# Strong dominating sets and Strong Domination Polynomial of Complete Graphs

Angelin Kavitha Raj<sup>1</sup> S and Robinson Chelladurai S<sup>2</sup>

## <sup>1</sup>Department of Mathematics, Sadakathullah Appa College, Tirunelveli. <sup>2</sup>Department of Mathematics, Scott Christian College, Nagercoil

#### Abstract

Let G = (V, E) be a simple graph. A set  $S \subseteq V$  is called a dominating set if every vertex  $v \in V$  is either a member of S or adjacent to a member of S. A set  $S \subseteq V$  is a strong dominating set of G if for every  $u \in V - S$ , there exists a  $v \in S$  such that  $uv \in E$  and deg  $(u) \leq deg(v)$ . Let  $k_m$  be complete graph with order m. Let  $Sd(K_m^j)$  be the family of strong dominating sets of a complete graph  $K_m$  with the number of elements in the set j, and let  $Sd(K_mj) = |Sd(K_m^j)|$ . In this paper, we establish  $K_m$  and obtain a iterative formula for  $Sd(K_mj)$ . Using this iterative formula, we consider the polynomial  $SD(K_m, x) = \sum_{j=1}^m Sd(K_m, j) x^j$ , which we call strong domination polynomial of complete graphs and obtain some examples of this polynomial.

### **1** Introduction

Let G = (V, E) be a simple graph of order |V| = m. A set S  $\subseteq$  V is called a dominating set if every vertex  $v \in V$  is either a member of S or adjacent to a member of S. A set  $S \subseteq V$  is a strong dominating set of for every  $u \in V-S$ , there v∈S such that uv∈E G if and deg (u)  $\leq$  deg (v). The minimum cardinality of strong dominating set is called minimum strong domination number and is denoted by  $\gamma_{sd}$  (G). Alkhani and Peng found the dominating sets and domination polynomial of cycles and certain graphs [2], [3]. Abdul Jalil M. Khalaf and Sahib Shayyal Kahat found the dominating sets and domination polynomial of complete graph with missing edges [1]. Gehet, Khalf and Hasni found the dominating set and domination polynomial of stars and wheels [4] [5]. Let H<sub>m</sub> be a graph with order m and let  $H_m^j$  be the family of dominating sets of a graph  $H_m$  with the number of elements in the set

j and let 
$$d(H_{m,j}) = |H_m^j|$$
. We call the polynomial  $D(H_{m,j}x) = \sum_{j=\gamma(H)}^n d(H_{m,j}) x^j$ , the domination

polynomial of graph G [3]. Let  $K_m^j$  be the family of strong dominating sets of a complete graph  $K_m$  with the number of elements in the set j and let Sd  $(K_m, j) = |K_m^j|$ . We call the polynomial  $SD(K_m, x) = \sum_{j=\gamma_{Sd}(K_m)}^{\gamma m} Sd(K_m, j) x^j$ , the strong domination polynomial of complete graph. In the next section

we establish the families of strong dominating sets of  $K_m$  with the number of elements in the set j by the families of strong dominating sets of  $K_{m-1}$  with number of elements j and j – 1. We explore the strong domination polynomial of complete graphs in section 3.

As usual we use  $\binom{n}{i}$  or  $nC_i$  for the combination n to i and we denote the set

 $\{1,\,2,\,...,\,n\}$  simply by [n], and we denote deg (u) to degree of the vertex u and let

 $\Delta(G) = max \{ deg (u) \mid \forall u \in V (G) \} and$ 

 $\delta(G) = \min \{ \deg(u) \mid \forall u \in V(G) \}$ 

#### 2. Strong Dominating sets of complete graphs

Let  $K_m$ ,  $m \ge 3$  be the complete graph with m vertices,  $V [K_m] = [m]$  and  $E(K_m) = \{(v, u) : \forall v, u \in V(K_m)\}$ . Let  $K_m^{j}$  be the family of strong dominating sets of  $K_m$  with the number of elements j. We shall explore the strong dominating sets of complete graph. To prove our main results we need the following Lemmas.

Lemma 1. The following properties hold for all graph G.

(i) 
$$|\mathbf{H}_{m}^{m}| = 1$$

(ii) 
$$|H_m^{m-1}| = 1$$

(iii)  $\left| \mathbf{H}_{\mathbf{m}}^{j} \right| = 0 \text{ if } j > \mathbf{m}$ 

(iv) 
$$|\mathbf{H}_{\mathrm{m}}^{\mathrm{o}}| = 0$$

Proof. Let G = (V, E) be a simple graph of order m, then

(i) 
$$H_m^m = \{H\}$$
 Therefore,  $|H_m^m| = 1$  (ii)  $H_m^{m-1} = \{H-u \mid \forall u \in H\}$ , Therefore  $|H_m^{m-1}| = m$ 

- (iii) There does not exists  $K \subseteq H$  such that |V(K)| > |V(H)|. Therefore,  $|H_m^j| = 0$ , if j > m.
- (iv) There does not exists  $K \subseteq H$  such that |V(K)| = 0,  $\phi$  is not strong dominating set of H. Therefore  $|Hm^0| = 0$ .

Lemma 2 [4]. The following properties are hold by definition of combination  $\begin{pmatrix} n \\ i \end{pmatrix} = \frac{n}{i!(n-i)!} \text{ (or) } nc_i = \frac{n!}{i!(n-i)!} \text{ for all } n \in Z^+.$ (i)  $\binom{n}{n} = 1$ (ii)  $\binom{n}{n-1} = n$ (iii)  $\binom{n}{1} = n$ (iv)  $\binom{n}{0} = 1$ (v)  $\binom{n}{i} = 0$  if i > n.

**Theorem 1.** Let  $K_m$  be complete graph with order m, then  $Sd(K_m, j) = \binom{m}{j}, \forall m \in Z^+$  and j = 1, 2, ..., n.

Proof . Let  $K_m$  be a complete graph, since every vertex  $u \in K_m$  there exists a  $v \in K_m$  such that  $uv \in E$  and deg  $(u) \leq deg (v)$  then every subset of  $K_m$  with the number of elements of the set  $j, \forall 1 \leq j \leq m$  is strong

dominating sets of K<sub>m</sub>, therefore Sd (K<sub>m</sub>, j) =  $\binom{m}{i}$ .

**Theorem 2**. Let  $K_m$  be complete graph with order m, then Sd  $(K_m, j) = Sd (K_{m-1}, j) + Sd (K_{m-1}, j-1) \forall j > 1$ m > 1.

Proof. We have Sd (K<sub>m</sub>, j) = 
$$\binom{m}{j}$$
. To prove  $\binom{m}{j} = \binom{m-1}{j} + \binom{m-1}{j-1}$   
We have  $\binom{m}{j} = \frac{m!}{j!(m-j)!}$   
Now,  $\binom{m-1}{j} = \frac{(m-1)!}{j!(m-1-j)!}$   
 $= \frac{(m-1)!}{(j-1)!(m-1-j)!}$   
Now,  $\binom{m-1}{j-1} = \frac{(m-1)!}{(j-1)!(m-1-j+1)!}$   
 $\binom{m-1}{j-1} = \frac{(m-1)!}{(j-1)!(m-1-j)!} + \frac{(m-1)!}{(j-1)!(m-j)(m-j-1)!}$   
 $= (m-1)! \left[ \frac{1}{j!(j-1)!(m-1-j)!} + \frac{1}{(j-1)!(m-j)(m-j-1)!} \right]$   
 $= (m-1)! \left[ \frac{m-j+j}{j!(j-1)!(m-j)(m-j-1)!} \right]$   
 $= \binom{m}{j}$   
 $= \binom{m}{j}$   
 $= Sd(K_m, j)$ 

Therefore, Sd  $(K_{m-1}, j) + Sd (K_{m-1}, j-1) = Sd (K_m, j)$ .

**Theorem 3**.The following characteristics hold for co efficient of SD (K<sub>m</sub>, x),  $\forall m \in Z^+$ .

(i)  $Sd(K_m, 1) = m.$ 

(ii) 
$$Sd(K_m, j) = Sd(K_m, m - j).$$

(iii) If m is even number, then Sd (Km, 
$$\frac{m}{2}+1$$
) = Sd (Km,  $\frac{m}{2}-1$ ).

- (iv)  $\gamma_{Sd}(K_m) = 1$ .
- (v) Sd  $(K_m, 2) = \frac{m(m-1)}{2}$  if  $m \ge 2$ .

Proof . Let  $K_m$  be a complete graph, then

(i)

JCRI

We have  $\operatorname{Sd}(K_m, j) = \begin{pmatrix} m \\ j \end{pmatrix}$   $\operatorname{Sd}(K_m, l) = \begin{pmatrix} m \\ l \end{pmatrix}$   $= \frac{m!}{l! (m-l)!}$  $= \frac{m(m-1)!}{(m-l)!} = m$ 

Therefore, Sd  $(K_m, 1) = m$ .

(ii) We have 
$$\binom{m}{1} = \binom{m}{m-1}$$
  
Let Sd (K<sub>m</sub>, j) =  $\frac{m!}{j! (m-j)!}$ 

Now, Sd (K<sub>m</sub>, m - j) =  $\frac{m!}{(m - j)!(m - m + j)!}$ 

$$= \frac{m!}{(m-j)! j!}$$
$$= Sd (K_m, j)$$

Therefore, Sd  $(K_m, j) = Sd (K_m, m-j)$ .

(iii) If m is even number.

Now,

Now Sd (Km, 
$$\frac{m}{2}$$
+1) = Sd (K<sub>m</sub>,  $\frac{m+2}{2}$ ) =  $\begin{pmatrix} m \\ \frac{m+2}{2} \end{pmatrix}$ 

$$= \frac{m!}{\left(\frac{m+2}{2}\right)! \left(m - \frac{m-2}{2}\right)!} = \frac{m!}{\left(\frac{m+2}{2}\right)! \left(\frac{m-2}{2}\right)!}$$
  
Sd  $\left(K_m, \frac{m}{2} - 1\right) =$ Sd $\left(K_m, \frac{m-2}{2}\right)$ 

$$= \left(\frac{m}{\frac{m-2}{2}}\right)$$
$$= \frac{m!}{\left(\frac{m-2}{2}\right)! \left(m - \frac{m+2}{2}\right)!}$$
$$= \frac{m!}{\left(\frac{m-2}{2}\right)! \left(\frac{m+2}{2}\right)!} = \text{Sd} (K_m, \frac{m}{2}+1)$$
Therefore,  $\text{Sd}\left(K_m, \frac{m}{2}+1\right) = \text{Sd}\left(K_m, \frac{m}{2}-1\right)$ , if m is even

(iv) Since  $\{u\}, \forall u \in V(K_m)$  is a strong dominating set of  $(K_m)$ , then  $\gamma_{Sd}(K_m) = 1$ .

(v) Now, Sd (K<sub>m</sub>, 2) =  $\binom{m}{2}$ =  $\frac{m!}{2! (m-2)!}$ =  $\frac{m(m-1)}{2}$  if  $m \ge 2$ .

Using Theorem 1 and Theorem 2, We obtain the coefficients of SD (K<sub>m</sub>, x) for  $1 \le m \le 20$  in Table 1. Let Sd (K<sub>m</sub>, j) =  $|K_m^j|$  There are interesting relationships between the numbers Sd (K<sub>m</sub>,j),  $(1 \le j \le n)$  in the table.

| m j | 1  | 2   | 3    | 4    | 5     | 6     | 7     | 8      | 9      | 10     | 11     | 12     | 13    | 14    | 15    | 16   | 17   | 18  | 19 | 20 |
|-----|----|-----|------|------|-------|-------|-------|--------|--------|--------|--------|--------|-------|-------|-------|------|------|-----|----|----|
| 1   | 1  |     |      |      |       |       |       |        |        |        |        |        |       |       |       |      |      |     |    |    |
| 2   | 2  | 1   |      |      |       |       |       | _      |        |        |        |        |       |       |       |      |      |     |    |    |
| 3   | 3  | 3   | 1    |      | . (   |       |       |        | M      |        |        |        |       |       |       |      |      |     |    |    |
| 4   | 4  | 6   | 4    | 1    |       |       |       |        |        |        |        |        | -     |       |       |      |      |     |    |    |
| 5   | 5  | 10  | 10   | 5    | 1     |       |       | 1)     |        | $\sim$ |        | 2      |       |       |       |      | 1    |     |    |    |
| 6   | 6  | 15  | 20   | 15   | 6     | 1     |       |        |        |        |        |        |       |       |       |      |      |     |    |    |
| 7   | 7  | 21  | 35   | 35   | 21    | 7     | 1     |        |        |        |        |        |       |       |       |      |      |     |    |    |
| 8   | 8  | 28  | 56   | 70   | 56    | 28    | 8     | 1      |        |        |        |        |       |       | ¢     |      |      |     |    |    |
| 9   | 9  | 36  | 84   | 126  | 126   | 84    | 36    | 9      | 1      |        | )      |        |       | 2     |       |      |      |     |    |    |
| 10  | 10 | 45  | 120  | 210  | 252   | 210   | 120   | 45     | 10     | 1      |        |        | Ž     | 3     |       |      |      |     |    |    |
| 11  | 11 | 55  | 165  | 330  | 462   | 462   | 330   | 165    | 55     | 11     | 1      |        |       |       |       |      |      |     |    |    |
| 12  | 12 | 66  | 220  | 495  | 792   | 924   | 792   | 495    | 220    | 66     | 12     | 1      |       |       |       |      |      |     |    |    |
| 13  | 13 | 78  | 286  | 715  | 1287  | 1716  | 1716  | 1287   | 715    | 286    | 78     | 13     | 1     |       |       |      |      |     |    |    |
| 14  | 14 | 91  | 364  | 1001 | 2002  | 3003  | 3532  | 3003   | 2002   | 1001   | 364    | 91     | 14    | 1     |       |      |      |     |    |    |
| 15  | 15 | 105 | 455  | 1365 | 3003  | 5005  | 6535  | 6535   | 5005   | 3003   | 1365   | 455    | 105   | 15    | 1     |      |      |     |    |    |
| 16  | 16 | 120 | 560  | 1820 | 4368  | 8008  | 11540 | 13070  | 11540  | 8008   | 4368   | 1820   | 560   | 120   | 16    | 1    |      |     |    |    |
| 17  | 17 | 136 | 680  | 2380 | 6188  | 12376 | 19548 | 24610  | 24610  | 19548  | 12376  | 6188   | 2380  | 680   | 136   | 17   | 1    |     |    |    |
| 18  | 18 | 153 | 816  | 3060 | 8568  | 18564 | 31924 | 44158  | 49220  | 44158  | 31924  | 18564  | 8568  | 3060  | 816   | 153  | 18   | 1   |    |    |
| 19  | 19 | 171 | 969  | 3876 | 11628 | 27132 | 50488 | 76082  | 93378  | 93378  | 76082  | 50488  | 27132 | 11628 | 3876  | 969  | 171  | 19  | 1  |    |
| 20  | 20 | 190 | 1140 | 4845 | 15504 | 38760 | 77620 | 126570 | 169460 | 186756 | 169460 | 126570 | 77620 | 38760 | 15504 | 4845 | 1140 | 190 | 20 | 1  |

Table 1 ( $1 \le m \le 20$ )

## **3. Strong Domination Polynomial of a complete Graphs**

In this section we introduce and establish the strong domination polynomial of complete graphs.

JCR

Let  $K_m^j$  be the family of strong dominating sets of a complete  $K_m$  with cardinality j, and let  $Sd(K_m, j) = |K_m^j|$  and since  $\gamma_{sd}$   $(K_m) = 1$ . Then the strong domination polynomial  $SD(K_m, x)$  of  $K_m$  is defined as  $SD(K_m, x) = \sum_{j=\gamma_{sd}(K_m)}^{na} Sd(K_m, j) x^j$ .

**Theorem 4.** The following characteristics hold for all SD K<sub>m</sub>, x),  $\forall m \ge 3$ . (i) SD (K<sub>m</sub>, x) = SD (K<sub>m-1</sub>, x)

+ x SD (K<sub>m-1</sub>, x) + x. (ii) SD (K<sub>m</sub>, x) = 
$$\sum_{j=1}^{m} {m \choose j} x^{j}$$
.

Proof. (i) From definition of the strong domination polynomial and Theorem 2, we have

$$SD(K_{m}, x) = \sum_{j=1}^{m} Sd(K_{m}, j) x^{j}$$
$$= \sum_{j=1}^{m} [Sd(K_{m-1}, j) + Sd(K_{m-1}, j-1] x^{j}$$
$$SD(K_{m}, x) = \sum_{j=1}^{m} Sd(K_{m-1}, j) x^{j} + \sum_{j=1}^{m} Sd(K_{m-1}, j-1) x^{j}$$

We have Sd  $(K_m, j) = 0$  if j > n by Lemma 1.

Then 
$$\sum_{j=1}^{m} Sd(K_{m-1}, j) x^{j} = \sum_{j=1}^{m-1} Sd(K_{m-1}, j) x^{j}$$
  
= SD (K<sub>m-1</sub>, x)

and we have  $Sd(K_{m-1}, j-1) = \binom{m-1}{j-1}$ 

$$= \begin{pmatrix} m-1 \\ 0 \end{pmatrix} \text{ if } j = 1$$

$$Sd(K - i j = 1) x^{j-1} = \sum_{i=1}^{m-1} Sd(K - i j) x^{j-1} = \sum_{i=1}^$$

and 
$$\sum_{j=2}^{m} \operatorname{Sd}(K_{m-1}, j-1) x^{j-1} = \sum_{j=2}^{m-1} \operatorname{Sd}(K_{m-1}, j) x^{j}$$

Then 
$$\sum_{j=1}^{m} \operatorname{Sd}(K_{m-1}, j-1) x^{j} = x \sum_{j=1}^{m} \operatorname{Sd}(K_{m-1}, j-1) x^{j-1}$$

$$= x \left[ \sum_{j=1}^{m-1} Sd(K_{m-1}, j) x^{j} + 1 \right]$$
$$= x \left[ SD(K_{m-1}, x) + 1 \right]$$

$$= X SD (K_{m-1}, x) + x$$

Therefore, SD  $(K_m, x) =$  SD  $(K_{m-1}, x) + X$  SD  $(K_{m-1}, x) + x$ .

(ii) We have SD 
$$(K_m, x) = \sum_{j=1}^m Sd(K_m, j) x^j$$
  
$$\sum_{j=1}^m {m \choose j} x^j, \text{ by Theorem1.}$$

**Example 1**. Let K<sub>6</sub> be complete graph with order 6, then  $\gamma_{sd}(K_6) = 1$  and SD (K<sub>6</sub>, x) =  $\sum_{i=1}^{6} {6 \choose i} x^{i}$ 

 $= 6x + 15x^{2} + 20x^{3} + 15x^{4} + 6x^{5} + x^{6}$  (See. Fig. 1).



(j) in the second second

**Example 2**. Let K<sub>8</sub> be complete graph with order 8, then  $\gamma_{sd}(k_8) = 1$  and  $SD(K_8, x) = \sum_{j=1}^8 \binom{8}{j} x^j$ 



#### 4. References

- [1] Abdul Jalil M. Khalaf and Sahib Shayyal Kahat, Dominating sets and Domination Polynomial of Complete Graphs with missing edges, *Journal of Kufa for Mathematics and computer*, 2, No. 1, (2014), 64 68.
- [2] S. Alikhani, Y.H. Peng, Dominating sets and Domination Polynomial of Cycles, *Global Journal of Pure and Applied Mathematics*, 4 No. **2** (2008), 151–162.
- [3] S. AliKhani, Y.H. Peng, Dominating sets and Domination Polynomial of certain Graphs II, *Opuscula Mathematica* 30, No. 1 (2010), 37 51.
- [4] Sahib Shayyal Kahat, Abdul Jolil M. Khalaf, Dominating sets and Domination Polynomial of stars, *Australian Journal of Basic and Applied Sciences*, 8 No. 6 (2014), 383 – 386.
- [5] Sahib Shayyal Kahat, Abdul Jalil M. Khalaf, Dominating sets and Domination Polynomial of Wheels, *Australian Journal of Basic and Applied Sciences*.