On Strongly sgα-Irresolute Functions in Topological Spaces

A. DEVIKA Associate Professor, P.S.G. College of Arts and Science, Coimbatore, India. S. SATHYAPRIYA Assistant Professor, Sri Krishna College of Arts and Science, Coimbatore, India.

Abstract:

In this paper, we introduce and investigate the notion of strongly sga -irresolute functions. We obtain fundamental properties and characterization of strongly sga -irresolute functions and discuss the relationships between strongly sga -irresolute functions and other related functions .

Keywords: strongly sga -irresolute, strongly α -irresolute, strongly β - sga irresolute.

Mathematics Subject Classification: 54C05,54C08,54C10.

1.Introduction

N. Levine [16] introduced generalized closed sets (briefly g-closed set) in 1970. N. Levine [15] introduced the concepts of semi-open sets in 1963. Bhattacharya and Lahiri [6] introduced and investigated semi-generalized closed (briefly sg- closed) sets in 1987. Arya and Nour [3] defined generalized semi-closed (briefly gs-closed) sets for obtaining some characterization of s-normal spaces in 1990. O.Njastad in 1965 defined α -open sets [23].

In 1996, Dontchev [12] introduced a new class of functions called contra- continuous functions. A new weaker form of this class of functions called contra semi-continuous function is introduced and investigated by Dontchev and Noiri [13].

In this paper, the notion of sg α -closed sets [8] and contra sg α - continuous Space[9] and characterization of contra sg α -continuous functions in topological spaces [10] is applied to introduce and study a new class of functions called on strongly sg α -Irresolute functions in topological spaces, as a new generalization of strongly α -irresolute functions and strongly β - sg α -irresolute functions, to obtain some of their characterizations and properties. Also the relationships with some other functions are discussed.

2. PRELIMINARIES

Throught this paper (X, τ) , (Y, σ) and (Z, η) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by cl (A) and int (A) respectively. (X, τ) will be replaced by X if there is no chance of confusion. Let us recall the following definitions as pre requests.

A subset A of a topological space X is said to be open if $A \in \tau$. A subset A of a topological space X is said to be closed if the set X–A is open. The interior of a subset A of a topological space X is defined as the union of all open sets contained in A. It is denoted by int(A). The closure of a subset A of a topological space X is defined as the intersection of all closed sets containing A. It is denoted by cl(A).

Definitions 2.1: A subset A of a space (X, τ) is said to be 1. semi open [15] if A \subseteq cl (int (A)) and semi closed if int (cl (A)) \subseteq A.

2. α -open [23] if A \subseteq int (cl (int(A))) and α -closed if cl (int (cl (A))) \subseteq A.

3. β -open or semi pre-open [1] if A \subseteq cl (int (cl (A))) and β -closed or semi pre-closed if int (cl (int (A))) \subseteq A. 4. pre-open [11] if A \subseteq int (cl (A)) and pre-closed if cl (int (A)) \subseteq A.

The complement of a semi-open (resp.pre-open, α -open, β -open) set is called semi-closed (resp.pre-closed, α -closed, β -closed). The intersec- tion of all semi-closed (resp.pre-closed, α -closed, β -closed) sets **IJCRT1892773** International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 596

www.ijcrt.org

© 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

containing A is called the semi-closure (resp.pre-closure, α -closure, β -closure) of A and is denoted by scl(A)(resp. pcl(A), α -cl(A), β -cl(A)). The union of all semi-open (resp.pre-open, α -open, β -open) sets contained in A is called the semi-interior(resp.pre-interior, α -interior, β -interior) of A and is de- noted by sint(A)(resp. pint(A), α -int(A), β -int(A)). The family of all semi- open (resp.pre-open, α -open, β -open) sets is denoted by SO(X)(resp. P O(X), $\alpha - O(X)$, $\beta - O(X)$). The family of all semi-closed (resp.pre-closed, α -closed, β -closed) sets is denoted by SCl(X) (resp. P Cl(X), α -Cl(X), β -Cl(X)).

Definitions 2.2: A subset A of a space (X, τ) is called

1. g-closed[16] if cl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ). The complement of a g-closed set is called g-open set.

- 2. gs-closed set[7] if scl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ).
- 3. sg-closed set[6] if scl (A) \subseteq U, whenever A \subseteq U and U is semi-open in (X, τ).
- 4. 4. α g-closed[17] if α (cl (A)) \subseteq U, whenever A \subseteq U and U is open in (X, τ).
- 5. ga-closed [18] if α (cl (A)) \subseteq U, whenever A \subseteq U and U is α -open in (X, τ).
- 6. gp-closed [19] if pcl (A) \subseteq U, whenever A \subseteq U and U is open in (X, τ).

Definition 2.3: Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is said to be

- 1. continuous [14] if for each open set V of Y the set $f^{-1}(V)$ is an open subset of X.
- 2. α -continuous [23] if $f^{-1}(V)$ is a α -closed set of (X, τ) for every closed set V of (Y, σ) .
- 3. β -continuous [1] if $f^{-1}(V)$ is a β -closed set of (X, τ) for every closed set V of (Y, σ) .
- 4. pre-continuous [21] if $f^{-1}(V)$ is a pre-closed set of (X, τ) for every closed set V of (Y, σ) .
- 5. semi-continuous [15] if $f^{-1}(V)$ is a semi-closed set of (X, τ) for every closed set V of (Y, σ) .

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1. g-continuous [16] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 2. gs-continuous[7] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .
- 3. sg-continuous [6] if $f^{-1}(V)$ is a sg-closed set of (X, τ) for every closed set V of (Y, σ) .
- 4. α g-continuous [17] if f⁻¹(V) is a α g-closed set of (X, τ) for every closed set V of (Y, σ).
- 5. ga-continuous [18] if $f^{-1}(V)$ is a ga-closed set of (X, τ) for every closed set V of (Y, σ) .
- 6. gp-continuous [19] if $f^{-1}(V)$ is a gp-closed set of (X, τ) for every closed set V of (Y, σ) .

Definitions 2.5[22]: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be almost continuous if for every open set V of Y, f⁻¹(V)is regular open in X.

Definitions 2.6[8]: A subset A of space (X, τ) is called sg α -closed if scl $(A) \subseteq U$, whenever $A \subseteq U$ and U is α -open in X. The family of all sg α -closed subsets of the space X is denoted by SG α C (X).

Definitions 2.7[8]: The intersection of all sga-closed sets containing a set A is called sga-closure of A and is denoted by sga-cl(A). A set A is sga-closed set if and only if sga C l (A) = A.

Definitions 2.8[8]: A subset A in X is called sga-open in X if A^c is sga-closed in X. The family of a sga-open sets is denoted by SGaO(X).

Definitions 2.9[8]: The union of all sg α -open sets containing a set A is called sg α -interior of A and is denoted by sg α -I nt(A). A set A is sg α -open set if and only if sg α I nt (A) = A.

Definition 2.10[9]: A function $f : (X, \tau) \to (Y, \sigma)$ is called sga-continuous if $f^{-1}(V)$ is sga-closed in (X, τ) for every closed set V of (Y, σ) .

Definition 2.11[9]: A function f: $X \to Y$ is said to be Contra sga-Continuous if f⁻¹ (V) is sga-closed in X for each open set V of Y.

Definition 2.12[9]: A space X is called locally sga-indiscrete if every sga-open set is closed in X.

Definition 2.13 [9]: If a function $f : X \to Y$ is called almost sga-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in SGaO(X, x)$ such that $f(U) \subset I$ nt (cl (V)).

Definition 2.14[9]: If a function $f: X \to Y$ is called quasi sga-open if image of every sga-open set of X is open set in Y.

Definition 2.15[9]: If a function $f : X \to Y$ is called weakly sga-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in SGaO(X, x)$ such that $f(U) \subset scl(V)$.

Definition 2.16 [9]: Let A be a subset of X. Then $sg\alpha$ -C l (A)- $sg\alpha$ -I nt (A) is called $sg\alpha$ -frontier of A and is denoted by $sg\alpha$ -F r (A).

Definition 2.17 [10]: A subset A of a topological space X is said to be sgα-dense in X if sga - Cl(A) = X.

Definition 2.18 [10]: A space X is called sga-connected provided that X is not the union of two disjoint non-empty sga-open sets.

Definition 2.19 [10]: A subset A of a space (x, τ) is said to be sga-clopen if A is both sga-open and sgaclosed.

Definition 2.20 [10]: A topological space X is said to be sg α -T1-space if for any pair of disjoint points x and y, there exist disjoint sg α -open sets G and H such that $x \in G$ and $y \in H$.

Definition 2.21 [10]: A topological space X is said to be sg α -T2-space if for any pair of disjoint points x and y, there exist disjoint sg α -open sets G and H such that $x \in G$ and $y \in H$.

Definition 2.22 [10]: A space (X, τ) is called sg α -T 1/2 space if every sg α -closed set is semi-closed. The notion of sg α -T 1/2-spaces and T 1/2 spaces are independent of each other.

Definition 2.23 [10]: A topological space X is said to be $sg\alpha$ -Normal if each pair of disjoint closed sets can be separated by disjoint $sg\alpha$ -open sets.

Definition 2.24 [10]: A function f: $X \to Y$ is said to be strongly sga-open (resp. strongly sga-closed) if image of every sga-open(resp.sga-closed) set of X is sga-open (resp.sga-closed) set in Y.

Definition 2.25 [10]: A space X is said to be

1. SGα-closed compact if every sgα-closed cover of X has a finite subcover.

- 2. Countably SG α -closed compact if every countable cover of X by sg α closed sets has a finite subcover.
- 3. SGa-Lindeloff if every sga-closed cover of X has countable subcover.

3. Strongly sgα -irresolute functions.

Definition:3.1

A function f: $X \rightarrow Y$ is said to be strongly sga -irresolute if $f^{-1}(V)$ is open in X for every sga -open set V of Y.

Definition:3.2

A function f: $X \rightarrow Y$ is said to be strongly α - irresolute if $f^{-1}(V)$ is open in X for every α - open set V of Y.

Theorem:3.3

If f: $X \rightarrow Y$ is a strongly sg α -irresolute, then f is strongly α -irresolute.

Proof:Let V be α - open set in Y and hence V is sg α -open in Y. Since f is strongly sg α -irresolute, then f⁻¹(V) is open in X. Therefore f⁻¹(V) is open in X for every α - open set V in Y. Hence f is strongly α -irresolute.

Theorem:3.4

If f: X \rightarrow Y is a continuous and Y is a sg α -T_{1/2}-space , then f is strongly sg α -irresolute.

Proof:Let V be sga -open in Y. Since Y is sga $-T_{1/2}$ -space, V is a-open in Y and hence open in Y. Since f is continuous, $f^{-1}(V)$ is open in X. Thus, $f^{-1}(V)$ is open in X for every sga -open set V in Y. Hence f is strongly sga - irresolute.

Theorem:3.5

If f: $X \rightarrow Y$ is a sg α -irresolute, X is a sg α -T_{1/2}-space , then f is strongly sg α -irresolute.

Proof:Let V be sga -open in Y. Since f is sga -irresolute, $f^{-1}(V)$ is sga -open in X. Since X is a sga $-T_{1/2}$ -space, $f^{-1}(V)$ is α - open in X and hence open in X. Thus, $f^{-1}(V)$ is open in X for every sga -open set V in Y. Hence f is strongly sga - irresolute.

Theorem:3.6

Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any functions. Then

- (i) g o f: $X \rightarrow Z$ is sga -irresolute if f is sga -continuous and g is strongly sga -irresolute.
- (ii) g o f: $X \rightarrow Z$ is strongly sga -irresolute if f is strongly sga -irresolute and g is sga -irresolute.

Proof:

(i)Let V be a sga -open set in Z. Since g is strongly sga -irresolute, $g^{-1}(V)$ is open in Y. Since f is sga - continuous, $f^{-1}(g^{-1}(V))$ is sga -open in X.

 $\Rightarrow (g \circ f)^{-1}(V) \text{ is sga -open in } X \text{ for every sga -open set } V \text{ in } Z.$

 \Rightarrow (g o f) is sg α -irresolute.

(ii) Let V be a sga -open set in Z. Since g is sga -irresolute, $g^{-1}(V)$ is sga -open in Y. Since f is strongly sga - irresolute, $f^{-1}(g^{-1}(V))$ is open in X.

 \Rightarrow (g o f)⁻¹(V) is open in X for every sga -open set V in Z.

 \Rightarrow (g o f) is strongly sga -irresolute.

Theorem:3.7

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly $sg\alpha$ -irresolute.
- (ii) For each $x \in X$ and each $sg\alpha$ -open set V of Y containing f(x), there exists an open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{-1}(V) \subset int (f^{-1}(V))$ for each sga -open set V of Y.
- (iv) $f^{-1}(F)$ is closed in X for every sga -closed set F of Y.

Proof: (i)⇒(ii):

Let $x \in X$ and V be a sg α -open set in Y containing f(x). By hypothesis, $f^{-1}(V)$ is open in X and contains x.

Set $U=f^{-1}(V)$. Then U is open in X and $f(U) \subset V$.

(ii)⇒(iii):

Let V be a sg α -open set in Y and x \in f⁻¹(V).

By assumption, there exists an open set U in X containing x , such that $f(U) \subset V$.

Then $x \in U \subset int(U)$

 $(iii) \Rightarrow (iv):$

Let F be a sg α -closed set in Y. Set V= Y – F. Then V is sg α -open in Y.

,C'

By (iii), $f^{-1}(V) \subset int(f^{-1}(V))$.

Hence $f^{-1}(F)$ is closed in X.

 $(iv) \Longrightarrow (i):$

Let V be sga -open set in Y. Let F = Y - V. That is F is sga -closed set in Y. Then $f^{-1}(F)$ is closed in X,(by (iv)). Then $f^{-1}(V)$ is open in X. Hence f is strongly sga -irresolute.

Theorem:3.8

A function f: $X \rightarrow Y$ is strongly sga -irresolute if A is open in X, then f/A: $A \rightarrow Y$ is strongly sga -irresolute.

Proof:Let V be a sg α -open set in Y. By hypothesis, $f^{-1}(V)$ is open in X. But $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is open in A and hence f/A is strongly sg α -irresolute.

Theorem:3.9

Let f: $X \to Y$ be a function and $\{A_i: i \in \Lambda\}$ be a cover of X by open sets of (X,τ) . Then f is strongly $sg\alpha$ - irresolute if $f/A_i: (A_i, \tau/A_i) \to (Y, \sigma)$ is strongly $sg\alpha$ -irresolute for each $i \in \Lambda$.

Proof:Let V be a sg α -open set in Y. By hypothesis, $(f/A_i)^{-1}(V)$ is open in A_i . Since A_i is open in X, $(f/A_i)^{-1}(V)$ is open in X for every $i \in \Lambda$.

 $f^{-1}(V) = X \cap f^{-1}(V)$ $= \bigcup \{A_i \cap f^{-1}(V): i \in \Lambda \}$

= $U\{(f/A_i)^{-1}(V): i \in \Lambda\}$ is open in X.

Hence f is strongly sga -irresolute.

Theorem:3.10

Let f: $X \rightarrow Y$ be a strongly sga -irresolute surjective function. If X is compact, then Y is SGaO-compact.

Proof:Let $\{A_i: i \in \Lambda\}$ be a cover of sg α -open sets of Y. Since f is strongly sg α -irresolute and X is compact, we get $X \subset \bigcup \{f^{-1}(A_i): i \in \Lambda\}$. Since f is surjective, $Y = f(X) \subset \bigcup \{A_i: i \in \Lambda\}$. Hence Y is SG α O-compact.

Theorem:3.11

If $f:X \to Y$ is strongly sga -irresolute and a subset B of X is compact relative to X, then f(B) is SGaO-compact relative to Y.

Proof: Obvious.

Definition: 3.12

A function f: $X \rightarrow Y$ is said to be

(i) a strongly α - sg α -irresolute function if $f^{-1}(V)$ is α - open in X for every sg α -open set V in Y. (ii) a strongly β -sg α -irresolute function if $f^{-1}(V)$ is β -open in X for every sg α -open set V in Y.

Theorem:3.13

- (i) If f: $X \rightarrow Y$ is strongly α sg α -irresolute , then f is strongly sg α -irresolute.
- (ii) If f: $X \rightarrow Y$ is strongly α -sg α -irresolute, then f is strongly β -sg α -irresolute.

Proof: (i)Let f be a strongly α - sg α -irresolute function and let V be a sg α -open set in Y. Then f⁻¹(V) is α - open in X and hence open in X.

 \Rightarrow f⁻¹(V) is open in X for every sga -open set V in Y.

Hence f is strongly α - sg α -irresolute.

(ii) Let f be a strongly α - sg α -irresolute function and let V be a sg α -open set in Y. Then

 $f^{-1}(V)$ is α -open in X and hence open in X.

⇒ $f^{-1}(V)$ is open in X for every sgα -open set V in Y. ⇒ $f^{-1}(V)$ is β-open in X for every sgα -open set V in Y.

Hence f is strongly β - sg α -irresolute.

Remark: 3.14

Converse of the above need not be true as seen in the following examples.

Example: 3.15

(i)Let $X = Y = \{a,b,c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}\} \text{ and } \sigma = \{\phi, Y, \{a\}, \{b\}, \{a,b\}\}.$

Let $f:X \rightarrow Y$ be an identity map. Here for every sga -open set V in Y, $f^{-1}(V)$ is open and β -open in X. Hence f is strongly sga -irresolute and strongly β -sga -irresolute.

But for every sga -open set V in Y, $f^{-1}(V)$ is not α - open in X. Thus, f is not strongly α -sga -irresolute . Hence strongly sga -irresolute function need not be strongly α - sga -irresolute function and strongly β -sga - irresolute function .

Theorem:3.16

If f:X \rightarrow Y and g:Y \rightarrow Z, then g o f: X \rightarrow Z is

- (i) strongly sg α -irresolute if f is strongly α sg α -irresolute and g is sg α -irresolute.
- (ii) strongly β -sga –irresolute if f is strongly sga irresolute and g is sga -irresolute.

Proof:Let V be an sg α -open set in Z. Since g is sg α -irresolute, $g^{-1}(V)$ is sg α -open in Y. Since f is strongly α - sg α -irresolute , $f^{-1}(g^{-1}(V))$ is α - open in X.

 \Rightarrow (g o f)⁻¹(V) is regular open in X and hence open in X.

Hence (g o f) is strongly sga -irresolute.

(i) Let V be an sga -open set in Z. Since g is sga -irresolute, $g^{-1}(V)$ is sga -open in Y. Since f is strongly sga -irresolute, $f^{-1}(g^{-1}(V))$ is open in X and hence β -open in X.

 \Rightarrow (g o f)⁻¹(V) is β - open in X for every sga –open set V in Z.

JCR

Hence (g o f) is strongly β - sg α -irresolute.

Theorem:3.17

If f:X \rightarrow Y and g:Y \rightarrow Z, then g o f: X \rightarrow Z is

- (i) strongly α sg α -irresolute if f is regular irresolute and g is strongly α sg α -irresolute.
- (ii) strongly α sg α -irresolute if f is α continuous and g is strongly sg α -irresolute.
- (iii) strongly β sga -irresolute if f is continuous and g is strongly sga -irresolute.

Proof:Let V be a sga -open set in Z. Since g is strongly α - sga -irresolute, $g^{-1}(V)$ is α - open in Y. Since f is α - irresolute, $f^{-1}(g^{-1}(V))$ is α - open in X.

 \Rightarrow (g o f)⁻¹(V) is α - open in X.

Hence (g o f) is strongly α -sg α -irresolute.

(i) Let V be an sg α -open set in Z. Since g is strongly sg α -irresolute, g⁻¹(V) is open in Y. Since f is α - continuous, f⁻¹(g⁻¹(V)) is α -open in X.

 \Rightarrow (g o f)⁻¹(V) is α - open in X.

Hence (g o f) is strongly α - sg α -irresolute.

(ii) Let V be an sga -open set in Z. Since g is strongly sga -irresolute, $g^{-1}(V)$ is open in Y.

Since f is continuous, $f^{-1}(g^{-1}(V))$ is open in X.

 \Rightarrow (g o f)⁻¹(V) is open in X and hence β -open in X.

Hence (g o f) is strongly β -sg α -irresolute.

Theorem :3.18

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly α -sg α -irresolute.
- (ii) For each $x \in X$ and each sg α -open set V of Y containing f(x), there exists a α open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{-1}(V) \subset Cl(Int (f^{-1}(V)))$ for each sga -open set V of Y.
- (iv) $f^{-1}(F)$ is regular closed in X for every sga -closed set F of Y.

Proof: Similar to that of Theorem 3.7

Theorem:3.19

The following are equivalent for a function $f: X \rightarrow Y$:

- (i) f is strongly β sg α -irresolute.
- (ii) For each $x \in X$ and each sga -open set V of Y containing f(x), there exists a β open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{-1}(V) \subset Cl(Int (f^{-1}(V)))$ for each sg α -open set V of Y.
- (iv) $f^{-1}(F)$ is β -closed in X for every sga -closed set F of Y.

Proof: Similar to that of Theorem 3.7.

Lemma: 3.20

If f: $X \rightarrow Y$ is strongly α - sg α -irresolute and A is a α - open subset of X, then f/A : $A \rightarrow Y$ is strongly α - sg α - irresolute.

Proof:

Let V be a sg α -open in Y. By hypothesis, $f^{-1}(V)$ is α - open in X. But $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is regular open in A. Hence f/A is strongly α - sg α -irresolute.

Theorem:3.21

Let f: $X \rightarrow Y$ and $\{A_{\lambda}: \lambda \in \Lambda\}$ be a cover of X by α - open set of (X,τ) . Then f is a strongly α - sg α -irresolute function if $f/A_{\lambda}: A_{\lambda} \rightarrow Y$ is strongly α - sg α -irresolute for each $\lambda \in \Lambda$.

Proof:Let V be any sg α -open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is α - open in A_{λ} . Since A_{λ} is regular open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is sg α -open in X for each $\lambda \in \Lambda$.

 $f^{-1}(V) = X \cap f^{-1}(V)$ = $\bigcup \{A_{\lambda} \cap f^{-1}(V): \lambda \in \Lambda \}$ = $\bigcup \{(f/A_{\lambda})^{-1}(V): \lambda \in \Lambda \}$ is regular open in X.

Hence f is strongly α -sg α -irresolute.

Lemma:3.22

If f: $X \rightarrow Y$ is strongly β - sg α -irresolute and A is a α -open subset of X, then f/A : $A \rightarrow Y$ is strongly β - sg α - irresolute.

Proof:Let V be a sga -open in Y. By hypothesis, $f^{-1}(V)$ is β -open in X. But $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is β -open in A.Hence f/A is strongly β - sga -irresolute.

Theorem:3.23

Let f: X \rightarrow Y and {A_{λ}: $\lambda \in \Lambda$ } be a cover of X by β - open sets of (X, τ). Then f is a strongly β - sg α -irresolute function if f/A_{λ}: A_{λ} \rightarrow Y is strongly β - sg α -irresolute for each $\lambda \in \Lambda$.

Proof:Let V be any sg α -open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is β - open in A_{λ} . Since A_{λ} is β - open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is β -open in X for each $\lambda \in \Lambda$.

 $f^{-1}(V) = X \cap f^{-1}(V)$

 $= \bigcup \{ A_{\lambda} \cap f^{-1}(V) \colon \lambda \in \Lambda \}$

= \bigcup {(f/A_{λ})⁻¹(V): $\lambda \in \Lambda$ } is β - open in X.

Hence f is strongly β - sg α -irresolute.

Theorem:3.24

If a function f: $X \rightarrow Y$ is strongly β -sg α -irresolute, then f⁻¹(B) is β -closed in X for any nowhere dense set B of Y.

Proof: Let B be any nowhere dense subset of Y. Then Y–B is regular in Y and hence sg α -open in Y. By hypothesis, f⁻¹(Y–B) is β -open in X. Hence f⁻¹(B) is β -closed in X.

www.ijcrt.org REFERENCES

- ME. Abd. Monsef, S.N.EI. Deeb. R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assint.Univ 12(1983), 77-90.
- 2. D. Andrijevic, Semi-pre-open sets, Mat. Vesnik, 38(1986), 24-32.
- 3. S.P. Arya and T.M. Tour, Characterization of s-normal spaces, Indian J.Pure-Appl.Math,21(1990), 717-719.
- 4. K. Balachandran, P. Sundaram and H. Maki, On generalized con-tinuous maps in topological sets, Mem.Fac.Sci.Kochi.Univ.ser.A.Math, 12(1991), 5-13.
- 5. S.S. Benchalli, Umadevi. I. Nelli, Gurupad P. Siddapur, Contra gδs continuous functions in topological spaces, International Journal of Ap- plied Mathematics vol (25) no.4,(2012) 452-471.
- 6. P. Bhattachayya and B.K. Lahari, Semi-generalized closed sets in topology, Indian. J. Math., 29(3) (1987), 375-382.
- 7. P. Devi and K. Balachandran and H. Maki, Semi-generalized homeomorphism and generalized semi -homeomorphism in topological spaces, Indian.J.pure.Appl.Math.,26(3)(1995), 271-284.
- 8. A. Devika and S. Sathyapriya, sgα-closed sets in Topological Spaces, International Journal of Innovative Trends in Engineering vol(35)(2017),8-11.
- 9. A. Devika and S.Sathyapriya, Contra sgα-Continuous Func tion in Topological Spaces, International Journal of Mathematical Archive., 8(3)(2017),46-51
- 10. A. Devika and S.Sathyapriya, Characterization of Contra sgα-Continuous Func tion in Topological Spaces, International Journal of Mathematical Archive., 8(5)(2017),41-47.
- 11. J. Dontchev, On generalizing semi-pre open sets, Mem. Fac.Sci. Kochi.Univ.ser.A.Math, 16(1995), 35-48.
- 12. J. Dontchev,Contra continuous functions and strongly S-closed map-pings, Int.J.Math.Sci.19(1996), 303-310.
- 13. J. Dontchev, T. Noiri, Contra semi-continuous functions, Mathematica pannonica, 10 no(2)(1999), 159-168.
- 14. R. James Munkres, Topology, Pearson Education Inc., Prentice Hall (2013).
- 15. N. Levine, Semi-open sets and Semi-continuity in topological spaces, American Mathematical Monthly 70 (1963),36-41.
- 16. N. Levine, Generalized closed sets in topological spaces, Rend. Circ.Mat.Palermo, vol 19(2), (1970), 89-96.
- H. Maki, R. Deviand K. Balachandran, Generalized α-closed sets in topology, Bull.Fukuoka Univ, Ed. partIII., 42(1993),13-21.
- 18. H. Maki, R. Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem.Sci.Kochi Univ.sev.A.Math.,15(1994), 51-63.
- 19. H. Maki, J. Umehera and T. Noiri, Every Topological space is pre- T1/2, Mem. Fac.Sci. Kochi. Univ. ser.A.Math, 17(1996), 33-42.
- 20. A.S.Mashlour, I.A.Hasanein and S.N. EI.Deeb,α-continuous and α-open mappings, Acth. Math, Hung, 41, No-s 3-4, (1983), 213-218.
- 21. A.S. Mashlour, M.E. Abd. EI-Monsef, S.N. EI.Deeb, On pre-continuous and weak pre-continuous mappings, Proc.Math and phys.soc.Egypt,53, (1982), 47-53.
- 22. T. Noiri, On almost continuous functions, TInd.J. of pure and Appl. Maths., (20) (1989), 571-576.
- 23. O. Njastad, On Some classes of nearly open sets, Pa- cific. J. Math., 15(1965), 961-970.
- 24. M.H. Stone, Application of the theory of Boolean rings to general topol- ogy, Trans. Amer. Math. Soc., 41 (1937), 375-381.
- 25. R.Statum, The algebra of bounded continuous functions into a non- archimedean field, Pacific. J. Math., 50(1974), 169-185.