On New Class of βg^* Continuous Functions In

Topological Spaces C.DHANAPAKYAM

Department of Mathematics Rathnavel subramaniam College of Arts & Science Coimbatore-, India

K.INDIRANI

Nirmala College for women Red fields,Coimbatore-,India

Abstract: The purpose of this paper is to introduce strongly and perfectly $\beta g *$ Continuous Maps, totally $\beta g *$ continuous functions and slightly $\beta g *$ continuous functions are investigated .Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords and phrases: strongly βg * continuous functions, perfectly βg * continuous functions, totally βg * continuous and slightly βg * continuous.

I. Introduction

In 1960, Levine [5] introduced strong continuity in topological spaces. Also, in 1982 Malghan [6] introduced the generalized closed mappings Recently, C. Dhanapayam and K. Indirani [3]introduced βg^* set in topological spaces. RC Jain [7] introduced the concept of totally continuous functions and slightly continuous for topological spaces. In this paper, we define totally βg^* continuous functions and slightly βg * continuous functions and basic properties of these functions are investigated and obtained. In this paper we introduce and investigate a new class of functions called strongly βg * continuous functions, perfectly βg * continuous functions, totally βg * continuous and slightly βg * continuous functions are investigated and obtained.

II. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X). If A is βg^* open and βg^* closed, then it is said to be βg^* clopen.

Definition 2.1: A subset A of a topological space X is said to be a βg *closed [3] if gcl (A) \subseteq U, A \subseteq U, U is semi pre open (β *open*) in X.

Definition 2.2: A subset A of a topological space X is said to be β open [1]

if $A \subseteq cl$ (int (cl(A))).

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **strongly continuous** [6] if f⁻¹(O) is both open and closed in (X, τ) for each subset O in (Y, σ) .

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a $\beta g * \text{continuous}$ [2] if f⁻¹(O) is a $\beta g * \text{open set of } (X, \tau)$ for every open set O of (Y, σ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **perfectly continuous** [6] if f⁻¹(O) is both open and closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.6: A Topological space X is said to be $\beta g * T_{1/2}$ space if every $\beta g *$ open set of X is open in X. **Definition 2.7:** A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called *totally continuous* [4] if $f^{-1}(V)$ is clopen set in X for each open set V of Y.

Definition 2.8: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *slightly continuous*[4] if the inverse image of every clopen set in Y is open in X.

Definition 2.9: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra continuous* [4] if f⁻¹ (O) is closed in (X, τ) for every open set O in (Y, σ) .

10

Definition 2.10: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called *Contra* $\beta g *$ *continuous functions* $if f⁻¹ (O) is <math>\beta g *$ closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.11: A topological space X is called a $\beta g * connected$ if X cannot be expressed as a disjoint union of two non-empty $\beta g *$ open sets.

Definition 2.12: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *pre* $\beta g * open$ if the image of every $\beta g *$ open set of X is $\beta g *$ open in Y.

Definition 2.13: A topological space X is said to be **connected** if X cannot be expressed as the union of two disjoint nonempty open sets in X.

Definition 2.14: A Topological space X is said to be $\beta g * T1/2$ *space* or $\beta g * space$ if every $\beta g *$ open set of X is open in X.

Definition 2.15: A space (X, τ) is called a *locally indiscrete space* if every open set of X is closed in X. **Theorem 2.16**[3]: Every open set is $\beta g *$ - open and every closed set is $\beta g *$ -closed set **III. Strongly** $\beta g *$ **Continuous Function**

We introduce the following definition.

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a strongly βg * continuous if the inverse image of every βg *open set in (Y, σ) is open in (X, τ) .

Theorem 3.2: If a map $f: X \to Y$ from a topological spaces X into a topological spaces Y is strongly $\beta g *$ continuous then it is continuous.

Proof: Let O be a open set in Y. Since every open set is βg *open, O is βg *open in Y. Since f is strongly βg *continuous, f⁻¹(O) is open in X. Therefore f is continuous.

Remark 3.3: The following example supports that the converse of the above theorem is not true in general.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\},$

 $\sigma = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}.$

 $\beta g * o(Y, \sigma) = \{ \phi, \{c\}, \{a, c\}, \{b, c\}, Y \}.$

Let g: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = a, g(b) = b, g(c) = c.

Clearly, g is not strongly βg^* continuous.

Since {c} is βg^* open set in Y but $g^{-1}(\{c\}) = \{c\}$ is not a open set of X.

Clearly, g is not strongly βg^* continuous.

Let g: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = a, g(b) = c, g(c) = b.

Since {a}, {b}, {a, b} is closed set in Y but $g^{-1}({a}) = {a}, g^{-1}({b}) = {c}, g^{-1}({a, b}) = {a, c}$, is closed subset of X.

However, g is continuous.

Theorem 3.5: A map f: $X \rightarrow Y$ from a topological spaces X into a topological spaces Y is strongly βg^* continuous if and only if the inverse image of every βg^* closed set in Y is closed in X.

Proof: Assume that f is strongly βg * continuous. Let O be any βg * closed set in Y. Then O^c is βg *open in Y. Since f is strongly βg * continuous, f⁻¹(O^c) is open in X. But f⁻¹(O^c) = X/ f⁻¹(O) and so f⁻¹(O) is closed in X.

Conversely, assume that the inverse image of every $\beta g * \text{closed set in } Y$ is closed in X. Then O^c is $\beta g * \text{closed in } Y$. By assumption, f⁻¹(O^c) is closed in X,

but $f^{-1}(O^c) = X/f^{-1}(O)$ and so $f^{-1}(O)$ is open in X. Therefore, f is strongly βg^* continuous.

Theorem 3.6: If a map $f: X \to Y$ is strongly continuous then it is strongly βg *continuous. **Proof:** Assume that f is strongly continuous. Let O be any βg *open set in Y. Since f is strongly continuous, f⁻¹(O) is open in X. Therefore, f is strongly βg *continuous.

Remark 3.7: The converse of the above theorem need not be true.

Example 3.8: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{ac\}, X\}$ and

www.ijcrt.org

 $\sigma = \{\emptyset, \{a\}, \{a, c\}, \{a, b\}, Y\}.$ $\beta g * O(Y, \sigma) = \{\emptyset, \{a\}, \{a, c\}, \{a, b\}, Y\}.$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c.since $\{a\}, \{a, c\}, \{a, b\}$ is βg * open set in Y But f⁻¹($\{a\}$) = a, f⁻¹($\{a, c\}$) = $\{a, c\}, f^{-1}(\{a, b\}) = \{a, b\}$ is open in X, clearly, f is strongly βg * continuous. Since $\{a, b\}$ is subset of Y. But f⁻¹($\{a, b\}$) = $\{a, b\}$ is open in X, not closed in X. Therefore f is not strongly continuous. **Theorem 3.9:** If a map f: X \rightarrow Y is strongly βg * continuous then it is βg * continuous. **Proof:** Let O be an open set in Y. By [3] O is βg * open in Y. Since f is strongly βg * continuous.

Remark 3.10: The converse of the above theorem need not be true.

Example 3.11: Let $X = Y = \{a, b, c\}, \tau = \{, \emptyset \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{, \emptyset \{c\}, \{a, c\}, \{b, c\}, Y\},\$ $\beta g * O(Y, \sigma) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, Y\}.\$ $\beta g * O(X, \tau) = \{, \emptyset \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.\$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. Since $\{c\}, \{a, c\}, \{b, c\}$ is open set in Y But f⁻¹($\{c\}$) = c, f⁻¹($\{a, c\}$) = $\{a, c\}, f^{-1}(\{b, c\}) = \{b, c\}$ is βg * open set in X, Clearly, f is βg * continuous. Since $\{c\}$ is βg * O(Y, σ) But f⁻¹($\{c\}$) = $\{c\}$ is not open in X. Therefore f is not strongly βg * continuous.

Theorem 3.12: If a map f: $X \to Y$ is strongly $\beta g *$ continuous and a map g: $Y \to Z$ is $\beta g *$ continuous then $g \circ f: X \to Z$ is continuous.

Proof: Let O be any open set in Z. Since g is $\beta g * \text{continuous}, g^{-1}(O)$ is $\beta g * \text{open in } Y$. Since f is strongly $\beta g * \text{continuous } f^{-1}(g^{-1}(O))$ is open in X. But $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$.

Therefore, g of is continuous.

Theorem 3.13: If a map f: X \rightarrow Y is strongly βg * continuous and a map g: Y \rightarrow Z is βg *irresolute, then $g \circ f: X \rightarrow Z$ is strongly βg * continuous.

Proof: Let O be any βg *open set in Z. Since g is βg * irresolute, $g^{-1}(O)$ is βg * open in Y. Also, f is strongly βg * continuous f⁻¹(g⁻¹(O)) is open in X. But ($g \circ f$)⁻¹ (O) = f⁻¹($g^{-1}(O)$) is open in X. Hence, $g \circ f$: X \rightarrow Z is strongly βg * continuous.

Theorem 3.14: If a map $f: X \to Y$ is $\beta g *$ continuous and a map $g: Y \to Z$ is strongly $\beta g *$ continuous, then $g \circ f: X \to Z$ is $\beta g *$ irresolute.

Proof: Let O be any βg *open set in Z. Since g is strongly βg * continuous, $g^{-1}(O)$ is open in Y. Also, f is βg *continuous, $f^{-1}(g^{-1}(O))$ is βg *open in X. But $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$. Hence, $g \circ f: X \longrightarrow Z$ is βg * irresolute.

Theorem 3.15: Let X be any topological spaces and Y be a $\beta g *T_{1/2}$ space and f: X \rightarrow Y be a map. Then the following are equivalent

1) f is strongly $\beta g *$ continuous

2) f is continuous

Proof: (1) \Rightarrow (2) Let O be any open set in Y. By [3] O is βg^* open in Y. Then f⁻¹(O) is open in X. Hence, f is continuous.

(2) \Rightarrow (1) Let O be any βg^* open in (Y, σ). Since, (Y, σ) is a $\beta g^*T_{1/2}$ space,O is open in(Y, σ). Since, f is continuous. Then f⁻¹(O) is open in (X, τ). Hence, f is strongly βg^* continuous.

Theorem 3.16: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Both (X, τ) and (Y, σ) are $\beta g * T_{1/2}$ space. Then the following are equivalent.

1) f is $\beta g *$ irresolute

10

f is strongly βg * continuous
f is continuous
f is βg * continuous

Proof: The proof is obvious.

Theorem 3.17: The composition of two strongly βg^* continuous maps is strongly βg^* continuous.

Proof: Let O be a βg^* open set in (Z, η). Since, g is strongly βg^* continuous, we get $g^{-1}(O)$ is open in (Y, σ). By[3] $g^{-1}(O)$ is βg^* open in (Y, σ). As f is also strongly βg^* continuous,

 $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is open in (X, τ) . Hence, $(g \circ f)$ is strongly βg * continuous.

Theorem 3.18: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps . Then their composition g \circ f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly βg * continuous if g is strongly βg * continuous and f is continuous.

Proof: Let O be a βg * open in (Z, η). Since, g is strongly βg * continuous, g⁻¹(O) is open in (Y, σ). Since f is continuous, f⁻¹(g⁻¹(O)) = (g \circ f)⁻¹ (O) is open in (X, τ). Hence, (g \circ f) is strongly βg * continuous.

IV. Perfectly βg *Continuous Function

Definition 4.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be perfectly βg * continuous if the inverse image of every βg *open set in (Y, σ) is both open and closed in (X, τ) .

Theorem 4.2: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly βg * continuous then it is strongly βg * continuous.

Proof: Assume that f is perfectly βg * continuous. Let O be any βg * open set in (Y, σ). Since, f is perfectly βg * continuous, f⁻¹(O) is open in (X, τ). Therefore, f is strongly βg * continuous.

Remark 4.3: The converse of the above theorem need not be true.

Example 4.4: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and

 $\sigma = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}.$ $\beta g * O(Y, \sigma) = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}.$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. since $\{a\}, \{a, b\}, \{a, c\}$ is βg * open set in Y But f⁻¹($\{a\}$) = a, f⁻¹($\{a, b\}$) = $\{a, b\}, f^{-1}(\{a, c\}) = \{a, c\}$ is open set in X, clearly, f is strongly βg * continuous. Since $\{a\}$ is βg * open set in (Y, σ) But f⁻¹($\{a\}$) = $\{a\}$ is open in X, but not closed in X. Therefore f is not perfectly βg^* continuous.

Theorem 4.5: If a map $f: (X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly βg^* continuous then it is perfectly continuous .

Proof: Let O be an open set in Y. By[3] O is an βg *open set in (Y, σ). Since f is perfectly βg * continuous, f⁻¹(O) is both open and closed in (X, τ). Therefore, f is perfectly continuous.

Remark 4.6 : The converse of the above theorem need not be true.

Example 4.7: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}.$ $\beta g * O(Y, \sigma) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, Y\}.$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = c. Since $\{b\}$ is open set in (Y, σ) f⁻¹($\{b\}$) = $\{b\}$ is both open and closed in X. clearly, f is perfectly continuous. Since $\{a\}$ is βg^* open set in (Y, σ) $f^{-1}({a}) = {a}$ is open and not closed in X. Therefore f is not perfectly βg^* continuous.

Theorem 4.8: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is perfectly βg * continuous if and only if f⁻¹(O) is both open and closed in (X, τ) for every βg *closed set O in (Y, σ) .

Proof: Let O be any βg *closed set in (Y, σ) . Then O^c is βg *open in (Y, σ) . Since, f is perfectly βg * continuous, f⁻¹(O^c) is both open and closed in (X, τ) . But f⁻¹(O^c) = X/ f⁻¹(O) and so f⁻¹(O) is both open and closed in (X, τ) .

Conversely, assume that the inverse image of every βg *closed set in (Y, σ) is both open and closed in (X, τ) . Let O be any βg *open in (Y, σ) . Then O^c is βg *closed in (Y, σ) .By assumption f⁻¹(O^c) is both open and closed in (X, τ) . But f⁻¹(O^c) = X/ f⁻¹(O) and so f⁻¹(O) is both open and closed in (X, τ) . Therefore, f is perfectly βg * continuous.

Theorem 4.9: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map, then the following statements are true.

1) f is strongly $\beta g *$ continuous

2) f is perfectly $\beta g *$ continuous

Proof: (1) \Rightarrow (2) Let O be any βg^* open set in (Y, σ). By hypothesis, $f^{-1}(O)$ is open in (X, τ). Since (X, τ) is a discrete space, $f^{-1}(O)$ is closed in (X, τ). $f^{-1}(O)$ is both open and closed in

(X, τ). Hence, f is perfectly βg^* continuous.

(2) \Rightarrow (1) Let O be any βg^* open set in (Y, σ). Then, f⁻¹(O) is both open and closed in (X, τ). Hence, f is strongly βg^* continuous.

Theorem 4.10: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are perfectly βg^* continuous, then their composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is also perfectly βg^* continuous.

Proof: Let O be a βg^* open set in (Z, η) . Since, g is perfectly βg^* continuous.

We get that $g^{-1}(O)$ is open and closed in (Y, σ) . By thm [] $g^{-1}(O)$ is βg^* open in (Y, σ) . Since f is perfectly βg^* continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is both open and closed in (X, τ) . Hence, $g \circ f$ is perfectly βg^* continuous.

Theorem 4.11: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps . Then their composition is strongly βg * continuous if g is perfectly βg * continuous and f is continuous.

Proof: Let O be any βg^* open set in (Z, η) . Then, $g^{-1}(O)$ is open and closed in (Y, σ) .

Since, f is continuous. $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is open in (X, τ) .

Hence, $g \circ f$ is strongly βg * continuous.

Theorem 4.12: If a map $f: (X, \tau) \to (Y, \sigma)$ is perfectly $\beta g *$ continuous and a map $g: (Y, \sigma) \to (Z, \eta)$ is strongly $\beta g *$ continuous then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ is perfectly $\beta g *$ continuous.

Proof: Let O be any βg^* open set in (Z, η) . Then, $g^{-1}(O)$ is open in (Y, σ) . By thm [] $g^{-1}(O)$ is βg^* open in (Y, σ) . By hypothesis, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is both open and closed in (X, τ) . Therefore, $g \circ f$ is perfectly βg^* continuous.

V. Totally βg * continuous functions

Definition 5.1: A function $(X, \tau) \rightarrow (Y, \sigma)$ is called **totally** βg * **continuous functions** if the inverse image of every open set of (Y, σ) is both βg * open and βg * closed subset of (X, τ) .

Example 5.2: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}, \beta g * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\} and \beta g * C(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = b, g(b) = d, g(c) = a, g(d) = c. Therefore, $g^{-1}(\{b\}) = \{a\}, g^{-1}(\{a, b\}) = \{c, a\}, g^{-1}(\{$

¹({b, c}) = {a, d}, g⁻¹({a, b, c}) = {a, c, d}. Hence the inverse image of every open set of (Y, σ) is both βg * open and βg * closed subset of (X, τ). Therefore, g is totally βg * continuous.

Theorem 5.3: Every totally βg^* continuous functions is βg^* continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be totally βg^* continuous and O be an open set of (Y, σ) . Since, f is totally βg^* continuous functions, f⁻¹(O) is both βg^* open and βg^* closed in (X, τ) . Therefore, f is βg^* continuous.

Remark 5.4: The converse of above theorem need not be true.

Example 5.5: Let $X = Y = \{a, b, c, d\}, \tau = \{\varphi, \{c\}, \{d\}, \{c, d\}, X\}, \sigma = \{\varphi, \{a\}, \{b\}, \{a, b\}, Y\}.$ $\beta g * O(X, \tau) = \{\varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ and $\beta g * C(X, \tau) = \{\varphi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = c, g(c) = b, g(d) = d.

Clearly, g is not totally βg^* continuous since $g^{-1}(\{b\}) = \{c\}$ is βg^* open in X but not βg^* closed. However, g is βg^* continuous.

Theorem 5.6: Every totally continuous function is totally βg^* continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the totally βg * continuous and O be an open set of (Y, σ) . Since, f is totally continuous functions, $f^{-1}(O)$ is both open and closed in (X, τ) .

Since every open set is βg^* open and every closed set is βg^* closed. f⁻¹(O) is both βg^* open and βg^* closed in (X, τ). Therefore, f is totally βg^* continuous.

Remark 5.7: The converse of above theorem need not be true.

Example 5.8: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\},$

 $\tau^{c} = \{\phi, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \sigma = \{\phi, \{b\}, \{b, d\}, Y\}.$

 $\beta g * O(X, \tau) = \{ \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X \} \text{ and} \beta g * C(X, \tau) = \{ \phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X \} \text{ . Let } f: (X, \tau) \rightarrow (Y, \sigma) \text{ be defined by } f(a) = c, f(b) = b, f(c) = a, f(d) = d, \text{since}, f^{-1}(\{b\}) = \{b\}, f^{-1}(\{b, d\}) = \{b, d\}$

is both $\beta g *$ open and $\beta g *$ closed in X.

Clearly, f is totally βg^* continuous.

But f is not totally continuous as the inverse image of the open set {b} of (Y, σ) is not a clopen set in (X, τ) , and hence $\beta g *$ continuous.

Theorem 5.9: Every perfectly βg^* continuous map is totally βg^* continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a perfectly βg^* continuous map.

Let O be an open set of (Y, σ) . Then O is βg^* open in (Y, σ) .

Since f is perfectly βg^* continuous, f⁻¹(O) is both open and closed in (X, τ), implies f⁻¹(O) is both βg^* open and βg^* closed in (X, τ).

Therefore, f is totally βg * continuous.

Remark 5.10: The converse of above theorem need not be true.

Example 5.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \tau^{c} = \{\phi, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \sigma = \{\phi, \{b\}, \{a, c, d\}, Y\}.$

 $t = \{\psi, \{a, b, u\}, \{a, b, c\}, \{a, b\}, X\}, b = \{\psi, \{b\}, \{a, c, u\}, 1\}.$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d.

 $\beta g * O(X, \tau) = \{ \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X \} \text{ and} \beta g * C(X, \tau) = \{ \phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X \} \text{ and} \beta g * C(X, \tau) = \{ \phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X \} \text{ and} \beta g * C(X, \tau) = \{ b\}, g^{-1}(\{a, c, d\}) = \{a, c, d\} \text{ is both } \beta g * \text{ open and } \beta g * \text{ closed in X.Clearly, g is totally } \beta g * \text{ continuous.}$

 $\beta g * O(Y, \sigma) = \{ \phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, Y \}$. But $g^{-1}(\{c, d\}) = \{c, d\}$ is open in X but not closed in X.

Therefore, g is not perfectly βg^* continuous.

Remark 5.12: The concept of totally βg^* continuous and strongly βg^* continuous are independent of each other.

Example 5.13: Let $X = Y = \{a, b, c, d\}, \tau = \{\varphi, \{c\}, \{d\}, \{c, d\}, X\}, \tau^{c} = \{\varphi, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \sigma = \{\varphi, \{b\}, \{a, c, d\}, Y\}.$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = b, g(c) = c, g(d) = d. $\beta g * O(X, \tau) = \{\varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ and $\beta g * C(X, \tau) = \{\varphi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Since $, g^{-1}(\{b\}) = \{b\}, g^{-1}(\{a, c, d\}) = \{a, c, d\}$ is both βg * open and βg * closed in X. Clearly, g is totally βg * continuous but $g^{-1}(\{a, b, c\}) = \{a, b, c\}$ is not open in X. Therefore, g is not strongly βg * continuous.

Theorem 5.14: If f: $X \rightarrow Y$ is a totally βg * continuous map, and X is βg * connected, then Y is an indiscrete space.

Proof: Suppose that Y is not an indiscrete space.

Let A be a non-empty open subset of Y.

Since, f is totally βg^* continuous map, then f⁻¹(A) is a non-empty βg^* clopen subset of X.

Then $X = f^{-1}(A) \cup (f^{-1}(A))^{c}$.

Thus, X is a union of two non-empty disjoint βg^* open sets which is contradiction to the fact that X is βg^* connected.

Therefore, Y must be an indiscrete space

Theorem 5.15: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then $g \circ f: X \to Z$

(i) If f is βg * irresolute and g is totally βg * continuous then $g \circ f$ is totally βg * continuous

(ii) If f is totally βg * continuous and g is continuous then g \circ f is totally βg * continuous. **Proof:**

(i) Let O be an open set in Z. Since g is totally βg^* continuous, $g^{-1}(O)$ is βg^* clopen in Y.

Since f is βg^* irresolute, f⁻¹(g⁻¹(O)) is βg^* open and βg^* closed in X.

Since, $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$. Therefore, $g \circ f$ is totally βg * continuous.

- (ii) Let O be an open set in Z. Since g is continuous, g^{-1} (O) is open in Y.
 - Since, f is totally βg^* continuous, f⁻¹(g⁻¹(O)) is βg^* clopen in X. Hence, g \circ f is totally βg^* continuous.

VI. Slightly βg * continuous functions

Definition 6.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called slightly βg^* continuous at a point $x \in X$ if for each clopen subset V of Y containing f(x), there exists a βg^* open subset U in X containing x such that $f(U) \subseteq V$. The function f is said to be slightly βg^* continuous if f is slightly βg^* continuous at each of its points. **Definition 6.2:** A function $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **slightly** βg^* **continuous** if the inverse image of every clopen set in Y is βg^* open in X

Example 6.3: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \sigma = \sigma^{c} = \{\phi, \{a, d\}, \{b, c\}, Y\}.$ $\beta g * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = b, g(b) = a, g(c) = c, g(d) = d. since , $g^{-1}(\{a, d\}) = \{b, d\}, g^{-1}(\{b, c\}) = \{a, c\}$ is $\beta g *$ open in X. Therefore, g is **slightly** $\beta g *$ **continuous**.

Proposition 6.4: The definitions 6.1 and 4.6 are equivalent. **Proof:** Suppose the definition 6.1 holds. Let O be a clopen set in Y and $x \in f^{-1}(O)$. Then $f(x) \in O$ and thus there exists a βg^* open set U x such that $x \in U x \subseteq f^{-1}(O)$ and $f^{-1}(O) = \bigcup x \in f^{-1}(O) U x$. Since, arbitrary union of βg^* open set is βg^* open. $f^{-1}(O)$ is βg^* open in X. Therefore, f is slightly βg^* continuous. Suppose the definition 6.2 holds. Let $f(x) \in O$ where, O is a clopen set in Y. Since, f is slightly βg^* continuous $f^{-1}(O)$ is βg^* open in X, $x \in f^{-1}(O)$

Let U = f⁻¹ (O). Then U is βg^* open in X, $x \in U$, and $f(U) \subseteq O$.

Theorem 6.5: For a function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.

(i) f is slightly βg^* continuous.

(ii) The inverse image of every clopen set O of Y is $\beta g *$ open in X.

(iii) The inverse image of every clopen set O of Y is $\beta g *$ closed in X.

(iv) The inverse image of every clopen set O of Y is $\beta g *$ clopen in X.

Proof:

(i) \Rightarrow (ii): Follows from the proposition 6.4

(ii) \Rightarrow (iii): Let O be a clopen set in Y which implies O^c is clopen in Y.

By (ii), $f^{-1} (O^c) = (f^{-1}(O))^c$ is βg^* open in X.

Therefore, $f^{-1}(O)$ is $\beta g *$ closed in X.

(iii) \Rightarrow (iv): By (ii) and (iii), f⁻¹ (O) is βg^* clopen in X.

(iv) \Rightarrow (i): Let O be a clopen set in Y containing f(x), by (iv) f⁻¹ (O) is β g * clopen in X.

Take U = f⁻¹ (O), then $f(U) \subseteq O$.

Hence, f is slightly βg * continuous.

Theorem 6.6: Every slightly continuous function is slightly βg^* continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a slightly continuous function.

Let O be a clopen set in Y.

Then, f⁻¹ (O) is open in X. Since, every open set is βg^* open.

Hence, f is slightly $\beta g *$ continuous.

Remark 6.7: The converse of the above theorem need not be true as can be seen from the following example.

Example 6.8: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \sigma = \sigma^{c} = \{\phi, \{a, d\}, \{b, c\}, Y\}.$

 $\beta g * O(X, \tau) = \{ \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X \}$

Let g: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g (a) = b, g(b) = a, g(c) = c, g(d) = d.

since, $g^{-1}(\{a, d\}) = \{b, d\}, g^{-1}(\{b, c\}) = \{a, c\}$ is βg^* open in X.

Clearly, g is slightly $\beta g * continuous$.

But not slightly continuous.

Since, $g^{-1}(a, d) = \{b, d\}$ where $\{a, d\}$ is clopen in Y but $\{b, d\}$ is not open in X.

Theorem 6.9: Every βg^* continuous function is slightly βg^* continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a βg * continuous function.

Let O be a clopen set in Y.

Then, f⁻¹ (O) is β g * open in X and β g * closed in X.

Hence, f is slightly βg^* continuous.

Remark 6.10: The converse of the above theorem need not be true as can be seen from the following example.

Example 6.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \sigma = \sigma^{c} = \{\phi, \{a, d\}, \{b, c\}, Y\}.\beta g * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b) = a, f(c) = c, f(d) = d

since , $f^{-1}(\{a, d\}) = \{b, d\}, f^{-1}(\{b, c\}) = \{a, c\}$ is $\beta g *$ open in X.

The function f is slightly βg^* continuous.Let g: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by g(a) = a, g(b) = d, g(c) = c, g(d) = bBut not βg^* continuous,since, $g^{-1}(a,d) = \{a,b\}$ is not βg^* open in X.

Theorem 6.12: Every contra βg^* continuous function is slightly βg^* continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra βg * continuous function.

Let O be a clopen set in Y.

f⁻¹ (O) is βg^* open in X as f is contra βg^* continuous.

Hence, f is slightly βg^* continuous.

Remark 6.13: The converse of the above theorem need not be true as can be seen from the following example.

Example 6.14: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}, \tau^c = \{\phi, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \sigma = \sigma^c = \{\phi, \{a, d\}, \{b, c\}, Y\}.$

 $\beta g * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ $\beta g * C(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ $\{b, c, d\}, X\}.$

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b) = a, f(c) = c, f(d) = d

since , $f^{-1}(\{a, d\}) = \{b, d\}, f^{-1}(\{b, c\}) = \{a, c\}$ is $\beta g *$ open in X.

The function f is slightly $\beta g *$ continuous.

Remark 6.15: Composition of two slightly βg^* continuous need not be slightly βg^* continuous as it can be seen from the following example.

Example 6.16: Let $X=Y=\{a,b,c,d\}$, $Z=\{a,b,c\}$ and the topologies are

 $\tau = \{ \ \varphi \ , \{c\} \ , \{d\}, \ \{c, \ d \ \} \ , X \} \ \text{and} \ \sigma = \{ \ \varphi \ , \ \{a, \ d\} \ , \ \{b, \ c\} \ , Y \ \} \ \text{and} \ \eta = \{ \varphi \ , \{a, \ b\}, \{c, \ d\}, Z \}.$

Define f: (X, τ) \rightarrow (Y, σ) by f(a) = b, f(b) = a, f(c) = c, f(d)=d,

 $\beta g * O (X,\tau) = \{ \varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X \} \text{ since } f^{-1} (a, d) = (b, d), f^{-1} (b, c) = (a, c) \text{ is } \beta g * \text{ open in } X.$

Clearly, f is slightly βg^* continuous. Define g: $(Y, \sigma) \rightarrow (Z, \eta)$ by $g(a) = a, g(b) = b, g(c) = d, g(d) = c, \beta g^* O(Y, \sigma) = \{ \varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, c, d\}, \{b, c\}, \{a, c, d\}, \{a, c$

But $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is not slightly $\beta g \ast$ continuous, since $(g \circ f)^{-1} (\{a, b\}) = f^{-1} (g^{-1} \{a, b\}) = f^{-1} (\{a, b\}) = \{a, b\}$ is not a $\beta g \ast$ open in (X, τ) .

Theorem 6.17: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following properties hold: (i) If f is βg^* irresolute and g is slightly βg^* continuous then $(g \circ f)$ is slightly βg^* continuous. (ii) If f is βg^* irresolute and g is βg^* continuous then $(g \circ f)$ is slightly βg^* continuous. (iii) If f is βg^* irresolute and g is slightly continuous then $(g \circ f)$ is slightly βg^* continuous. (iv) If f is βg^* continuous and g is slightly continuous then $(g \circ f)$ is slightly βg^* continuous. (v) If f is strongly βg^* continuous and g is slightly βg^* continuous then $(g \circ f)$ is slightly continuous. (vi) If f is slightly βg^* continuous and g is perfectly βg^* continuous then $(g \circ f)$ is βg^* irresolute. (vii) If f is slightly βg^* continuous and g is contra continuous then $(g \circ f)$ is slightly βg^* continuous. (viii) If f is slightly βg^* continuous and g is contra continuous then $(g \circ f)$ is slightly βg^* continuous. (viii) If f is βg^* irresolute and g is contra βg^* continuous then $(g \circ f)$ is slightly βg^* continuous. (viii) If f is βg^* irresolute and g is contra βg^* continuous then $(g \circ f)$ is slightly βg^* continuous. (viii) If f is βg^* irresolute and g is contra βg^* continuous then $(g \circ f)$ is slightly βg^* continuous.

(i) Let O be a clopen set in Z. Since, g is slightly βg^* continuous, $g^{-1}(O)$ is βg^* open in Y. Since, f is βg^* irresolute, $f^{-1}(g^{-1}(O))$ is βg^* open in X.

Since, $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O)), g \circ f$ is slightly βg * continuous.

(ii) Let O be a clopen set in Z. Since, g is βg * continuous, g ⁻¹(O) is βg * open in Y. Since, f is βg * irresolute, f ⁻¹(g ⁻¹(O)) is βg * open in X.

Hence, g \circ f is slightly βg * continuous.

(iii)Let O be a clopen set in Z.

Since, g is slightly continuous, $g^{-1}(O)$ is open in Y.

Since, f is βg^* irresolute, f⁻¹(g⁻¹(O)) is βg^* open in X.

Hence, $g \circ f$ is slightly βg * continuous.

(iv)Let O be a clopen set in Z.

Since, g is slightly continuous, $g^{-1}(O)$ is open in Y.

Since, f is βg^* continuous, f⁻¹(g⁻¹(O)) is βg^* open in X.

Hence, $g \circ f$ is slightly βg * continuous.

(v) Let O be a clopen set in Z. Since, g is slightly βg^* continuous, $g^{-1}(O)$ is βg^* open in Y. Since, f is strongly βg^* continuous, $f^{-1}(g^{-1}(O))$ is open in X.

Therefore, $g \circ f$ is slightly continuous.

(vi)Let O be a βg * open in Z.

Since, g is perfectly βg^* continuous, g⁻¹(O) is open and closed in Y. Since, f is slightly βg^* continuous, f⁻¹(g⁻¹(O)) is βg^* open in X. Hence, g \circ f is βg^* irresolute.

(vii) Let O be a clopen set in Z.

Since, g is contra continuous, $g^{-1}(O)$ is open and closed in Y.

Since, f is slightly βg *continuous, f⁻¹(g⁻¹(O)) is βg * open in X.

Hence, $g \circ f$ is slightly βg * continuous.

(viii) Let O be a clopen set in Z.

Since, g is contra β g * continuous, g ⁻¹(O) is β g * open and β g * closed in Y.

Since, f is βg * irresolute, f⁻¹(g⁻¹(O)) is βg * open and βg * closed in X.

Hence, $g \circ f$ is slightly $\beta g *$ continuous.

Theorem 6.18: If the function f: $(X, \tau) \rightarrow (Y, \sigma)$ is slightly βg^* continuous and (X, τ) is $\beta g^* T_{1/2}$ space, then f is slightly continuous.

Proof: Let O be a clopen set in Y. Since, f is slightly βg^* continuous, f⁻¹(O) is βg^* open in X. Since, X is $\beta g^* T_{1/2}$ space, f⁻¹(O) is open in X. Hence, f is slightly continuous.

Theorem 6.19: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions. If f is surjective and pre βg^* open and $(g \circ f)$: $(X, \tau) \rightarrow (Z, \eta)$ is slightly βg^* continuous, then g is slightly βg^* continuous. **Proof:** Let O be a clopen set in (Z, η) .

Since, $(g \circ f): (X, \tau) \longrightarrow (Z, \eta)$ is slightly βg^* continuous, $f^{-1}(g^{-1}(O))$ is βg^* open in X.

Since, f is surjective and pre βg^* open $f(f^{-1}(g^{-1}(O))) = g^{-1}(O)$ is βg^* open in Y.

Hence, g is slightly βg^* continuous.

Theorem 6.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions.

If f is surjective, pre βg^* open and βg^* irresolute, then $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly βg^* continuous.

Proof: Let O be a clopen set in (Z, η) . Since, $(g \circ f): (X, \tau) \to (Z, \eta)$ is slightly βg^* continuous, $f^{-1}(g^{-1}(O))$ is βg^* open in X.

Since, f is surjective and pre βg^* open f(f⁻¹(g⁻¹(O))) = g⁻¹(O) is βg^* open in Y.

Hence, g is slightly $\beta g * \text{continuous}$.

Conversely, let g is slightly β g * continuous.

Let O be a clopen set in (Z, η), then g⁻¹(O) is β g * open in Y.

Since, f is βg^* irresolute, f⁻¹(g⁻¹(O)) is βg^* open in X.

Hence, $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is slightly βg^* continuous.

Theorem 6.21: If f is a slightly βg^* continuous from a βg^* connected space (X, τ) onto a space (Y, σ) then Y is not a discrete space.

Proof: Suppose that Y is a discrete space. Let O be a proper non-empty open subset of Y. Since, f is slightly βg * continuous, f⁻¹(O) is a proper non-empty βg * clopen subset of X which is contradiction to the fact that X is βg * connected.

Theorem 6.22: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly βg * continuous surjection and X is βg * connected, then Y is connected.

Proof: Suppose Y is not connected, then there exists non-empty disjoint open sets U and V such that $Y = U \cup V$.

Therefore, U and V are clopen sets in Y.

Since, f is slightly βg * continuous, f⁻¹(U) and f⁻¹(V) are non-empty disjoint βg * open in X and

 $X = f^{-1}(U) \cup f^{-1}(V)$.

This shows that X is not βg * connected.

This is a contradiction and hence, Y is connected.

Theorem 6.23: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly βg * continuous and (Y, σ) is a locally indiscrete space then f is βg * continuous.

Proof: Let O be an open subset of Y.

Since, (Y, σ) is a locally indiscrete space, O is closed in Y. Since, f is slightly βg * continuous,

 $f^{-1}(O)$ is $\beta g *$ open in X.

Hence, f is βg * continuous.

Theorem 6.24: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly βg * continuous and A is an open subset of X then the restriction f $|A : (A, \tau A) \rightarrow (Y, \sigma)$ is slightly βg * continuous.

Proof: Let V be a clopen subset of Y. Then $(f | A)^{-1}(V) = f^{-1}(V) \cap A$.

Since $f^{-1}(V)$ is βg^* open and A is open, $(f | A)^{-1}(V)$ is βg^* open in the relative topology of A. Hence, $f | A : (A, \tau_A) \rightarrow (Y, \sigma)$ is slightly βg^* continuous.

REFERENCES

[1]D.Andrijevic, semipreopen sets,Mat.Vesnik,38(1) (1986), 24-32.

[2]C.Dhanapakyam, K.Indirani, On βg * continuity in Topological spaces(Communicated)

[3] C.Dhanapakyam, K.Indirani, On βg * closed sets in Topological spaces, Internat. J.App. Research.

[4]J.Dontchev, Contra continuous functions and strongly S-Closed spaces.Internat.J.Maths,Sci(1996)303-310.

[5]Levine N.Strong continuity in topological spaces, Amer.Math.Monthly67(1960)269

[6]Noiri, T.Strong form of continuity in topological spaces, Rend.cire, math.plaemo(1986)107-113.

[7]RC Jain, The role of regularly open sets in general topology Ph.D Thesis, Meerut, 1980.

