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FIRST ORDER DIFFERENTIAL EQUATION 

WITH CONSTANT DELAY 
Abstract: 

Differential equations play an important role in science, engineering and social sciences. They occur quite frequently in 

our daily life. The motion of an object can always be associated with a differential equation. The change in prices of commodities, 

the flow of liquids, the concentration of chemicals etc., often lead to differential equations. 

Most of the equations occurring in applications, are not only depend on the current state but also depends on the past 

history and these types of equations are called delay differential equations. 

I.Introduction: 

 Consider an analog of the delay differential equation, 

)(),(,(  txtxtf
dt

dx
          (1.1) 

where  >0, 
3:f R R  and t   0t . Integrating (1.1) from 0t  to t, we obtain  

dssxsxsftxtx
t

t
))()(,()()(

0
0    .         (1.2) 

 

To define a solution x(t) of equation (1.2) in ],[ 00 tt , one needs to have a known function   in ],[ 00 tt   such 

that ( ) ( )x t t  for ],[ 00 ttt   instead of just at 0t , that is 0 0( )x t x . Using method of steps, the solution x(t) can be 

extended to any interval ],[ 0 Tt  , 0tT  . Here the point 0t  is known as initial point, the set             

)( 0t
E  ],[ 00 tt   is called a initial set and   is called the initial function.  

Under general assumptions of f ,the existence and uniqueness of the initial value problem (1.1) are established, see for 

example, Driver [3] and Hale [5]. 

A solution x(t) of equation (1.1) is said to be continuable if it exists in a half line [T, ) for some T 0. Throughout the 

paper we deal with continuable solutions without further mention. A non-trivial continuous function Rx ),0[:  is said to 

be oscillatory, if it has zeros for large t. That is, the set of zeros of x(t) in any half interval [ , )T  ,T 0  is unbounded. 

Similarly, x(t) is said to be nonosciallatory, if it is not oscillatory. From the definition, it is clear that x(t) is oscillatory if and only 

if, there exists a sequence of real numbers { nt } such that ( ) 0nx t   for every n and nt   as n . Thus for a 

nonoscillatory function x(t), there exists a constant 00 T  such that ( )x t  is either positive or negative for all t 0T . 

In oscillaton theory, it is always assumed that the solution of differential equation under consideration is non-trivial and 

continuable in a half line [ , )T  ,T 0 . 

 

The distinguishing properties of a delay differential equation may be observed from that of an ordinary differential 

equation may be observed from the following example, 

'( ) ( / 2) 0x t x t    .          (1.3) 

 

This equation admits oscillatory solutions 1( ) sinx t t  and 2 ( ) cosx t t . However, it is a point to note that the 

corresponding ordinary differential equation, 

'( ) ( )x t x t =0 

 admits solution of the form 
tcetx )(  which are non oscillatory. Similarly, if we consider a differential equation with 

advanced argument, 

                      '( ) ( / 2) 0x t x t    ,       (1.4) 

we may see that 1( ) sinx t t  and 2 ( ) cosx t t  are oscillatory solutions and its associated ordinary differential 

equation, 

'( ) ( )x t x t =0 

 has non oscillatory solution 
tcetx )( only. From these examples, it is understood that the oscillation of solutions in equations 

(1.3) and (1.4) are exclusively caused by the deviating argument / 2 . 

 

Although, it is not very transparent, it appears that Fite presented the first effective paper on oscillation of a class of  

functional differential equations of the form 

                      ( ) ( ) ( ( )) 0nx t p t x t         (1.5) 
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where p:R R and ( )t k t    for some 0k  . His study aimed to find the behaviour of equation (1.5) which do not appear 

for the associated ordinary differential equation. The subject grow rapidly in the past several years, see for example, Wang, 

Stavroulakis and Qain [26] and the references cited therein. 

The aim of this paper is to present briefly some results on the oscillatory and nonoscillatory behaviour of first order delay 

differential equations.In Chapter 2, we study the oscillatory behaviour of all solutions of the first order delay differential 

equations of the form 

'( ) ( ) ( ) 0x t p t x t    ,  0t t  

where p(t) is positive and continuous functions,   is a positive real constant.In Chapter 3, we discuss the oscillatory behaviour of 

solutions of the first order delay differential equation of the form 

'( ) ( ) ( ( )) 0x t p t x t  ,  0t t  

where p(t) is positive and continuous functions, 
0( ) ([ , ), )t c t R   , ( )t t   and lim ( )

t
t


  .Finally in Chapter 4, we 

discuss the oscillatory behaviour of solutions of the first order delay differential equation of the form 

'( ) ( ) ( ( )) 0x t p t x t t   ,  0t t  

where p(t) is positive and continuous functions, 
0( ) ([ , ), )t c t R   , ( )t t   and lim ( )

t
t


  . 

2.1 Oscilatory Behaviour: 

 we study the oscillatory behaviour of all solutions of the delay differential equation of the form 

                     '( ) ( ) ( ) 0x t p t x t    ,             0t t         (2.1) 

where p(t) is a real valued continuous functions and   is positive real number. 

By a solution of equation (2.1), we mean a function x(t) statisfies equation (2.1) for all 0t t  and ( ) ( )x t t  for all 

0 0[ , ]t t t  . If the coefficient p(t) in equation (2.1) is constant say p, then the condition 1p e   gives a necessary and 

sufficient conditions for all solutions of equation (2.1) to be oscillatory. 

In this chapter, we present some oscillations results for the equation (2.1) when the function p(t) is nonnegative. The 

results presented here are adopted from [9], [10] and [19] and references citied therein. 

 

2.2.Oscillation Results: In this section we present some oscillation criteria for the equation (2.1) when  is a positive constant 

and p(t) 0  is a continuous function. 

 

Theorem 2.1: Assume that 

1
liminf ( )

t

tt
p s ds

e
            (2.2) 

and 

/ 2
liminf ( ) 0

t

tt
p s ds


 .          (2.3) 

Then every solution of equation (2.1) oscillates.  

Proof : Suppose there is a solution x(t) of equation (2.1) such that for t0 sufficiently large x(t)>0, 0t t .Then ( )x t   > 0 for 

0t t    and from equation (2.1), '( ) 0x t   for 0t t   .Hence, ( ) ( )x t x t    for 0 2t t   . 

Set  

( )
( )

( )

x t
w t

x t


 ,  for 0 2t t   .        (2.4) 

 

Then ( ) 1w t   and dividing both sides of equation (2.1) by x(t), for 0 2t t   .We obtain, 

'( ) ( )
( ) 0

( ) ( )

x t x t
p t

x t x t


  , 0 2t t   . 

'( )
( ) ( ) 0

( )

x t
p t w t

x t
  ,  0 2t t   .        (2.5) 

Integrating both sides of equation (2.5) from t   to t, for 0 3t t   , yields 

ln ( ) ( ) ( )
t

t
w t p s w s ds


  , 0 3t t   .        (2.6) 

Set  

liminf ( )
t

w t l


 .           (2.7) 

Then 1l   and is finite or infinite. 

To prove this result it is sufficient to show that either case leads to a contradiction. 

Case 1: l is finite. 
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Then there exists a sequence nt   such that lim ( )n
n

w t l


 . 

From equation (2.6), we find 

ln ( ) ( ) ( )
n

n

t

n
t

w t p s w s ds


   

( ) ( )
n

n

t

n
t

w p s ds





            (2.8) 

where n n nt t     ,   n=1,2, . . . . 

Taking limits on both sides of equation (2.8), as n  , we obtain  

ln liminf ( )
t

tt
l l p s ds


   

and so  

ln
liminf ( )

t

tt

l
p s ds

l 
  .          (2.9) 

Using the fact that,  

1

ln 1
max

l

l

l e
 . 

The inequality (2.9) implies  

1
liminf ( )

t

tt
p s ds

e 
   

which contradicts the hypothesis (2.2). 

Case 2 : l is infinite. 

That is,  

( )
liminf

( )t

x t

x t






  .         (2.10) 

Integrating both sides of equation (2.1) from / 2t   to t, for 0 3t t   , we obtain 

/ 2
( ) ( / 2) ( ) ( ) 0

t

t
x t x t p s x s ds


 


     .      (2.11) 

Since ( ) ( )x s x t     for / 2t s t   , equation (2.11) yields  

/ 2
( ) ( / 2) ( ) ( )

t

t
x t x t x t p s ds


 


     0 .      (2.12) 

Dividing both sides of (2.12) by x(t) and using (2.10) and (2.3) we conclude that 

( / 2)
lim

( )t

x t

x t






  .         (2.13) 

 

Dividing both sides of (2.12) by ( / 2)x t  , we obtain  

/ 2

( ) ( )
1 ( ) 0

( / 2) ( / 2)

t

t

x t x t
p s ds

x t x t 



  


  

         (2.14) 

which in view of (2.13) and (2.3) is impossible. Since in both cases we arrived at a contradiction. Therefore, the proof of the 

Theorem is complete. 
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