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Abstract 

It is no doubt that the contamination of water, air and soil has worsened, and this occurs as a result of the 

increase in population. However, the need for remediation technologies has to be seriously considered. 

Phytoremediation is one of the remediation techniques with a relatively slow procedure and low efficiency. 

This review covers some of the biological, chemical, physical, physico-chemical and genetic methods, 

which were applied in parallel with phytoremediation, in an attempt to help increase the efficiency in the 

remediation of air, soil and water.  
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1.1. Introduction 

Several methodologies are in vogue to enhance the potential of plants for phytoremediation.  

Once a tolerant plant species has been selected, traditional breeding methods are used to optimize the 

tolerance of a species to a particular contaminant. 

 

1. Agricultural methods such as the application of fertilizers, chelators, and pH adjusters     can be 

utilized to further improve the potential for phytoremediation. 

 

2. Genetic modification offers a new hope for phytoremediation as Genetically modified approaches 

can be used to over express the enzymes involved in the existing plant metabolic pathways or to 

introduce new pathways into plants.  

 

Each metal may have its own specific mechanism for uptake, translocation and sequestration and hence it is 

imperative to design suitable strategies for developing transgenic plants specific for each metal. 

1.2. Molecular genetic and transgenic strategies for phytoremediation hype 

Genetic strategies and transgenic plant and microbe production and field trials will fetch phytoremediaition 

field applications [1,2,3,4] . Mercury is a world wide problem as a result of its many diverse uses in 

industry. Mercury has been used in bleaching operations (chlorineproduction, paper, textiles, etc.) as a 

catalyst, a pigment for paints, for gold mining, as well as a fungicide and antibacterial agent in seeds and 

bulbs. Elemental mercury, Hg (0), can be a problem because it is oxidized to Hg2+ by biological systems and 

subsequently is leached into wetlands, waterways, and estuaries. Additionally, mercury can accumulate in 

animals as methyl mercury (CH3-Hg+), dimethylmercury (CH3)2-Hg) or other organomercury salts. Organic 

mercury, produced by some anaerobic bacteria, is 1-2 orders of magnitude more toxic in some eukaryotes, is 

more likely to biomagnify than ionic mercury, and efficiently permeates biological membranes. 

Monomethyl-Hg is responsible for severe neurological degeneration in birds, cats, and humans. 

Certain bacteria are capable of pumping metals out of their cell, and or oxidizing, reducing, or modifying 

the metal ions to less toxic species. One example is the mer operon. The mer operon contains genes that 

sense mercury (merB), transport mercury (merT), sequester mercury to the periplasmic space (merP), and 
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reduce mercury (merA).  MerB is a subset of the mer operon and is capable of catalyzing the breakdown of 

various forms of organic mercury to Hg2+. MerB encodes an enzyme, organomercurial lyase, that catalyses 

the protonolysis of the carbon-mercury bond. One of the products of this reaction is ionic mercury[5,6,7] : 

Hg` 2+. R-CH2-Hg+  ----merB---->R-CH3 + Hg(II) 

Hg(II) + NADPH  ----merA---->Hg(0) + NADP+ + H+ 

Hg (0) (elemental mercury) can be volatilized by the cell 

1.3. Chelator enhanced phytoremediation technology 

1. Use of soil amendments such as synthetics (ammonium thiocyanate) and natural zeolites have yielded 

promising results[8,9.10]. EDTA, NTA, citrate, oxalate, malate, succinate, tartrate, phthalate, salicylate 

and acetate etc. have been used as chelators for rapid mobility and uptake of metals from contaminated 

soils by plants. Use of synthetic chelators significantly increased Pb and Cd uptake and translocation 

from roots to shoots facilitating phytoextraction of the metals from low grade ores. Synthetic cross-

linked polyacrylates, hydrogels have protected plant roots from heavy metals toxicity and prevented the 

entry of toxic metals into roots. Application of low cost the synthetics and natural zeolites on large scale 

are applied to the soil through irrigation at specific stages of plant growth which might be beneficial to 

accelerate metal acumulation [11]. 

 

2. A major factor influencing the efficiency of phytoextraction is the ability of plants to absorb large 

quantities of metal in a short period of time. Hyperaccumulators accumulate appreciable quantities of 

metal in their tissue regardless of the concentration of metal in the soil[12] , as long as the metal in 

question is present. This property is unlike moderate accumulators now being used for phytoextraction 

where the quantity of absorbed metal is a reflection of the concentration in the soil. Although the total 

soil metal content may be high, it is the fraction that is readily available in the soil solution that 

determines the efficiency of metal absorption by plant roots.  

 

3. To enhance the speed and quantity of metal removal by plants, some researchers advocate the use of 

various chemicals for increasing the quantity of available metal for plant uptake. Chemicals that are 

suggested for this purpose include various acidifying agents [13,14,15,16,17,18], fertilizer salts[19] and 

chelating materials [20]. These chemicals increase the amount of bioavailable metal in the soil solution 

by either liberating or displacing metal from the solid phase of the soil or by making precipitated metal 

species more soluble. Research in this area has been moderately successful, but the wisdom of liberating 

large quantities of toxic metal into soil water is questionable. 

 

4. Soil pH is a major factor influencing the availability of elements in the soil for plant uptake . Under 

acidic conditions, H+ions displace metal cations from the cation exchange complex (CEC) of soil 

components and cause metals to be released from sesquioxides and variable-charged clays to which they 

have been chemisorbed (i.e. specific adsorption. The retention of metals to soil organic matter is also 

weaker at low pH, resulting in more available metal in the soil solution for root absorption. Many metal 

cations are more soluble and available in the soil solution at low pH (below 5.5) including Cd, Cu, Hg, 

Ni, Pb, and Zn [16] . It is suggested that the phytoextraction process is enhanced when metal availability 

to plant roots is facilitated through the addition of acidifying agents to the soil [13,16]. Possible 

amendments for acidification include NH4-containing fertilizers, organic and inorganic acids, and 

elemental  indicated that plant roots acidify hydroponic solutions in response to NH4nutrition and cause 

solutions to become more alkaline in response to NO3nutrition. Metal availability in the soil can be 

manipulated by the proper ratio of NO3to NH4used for plant fertilization by the effect of these N sources 

on soil pH, but not much of phytoremediation research has been conducted on this topic to date. The 

acidification of soil with elemental S is a common agronomic practice, which can be used to mobilize 

metal cations in soil[13], acidified a Cd- and Zn-contaminated soil with elemental S and observed that 

accumulation of these metals by plants was greater than when the amendment was not used. Acidifying 

agents are also used to increase the availability of radioactive elements in the soil for plant 
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uptake. Huang et al. 1998[15]reported that the addition of citric acid increases  uranium(U 

)accumulation in Indian mustard (B. juncea) tissues more than  nitric or sulfuric acid although all acids 

decrease soil pH by the same amount . These authors speculated that citric acid chelates the soil U, 

thereby enhancing its solubility and availability in the soil solution. The addition of citric acid causes a 

1000-fold increase of U in the shoots of B. juncea compared to accumulation in the control (no citric 

acid addition). Despite the promise of some acidifying agents for use in phytoextraction, little research is 

reported on this subject. 

 

5. The addition of chelating materials to soil, such as EDTA, HEDTA, and EDDHA, is the most effective 

and controversial means of liberating labile metal-contaminants into the soil solution. Chelates complex 

the free metal ion in solution, allowing further dissolution of the sorbed or precipitated phases until an 

equilibrium is reached between the complexed metal, free metal, and insoluble metal fraction . Chelates 

are used to enhance the phytoextraction of a number of metal contaminants including Cd, Cu, Ni, Pb, 

and Zn [20,21,22]. Huang et al. 1997a[21] suggested that chelates are able to induce Pb accumulation in 

agronomic crops such as corn (Zea mays L.) and pea (Pisum sativumL.). This chelate-assisted 

accumulation of toxic quantities of metal in a non-accumulator species is termed "chelate-induced 

hyperaccumulation" [21]. These researchers explained that when chelate-induced hyperaccumulation is 

the goal, metals on site are initially immobilized to allow for rapid establishment and growth of an 

agronomic crop such as corn. When the crop accumulates sufficient biomass, chelating materials are 

applied to the soil to result in the liberation of large quantities of metal into the soil solution. Massive 

amounts of metal are absorbed by plant roots and are translocated to the shoot tissue where they 

accumulate to toxic levels.  

 

After death, plants are harvested and removed from the site. Chelate-induced hyperaccumulation is in 

contrast to the normal practice of phytoextraction where plants are given a gradual exposure to non-toxic 

quantities of metal in solution, and accumulation occurs gradually over time as the plants grow. The 

controversy surrounding the use of chelates deals with the fate of the residual chelate in the soil after metal 

absorption occurs [23]. The massive liberation of chelate-bound metals into the soil solution makes them 

subject to leaching into deeper soil layers. Metals which migrate downward beyond the root zone of plants 

cannot be recovered through means of phytoremediation and may require the use of more expensive 

conventional remediation methods. The primary concern is that the liberated metals have the ability to 

migrate into uncontaminated areas, possibly groundwater reservoirs [24]. The scientific literature lacks 

appreciable information concerning the appropriate amount of chelate to apply under different levels of 

contamination and for different plant species. Further research is required to determine the fate of the 

chelate-metal complex in soil before the use of these amendments are accepted widely for use in 

phytoextraction. Some positively charged metals and radionuclides may be bound to the soil CEC by weak 

electrostatic forces and may be displaced by other cations in the soil solution. 

As a plant- based technology, the success of phytoextraction is inherently dependent upon proper plant 

selection. As previously discussed, plants used for phytoextraction must be fast growing and have the ability 

to accumulate large quantities of environmentally important metal contaminants in their shoot 

tissue[25,14,20,26] . Many plant species have been screened to determine their usefulness for 

phytoextraction. Researchers initially applied hyperaccumulators to clean metal polluted soils[27] . At 

present, there are nearly 400 known hyperaccumulators[28] , but most are not appropriate for 

phytoextraction because of their slow growth and small size. Several researchers have screened fast-

growing, high- biomass accumulating plants, including agronomic crops, for their ability to tolerate and 

accumulate metals in their shoots[29,2511,21,22,19] . One of the most promising, and perhaps most studied, 

non- hyperaccumulator plant for the extraction of heavy metals from contaminated sites is Indian Mustard 

(B. juncea). Many hyperaccumulators belong to the Brassica family.  

Once it was suspected that known hyperaccumulators were not suited for phytoextraction, researchers 

looked to other high biomass- accumulating members of the Brassicaceae for plants which accumulated 

large quantities of toxic metals[29,25] . Kumar et al. 1995a[25] tested many fast growing Brassicas for their 

ability to tolerate and accumulate metals, including Indian mustard (B. juncea), black mustard (Brassica 

nigra Koch), turnip (Brassica campestris L.), rape (Brassica napus L.), and kale (Brassica oleracea L). 
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Although all Brassicas accumulated metal, B. juncea showed a strong ability to accumulate and translocate 

Cu, Cr VI, Cd, Ni, Pb, and Zn to the shoots. Kumar et al. 1995a[25] also investigated possible genetic 

variation of different B. juncea accessions in hope of finding some that had more phytoextraction potential 

than others. The term, accession, refers to seeds that have been gathered from a particular area and are now 

part of a collection at a seed bank or plant- introduction laboratory/institute. Once in the collection, seeds 

are assigned a number that identifies the particular accession. Although all Indian mustard accessions are B. 

juncea Czern., they may exhibit different phenotypes as a result of being from different regions where 

environmental factors may have influenced the natural selection of this species.  

According to Prakash, 1980[30], the oldest reference to B. juncea in Sanskrit literature is by the name 

`Rajika', and carbonized seeds of this species have been found in the ancient sites of the Harappan 

civilization (2300-1750 B.C)[31,32,33]. Zaurov et al.1999(34)reported that biomass accumulation of B. 

juncea was greatest when plants in soil are supplied with 200 kg N, 100 kg P 2O5, and 66 kg K2 O per 

hectare. However, Cd concentration in the tissue was greatest when no N was supplied. Indian mustard is 

given considerable attention by present day researchers, geneticists, and plant breeders in particular, because 

of its unique polyploid genome. Several accessions of B. junceahave been identified as moderate 

accumulators of metallic elements . The benefit of using B. juncea seed from the plant introduction station is 

that the genetic integrity of the accessions is preserved through appropriate breeding techniques. 

Experiments that utilize these seeds have more precision than those conducted with seeds from 

commercially available sources. Precision is also greater, because future researchers can obtain the same 

accessions for their experiments. The USDA-ARS Plant Introduction Station maintains a world-wide 

collection of B. juncea accessions that are known metal-accumulators, and the seeds are distributed to public 

and private research institutions at no cost.  

1.4. Increasing the bioavailability of heavy metals 

 

One of the most critical points in phytoremediation is the phytoavailability of heavy metals in the soil[35] . 

Based on the uptake by plants, heavy metals in soil could be classified into three groups which include 

“available” fractions (easily absorbable forms including free ions and chelating ions), “exchangeable” 

fractions (bound to organic matter, carbonates or Fe-Mn oxides), and “unavailable” fractions (residual forms 

which are most difficult to be absorbed [36,37]. Nevertheless, several methods are employed to increase the 

bioavailability of heavy metals such as decreasing the pH by adding sulphuric acid or organic fertilizers 

[38,39] or by using chelating agents. SappinDider et al.,(2005)[40] showed the increase in the accumulation 

of Cd in transgenic tobacco as pH decreased, whereas Singer et al., (2007)[41] proved an increase in the Ni 

concentrations of Alyssum lesbiacum which was paralleled with the increase in pH. The latter case showed 

different situations on the accumulation of metal. 

 

Synthetic chelating agents are shown to have the potential to increase the bioavailability of unavailable and 

exchangeable heavy metal fractions [42]. The use of non-biodegradable or the least biodegradable chelating 

agents, such as EDTA,(Ethylene diamine tetra acetic acid) can leach metals into the ground water [43] and 

create a new source of pollution by this residual chelating reagent[36]. 

 

 1.5. Alteration in biomass: 

 

Biomass of known hyperaccumulators can be altered by the introduction of genes which effect phytochrome 

synthesis resulting in enhanced biomass. Recently, biosynthetic pathways have been elucidated for most of 

the plant hormone classes and genes encoding many of the enzymes have been cloned. These advances offer 

new opportunities to manipulate hormone content and regulate their biosynthesis [44]. Increased 

gibberellins biosynthesis in transgenic trees were shown to promote growth and biomass production[45] . 

Appropriate application of fertilizers (N,P,K) and irrigation also have beneficial effects [36]; for instance, 

Jankong et al., (2007)[46] found an increase in the biomass and accumulation of arsenic in silverback ferns 

(Pityrogramma calomelanos) after application with phosphorous. Meanwhile, Barrutia et al.,(2009)[47] 

observed an increase in the mean plant biomass and tolerance when treated with fertilizers in Pb, Cd and Zn 

contaminated soils. Nitrate fertilizers could also be used to enhance the biomass of shoot and stimulate the 

accumulation of Zn. In spite of the presence of positive effect of fertilizers on metal accumulation, Marques 
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et al (2008a)[48] showed a reduction in the accumulation of Zn in Solanum nigrum when the contaminated 

soil is amended with manure. However, in spite of these few controversial reports, little work has been 

carried out in this area for improving the biomass of plants for phytoremediation  

 

1.6. Genetically engineered approaches 

 

Higher efficiency in the remediation by plants is achieved mostly by an increase in the tolerance and/or 

accumulation capacity of transgenic plants (see review[49] . Hseih et al.,2009[50] found an increase in 

mercury accumulation and tolerance of Arabidopsis thaliana when mercuric ion binding protein (Mer P) 

originated from transposon TnMER1 of TnMERI1 Bacillus megaterium strain MB1, was expressed in the 

transgenic plants. Genetically modified plants usually contain some beneficial enzymes like ACC(1-

aminocyclopropane-1-carboxylic acid) deaminase[51]  and γ-glutamylcysteine synthetase [52], which in 

turn improve the tolerance of plants to stress and increase the ratio between plant growth and shoot/root. 

Grichko et al (2000)[53] has reported overexpression of ACC deaminase may lead to enhanced 

accumulation of variety of metals. Similarily, overexpression of glutathione S transferase and peroxidase 

leads to enhanced aluminium tolerance [54]. Transgenic plants with selected genes have also been shown to 

express higher abilities to biodegrade organic contaminants in their tissues [55]. 

 

Tolerance of plants to heavy metals could be attained in three ways: pumping out of heavy metals at the 

plasma membrane; thorough chelating of heavy metals and binding the heavy metals to various thiol 

compounds in the cytosol; and sequestering them into vacuoles. 

  

Genetic manipulation of  genes involved in phytochelatin synthesis has contributed to higher tolerance and 

accumulation of heavy metals in various plants, this includes  Genes such as γ-glutamyl cysteine synthetase, 

glutathione synthetase, cystothionine synthetase, ATP sulfurylase, serine acety-l transferase, glutathione 

reductase, and phytochelatin synthase. Recent studies have documented the role of glyoxylase pathway in 

heavy metal stress tolerance by maintaining glutathione redox ratio. Singla – Pareekh et al 2006[56] has also 

reported the suitability of  engineering (manipulation of glyoxylate pathway) strategy for improved metal 

tolerance in transgenic tobacco[57].  

 

1.7. Multi functional approaches: 

 

As each described method has its own advantages and disadvantages, new approaches have been focusing 

on multi functional improvement methods. Lin et al., (2009)[58] found a better efficiency of the low dose 

EDTA with a medium soil nutrient level on the accumulation of lead in sunflower. In the same 

way,Vaxevanidou et al. (2008)[59] showed approximately10% increase in the extraction of lead with 

bacteria and EDTA as compared to the amendment of EDTA alone. Similarly Di Gregorio et al., 2006[60], 

showed a 56% increase in the efficiency of EDTA-led phytoextraction by B.juncea, along with application 

of triton X 100 Sinorhizobium inoculums. Multifunctional proceeses such as volatilization, photooxidation 

and microbial remediation are currently in use for the removal of organic contaminants. 
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