is a strong dominating set of $\left(K_{m}\right)$, then $\gamma_{S d}\left(K_{m}\right)=1$.
(v) Now, $\operatorname{Sd}\left(K_{m}, 2\right)=\binom{\mathrm{m}}{2}$

$$
\begin{aligned}
& =\frac{\mathrm{m}!}{2!(\mathrm{m}-2)!} \\
& =\frac{\mathrm{m}(\mathrm{~m}-1)}{2} \text { if } \mathrm{m} \geq 2
\end{aligned}
$$

Using Theorem 1 and Theorem 2, We obtain the coefficients of $\operatorname{SD}\left(K_{m}, x\right)$ for $1 \leq \mathrm{m} \leq 20$ in Table 1 . Let $\mathrm{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=\left|\mathrm{K}_{\mathrm{m}}^{\mathrm{j}}\right|$ There are interesting relationships between the numbers Sd $\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right),(1 \leq \mathrm{j} \leq \mathrm{n})$ in the table.

Table $1(1 \leq \mathrm{m} \leq 20)$

3. Strong Domination Polynomial of a complete Graphs

In this section we introduce and establish the strong domination polynomial of complete graphs.

Let K_{m}^{j} be the family of strong dominating sets of a complete K_{m} with cardinality j, and let $\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=\left|\mathrm{K}_{\mathrm{m}}^{\mathrm{j}}\right|$ and since $\gamma_{\mathrm{sd}}\left(\mathrm{K}_{\mathrm{m}}\right)=1$. Then the strong domination polynomial SD $\left(K_{m}, x\right)$ of K_{m} is defined as $S D\left(K_{m}, x\right)=\sum_{j=\gamma_{s d}\left(K_{m}\right)}^{n a d} \operatorname{Sd}\left(K_{m}, j\right) x^{j}$.

Theorem 4. The following characteristics hold for all SD $\left.K_{m}, x\right), \forall m \geq 3$. (i) $\quad S D\left(K_{m}, x\right)=S D\left(K_{m-1}, x\right)$ $+x \operatorname{SD}\left(K_{m-1}, x\right)+x$. (ii) $S D\left(K_{m}, x\right)=\sum_{j=1}^{m}\binom{m}{j} x^{j}$.

Proof. (i) From definition of the strong domination polynomial and Theorem 2, we have

$$
\begin{aligned}
\operatorname{SD}\left(K_{m}, x\right) & =\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m}, j\right) x^{j} \\
& =\sum_{j=1}^{m}\left[\operatorname{Sd}\left(K_{m-1}, j\right)+\operatorname{Sd}\left(K_{m-1}, j-1\right] x^{j}\right.
\end{aligned}
$$

$$
\operatorname{SD}\left(K_{m}, x\right)=\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m-1}, j\right) x^{j}+\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m-1}, j-1\right) x^{j}
$$

We have $\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}}, \mathrm{j}\right)=0$ if $\mathrm{j}>\mathrm{n}$ by Lemma 1 .

$$
\text { Then } \begin{array}{r}
\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m-1}, j\right) x^{j}=\sum_{j=1}^{m-1} \operatorname{Sd}\left(K_{m-1}, j\right) x^{j} \\
=S D\left(K_{m-1}, x\right)
\end{array}
$$

and we have $\operatorname{Sd}\left(\mathrm{K}_{\mathrm{m}-1}, \mathrm{j}-1\right)=\binom{\mathrm{m}-1}{\mathrm{j}-1}$

$$
=\binom{m-1}{0} \text { if } j=1
$$

and $\sum_{j=2}^{m} \operatorname{Sd}\left(K_{m-1}, j-1\right) x^{j-1}=\sum_{j=2}^{m-1} \operatorname{Sd}\left(K_{m-1}, j\right) x^{j}$
Then $\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m-1}, j-1\right) x^{j}=x \sum_{j=1}^{m} \operatorname{Sd}\left(K_{m-1}, j-1\right) x^{j-1}$

$$
\begin{aligned}
& =x\left[\sum_{j=1}^{m-1} \operatorname{Sd}\left(K_{m-1}, j\right) x^{j}+1\right] \\
& =x\left[\operatorname{SD}\left(K_{m-1}, x\right)+1\right] \\
& =X \operatorname{SD}\left(K_{m-1}, x\right)+x
\end{aligned}
$$

Therefore, $S D\left(K_{m}, x\right)=S D\left(K_{m-1}, x\right)+X \operatorname{SD}\left(K_{m-1}, x\right)+x$.
(ii) We have $\operatorname{SD}\left(K_{m}, x\right)=\sum_{j=1}^{m} \operatorname{Sd}\left(K_{m}, j\right) x^{j}$

$$
\sum_{\mathrm{j}=1}^{\mathrm{m}}\binom{\mathrm{~m}}{\mathrm{j}} \mathrm{x}^{\mathrm{j}}, \text { by Theorem1. }
$$

Example 1. Let K_{6} be complete graph with order 6, then $\gamma_{s d}\left(K_{6}\right)=1$ and $\operatorname{SD}\left(K_{6}, x\right)=\sum_{j=1}^{6}\binom{6}{j} x^{j}$

$$
=6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}(\text { See. Fig. } 1)
$$

Figure 1. $\mathrm{H}=\mathrm{K}_{6}$ has $\binom{6}{\mathrm{j}}$ Strong dominating set with cardinality i.
Example 2. Let K_{8} be complete graph with order 8, then $\gamma_{\mathrm{sd}}\left(\mathrm{k}_{8}\right)=1$ and $\operatorname{SD}\left(\mathrm{K}_{8}, \mathrm{x}\right)=\sum_{\mathrm{j}=1}^{8}\binom{8}{\mathrm{j}} \mathrm{x}^{\mathrm{j}}$ $=8 x+28 x^{2}+56 x^{3}+70 x^{4}+56 x^{5}+28 x^{6}+8 x^{7}+x^{8}$ (See. Fig. 2)

Figure $2 . K_{8}$ has $\binom{8}{j}$ strong dominating set with cardinality j

4. References

[1] Abdul Jalil M. Khalaf and Sahib Shayyal Kahat, Dominating sets and Domination Polynomial of Complete Graphs with missing edges, Journal of Kufa for Mathematics and computer, 2, No. 1, (2014), $64-68$.
[2] S. Alikhani, Y.H. Peng, Dominating sets and Domination Polynomial of Cycles, Global Journal of Pure and Applied Mathematics, 4 No. 2 (2008), 151 - 162.
[3] S. AliKhani, Y.H. Peng, Dominating sets and Domination Polynomial of certain Graphs II, Opuscula Mathematica 30, No. 1 (2010), 37 - 51.
[4] Sahib Shayyal Kahat, Abdul Jolil M. Khalaf, Dominating sets and Domination Polynomial of stars, Australian Journal of Basic and Applied Sciences, 8 No. 6 (2014), 383 - 386.
[5] Sahib Shayyal Kahat, Abdul Jalil M. Khalaf, Dominating sets and Domination Polynomial of Wheels, Australian Journal of Basic and Applied Sciences.

