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ABSTRACT 

 The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital 

Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as 

IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideration for 

inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer 

factorization problem, no sub exponential-time algorithm is known for the elliptic curve discrete logarithm 

problem. For this reason, the strength-per-key bit is substantially greater in an algorithm that uses elliptic 

curves. This paper describes the implementation of more secure digital signature concept over Elliptic 

Curve Digital Signature Algorithm. 

Keywords: Integer Factorization, Discrete Logarithm Problem, Elliptic Curve Cryptography, DSA, 

ECDSA. 

1. INTRODUCTION 

Cryptography is the branch of cryptology dealing with the design of algorithms for encryption and 

decryption, intended to ensure the secrecy and/or authenticity of message. The DSA was proposed in 

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was specified in a U.S. 

Government Federal Information Processing Standard (FIPS 186) called the Digital Signature Standard 

(DSS). Its security is based on the computational intractability of the discrete logarithm 

problem (DLP) in prime-order subgroups of Zp*. Digital signature schemes are designed to provide the 

digital counterpart to handwritten signatures (and more). Ideally, a digital signature scheme should be 

existentially non-forgeable under chosen message attack. The ECDSA have a smaller key size, which leads 

to faster computation time and reduction in processing power, storage space and bandwidth. This makes the 

ECDSA ideal for constrained devices such as pagers, cellular phones and 

smart cards. 

Digital signature schemes can be used to provide the following basic cryptographic services: 

 data integrity (the assurance that data has not been altered by unauthorized or unknown means) 

 data origin authentication (the assurance that the source of data is as claimed) 

 non-repudiation (the assurance that an entity cannot deny previous actions or commitments) 
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2. CRYPTOGRAPHIC SCHEMES 

2.1 Integer Factorization 

In Integer factorization, given an integer n which is the product of two large primes p and q such that: 

n = p * q 

It is easy to calculate n for given p and q but it is computationally infeasible to determine p and q given n for 

large values of n. 

One of the famous algorithms is RSA. The RSA Algorithm is shown below: 

1. Choose two large prime numbers, p and q (1024 bits) 

2. Compute n = p * q and z = (p-1) * (q-1). 

3. Choose a number, e, less than n, which has no common factors (other than 1) with z. 

4. Find a number, d, such that e * d -1 is exactly divisible (i.e., with no remainder) by z. 

The public key is the pair of numbers (n, e), private key is the pair of numbers (n, d). 

The encryption is done as follows: 

c = me mod n 

To decrypt the received cipher text message, c 

m = cd mod n 

which requires the use of the private key, (n, d). 

Its security depends on the difficulty of factoring the large prime numbers. The best known method for 

solving Integer Factorization problem is Number Field Sieve which is a sub exponential algorithm and 

having a running time of exp[1.923*(log n)1/3*(log log n)2/3] [2]. 

2.2 Discrete Logarithm 

Discrete logarithms are ordinary logarithms involving group theory. An ordinary logarithm loga(b) is a 

solution of the equation ax = b over the real or complex numbers. Similarly, if g and h are elements of a 

finite cyclic group G then a solution x of the equation gx = h is called a discrete logarithm to the base g of h 

in the group G, i.e. logg(h). A group with an operation * is defined on pairs of elements of G. The operations 

satisfy the following properties: 

1. Closure: a * b ε G for all a, b ε G. 

2. Associativity: a * (b * c) = (a * b) * c for all a, b ε G. 

3. Existence of Identity: There exists an element e ε G, called the identity, such that e * a = a * e = a for all 

a ε G. 

4. Existence of inverse: For each a ε G there is an element b ε G such that a * b = b * a = e. The element b 

is called the inverse of a. 

Moreover, a group G is said to be abelian if a * b = b * a for all a, b ε G. The order of a group G is the 

number of elements in G. 

The discrete logarithm problem is to find an integer x, 0 ≤ x ≤ n-1, such that gx ≡ h (mod p), for given g ε 

Z*p of order n and given h ε Z*p. The integer x is called the discrete logarithm of h to the base g. 

Digital Signature Algorithm (DSA), Diffie Hellman (DH) and ElGamal are based on discrete logarithms. 
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The best known method for solving Discrete Logarithm problem is Number Field Sieve which is a sub-

exponential algorithm, having a running time of exp[1.923*(log n)1/3*(log log n)2/3] [2]. 

2.2.1 Comparison with Integer Factorization 

While the problem of computing discrete logarithms and the problem of integer factorization are distinct 

problems they share some properties: 

 both problems are difficult (no efficient algorithms are known for non-quantum computers), 

 for both problems efficient algorithms on quantum computers are known, 

 algorithms from one problem are often adapted to the other, and 

 difficulty of both problems has been exploited to construct various cryptographic systems. 

2.2.2 Elliptic Curve Discrete Logarithm 

An elliptic curve Ek, [3] defined over a field K of characteristic ≠ 2 or 3 is the set of solutions (x, y) ε K' to 

the equation y2 = x3 + ax + b  

a, b ε K (where the cubic on the right has no multiple roots). 

Two nonnegative integers, a and b, less than p that satisfy: 

4a3 + 27b2 (mod p) ≠0 

Then Ep (a, b) denotes the elliptic group mod p whose elements (x, y) are pairs of nonnegative integers less 

than p satisfying: 

y2 ≡ x3 + ax + b (mod p) 

together with the point at infinity O. 

The elliptic curve discrete logarithm problem can be stated as follows. Fix a prime p and an elliptic curve. 

Q= xP 

where xP represents the point P on elliptic curve added to itself x times. Then the elliptic curve discrete 

logarithm problem is to determine x given P and Q. It is relatively easy to calculate Q given x and P, but it is 

very hard to determine x given Q and P. ECC is based on ECDLP. ECDH and ECDSA are cryptographic 

schemes based on ECC. The best known algorithm for solving ECDLP is Pollard-Rho algorithm which is 

fully exponential having a running time of √(Π*n /2) [2]. 

2.3. ELLIPTIC CURVE CRYPTOGRAPHY 

Elliptic curve cryptosystems (ECC) were invented by Neal Koblitz [3] and Victor Miller [4] in 1985. They 

can be viewed as elliptic curve analogues of the older discrete logarithm (DL) cryptosystems in which the 

subgroup of Zp* is replaced by the group of points on an elliptic curve over a finite field. The mathematical 

basis for the security of elliptic curve cryptosystems is the computational intractability of the elliptic curve 

discrete logarithm problem (ECDLP) [5]. 

ECC is a relative of discrete logarithm cryptography. An elliptic curve E over Zp as in Figure 1 is defined in 

the Cartesian coordinate system by an equation of the form: 

y2 = x3 + ax + b 

where a, b ε Zp, and 4a3 + 27b2≠0 (mod p), together with a special point O, called the point at infinity. The 

set E(Zp) consists of all points (x, y), x ε Zp, y ε Zp, which satisfy the defining equation, together with O. 
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Each value of a and b gives a different elliptic curve. The public key is a point on the curve and the private 

key is a random number. The public key is obtained by multiplying the private key with a generator point G 

in the curve. The definition of groups and finite fields, which are fundamental for the construction of elliptic 

curve cryptosystem are discussed in next subsections. 

 

Figure 1. An Elliptic Curve[2] 

3. IMPLEMENTAION AND RESULTS 

The Project contains necessary modules for domain parameters generation, key generation, signature 

generation, and signature verification over the elliptic curve. 

ECDSA has three phases, key generation, signature generation, and signature verification 

Key Generation  

Let W be the signatory for a message M.  Entity W performs the following steps to generate a public and 

private key: 

1. Select an elliptic curve E defined over a finite field Fp such that the number of points in E(Fp) is 

divisible by a large prime j. 

2. Select a base point, P, of order n such that P  E(Fp) 

3. Select a unique and unpredictable integer, d, in the interval [1, j-1] 

4. Compute Q = dP +rand(0,1) 

5. Sender W’s private key is d 

6. Sender W’s public key is the combination (E, P, j, Q) 

Signature Generation  

Using W’s private key, W generates the signature for message M using the following steps: 

1. Select a unique and unpredictable integer k in the interval [1,j-1] 

2. Compute kP = (x1,y1), where x1 is an integer 

3. Compute r = x1 mod n; If r = 0, then go to step 1 

4. Compute h = H(M), where H is the Secure Hash Algorithm (SHA-1) 

5. Compute s = k-1{h + dr} mod j; If s = 0, then go to step1  
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6. The signature of W for message M is the integer pair (r,s) 

Signature Verification  

The receiver Z can verify the authenticity of W’s signature (r,s) for message M by performing the following: 

1. Obtain signatory W’s public key (E, P, j, Q) 

2. Verify that values r and s are in the interval [1,j-1] 

3. Compute w = s-1 mod p 

4. Compute h = H(M), where H is the same secure hash algorithm used by W 

5. Compute f1 = hw mod j 

6. Compute f2 = rw mod j 

7. Compute f1P + f2Q = (x0,y0)  

8. Compute v = x0 mod j 

9. The signature for message M is verified only if v = r. 

Table 1: Average function runtimes by key size 

Key Size Signature Generation Signature Verification 

533 328 2753 

399 230 1512 

260 120 797 

240 92 691 

195 80 578 

 

 

Figure 2: Depiction of Proposed method runtimes as a function of the key size 

Thus, the proposed system offered remarkable advantages over other cryptographic system. 

1. It provides greater security for a given key size. 

2. It provides effective and compact implementations for cryptographic operations requiring smaller  

    chips. 

3. Due to smaller chips less heat generation and less power consumption. 

4. It is mostly suitable for machines having low bandwidth, low computing power, less memory. 

5. It has easier hardware implementations. 
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4. CONCLUSION 

The main reason for the attractiveness of proposed system is the fact that there is no sub exponential 

algorithm known to solve the elliptic curve discrete logarithm problem on a properly chosen elliptic curve. 

Hence, it takes full exponential time to solve while the best algorithm known for solving the underlying 

integer factorization for RSA and discrete logarithm problem in DSA both take sub exponential time. The 

key generated by the implementation is highly secured and it consumes lesser 

band width because of small key size used by the elliptic curves. 

Significantly smaller parameters can be used in proposed system than in other competitive systems such as 

RSA and DSA but with equivalent levels of security. 

Some benefits of having smaller key size include faster computation time and reduction in processing 

power, storage space and bandwidth. This makes proposed system ideal for constrained environments such 

as pagers, PDAs, cellular phones and smart cards. These advantages are especially important in other 

environments where processing power, storage space, bandwidth, or power consumption are lacking. 
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