On Strongly $sg\alpha$-Irresolute Functions in Topological Spaces

A. DEVIKA
Associate Professor, P.S.G. College of Arts and Science, Coimbatore, India.

S. SATHYAPRIYA
Assistant Professor, Sri Krishna College of Arts and Science, Coimbatore, India.

Abstract:
In this paper, we introduce and investigate the notion of strongly $sg\alpha$-irresolute functions. We obtain fundamental properties and characterization of strongly $sg\alpha$-irresolute functions and discuss the relationships between strongly $sg\alpha$-irresolute functions and other related functions.

Keywords: strongly $sg\alpha$-irresolute, strongly α-irresolute, strongly β-$sg\alpha$ irresolute.

Mathematics Subject Classification: 54C05, 54C08, 54C10.

1. Introduction

In 1996, Dontchev [12] introduced a new class of functions called contra-continuous functions. A new weaker form of this class of functions called contra semi-continuous function is introduced and investigated by Dontchev and Noiri [13].

In this paper, the notion of $sg\alpha$-closed sets [8] and contra $sg\alpha$-continuous Space[9]and characterization of contra $sg\alpha$-continuous functions in topological spaces [10] is applied to introduce and study a new class of functions called on strongly $sg\alpha$-Irresolute functions in topological spaces, as a new generalization of strongly α-irresolute functions and strongly β-$sg\alpha$-irresolute functions, to obtain some of their characterizations and properties. Also the relationships with some other functions are discussed.

2. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by cl (A) and int (A) respectively. (X, τ) will be replaced by X if there is no chance of confusion. Let us recall the following definitions as pre requests.

A subset A of a topological space X is said to be
1. semi open [15] if $A \subseteq \text{cl} (\text{int} (A))$ and semi closed if $\text{int} (\text{cl} (A)) \subseteq A$.
2. α-open [23] if $A \subseteq \text{int} (\text{cl} (\text{int} (A)))$ and α-closed if $\text{cl} (\text{int} (\text{cl} (A))) \subseteq A$.
3. β-open or semi pre-open [1] if $A \subseteq \text{cl} (\text{int} (\text{cl} (A)))$ and β-closed or semi pre-closed if $\text{int} (\text{cl} (\text{int} (A))) \subseteq A$.
4. pre-open [11] if $A \subseteq \text{int} (\text{cl} (A))$ and pre-closed if $\text{cl} (\text{int} (A)) \subseteq A$.

The complement of a semi-open (resp.pre-open, α-open, β-open) set is called semi-closed (resp.pre-closed, α-closed, β-closed). The intersection of all semi-closed (resp.pre-closed, α-closed, β-closed) sets
Definitions 2.2: A subset A of a space (X, τ) is called
1. g-closed[16] if cl (A) ⊆ U, whenever A ⊆ U and U is open in (X, τ).
2. gs-closed set[7] if scl (A)⊆U, whenever A⊆U and U is open in (X, τ).
4. αg-closed[17] if α cl (A)⊆U, whenever A⊆U and U is open in (X, τ).
5. ga-closed[18] if α cl (A)⊆U, whenever A⊆U and U is α-open in (X, τ).
6. gp-closed[19] if pcl (A)⊆U, whenever A⊆U and U is open in (X, τ).

Definition 2.3: Let X and Y be topological spaces. A function f: X → Y is said to be

1. continuous [14] if for each open set V of Y the set f −1 (V) is an open subset of X .
2. α-continuous [23] if f −1(V) is a α-closed set of (X, τ) for every closed set V of (Y, σ).
3. β-continuous [1] if f −1(V) is a β-closed set of (X, τ) for every closed set V of (Y, σ).
4. pre-continuous [21] if f −1(V) is a pre-closed set of (X, τ) for every closed set V of (Y, σ).
5. semi-continuous [15] if f −1(V) is a semi-closed set of (X, τ) for every closed set V of (Y, σ).

Definition 2.4: A function f: (X, τ) → (Y, σ) is said to be

1. g-continuous [16] if f −1(V) is a g-closed set of (X, τ) for every closed set V of (Y, σ).
2. gs-continuous[7] if f −1(V) is a gs-closed set of (X, τ) for every closed set V of (Y, σ).
3. sg-continuous [6] if f −1(V) is a sg-closed set of (X, τ) for every closed set V of (Y, σ).
4. αg-continuous [17] if f −1(V) is a αg-closed set of (X, τ) for every closed set V of (Y, σ).
5. ga-continuous [18] if f −1(V) is a ga-closed set of (X, τ) for every closed set V of (Y, σ).
6. gp-continuous [19] if f −1(V) is a gp-closed set of (X, τ) for every closed set V of (Y, σ).

Definitions 2.5[22]: A function f: (X, τ) →(Y, σ) is said to be almost continuous if for every open set V of Y , f −1(V)is regular open in X.
Definitions 2.6[8]: A subset A of space (X, τ) is called sga-closed if scl (A) ⊆ U , whenever A⊆U and U is α-open in X . The family of all sga-closed subsets of the space X is denoted by SGaC (X).
Definitions 2.7[8]: The intersection of all sga-closed sets containing a set A is called sga-closure of A and is denoted by sga-cl(A). A set A is sga-closed set if and only if sga C l(A) = A.
Definitions 2.8[8]: A subset A in X is called sga-open in X if A c is sga-closed in X. The family of a sga-open sets is denoted by SGaO(X).
Definitions 2.9[8]: The union of all sg α-open sets containing a set A is called sga-interior of A and is denoted by sga-I nt(A), A set A is sga-open set if and only if sga I nt (A) = A.
Definition 2.10[9]: A function f :(X, τ)→(Y, σ) is called sga-continuous if f −1(V) is sga-closed in (X, τ) for every closed set V of (Y, σ).
Definition 2.11 [9]: A function \(f: X \to Y \) is said to be Contra s\(g \alpha \)-Continuous if \(f^{-1}(V) \) is s\(g \alpha \)-closed in \(X \) for each open set \(V \) of \(Y \).

Definition 2.12 [9]: A space \(X \) is called locally s\(g \alpha \)-indiscrete if every s\(g \alpha \)-open set is closed in \(X \).

Definition 2.13 [9]: If a function \(f: X \to Y \) is called almost s\(g \alpha \)-continuous if for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists \(U \in SG_{\alpha}(X, x) \) such that \(f(U) \subset \text{cl}(V) \).

Definition 2.14 [9]: If a function \(f: X \to Y \) is called quasi s\(g \alpha \)-open if image of every s\(g \alpha \)-open set of \(X \) is open set in \(Y \).

Definition 2.15 [9]: If a function \(f: X \to Y \) is called weakly s\(g \alpha \)-continuous if for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists \(U \in SG_{\alpha}(X, x) \) such that \(f(U) \subset \text{cl}(V) \).

Theorem 3.4 [9]: Let \(A \) be a subset of \(X \). Then s\(g \alpha \)-C \(l \) \((A)\)-s\(g \alpha \)-I \(nt \) \((A)\) is called s\(g \alpha \)-frontier of \(A \) and is denoted by s\(g \alpha \)-F \(r \) \((A)\).

Theorem 3.3 [10]: A subset \(A \) of a topological space \(X \) is said to be s\(g \alpha \)-dense in \(Y \) if s\(g \alpha \) \(− \) Cl \((A)\) = \(Y \).

Definition 2.16 [9]: Let \(X \) be a subset of \(X \). Then s\(g \alpha \)-C \(l \) \((A)\)-s\(g \alpha \)-I \(nt \) \((A)\) is called s\(g \alpha \)-connected provided that \(X \) is not the union of two disjoint non-empty s\(g \alpha \)-open sets.

Definition 2.17 [10]: A subset \(A \) of a topological space \(X \) is said to be s\(g \alpha \)-connected provided that \(X \) is not the union of two disjoint non-empty s\(g \alpha \)-open sets.

Definition 2.18 [10]: A subset \(A \) of a space \((x, \tau)\) is said to be s\(g \alpha \)-clopenn if \(A \) is both s\(g \alpha \)-open and s\(g \alpha \)-closed.

Definition 2.20 [10]: A topological space \(X \) is said to be s\(g \alpha \)-T\(1 \)-space if for any pair of disjoint points \(x \) and \(y \), there exist disjoint s\(g \alpha \)-open sets \(G \) and \(H \) such that \(x \in G \) and \(y \in H \).

Definition 2.21 [10]: A topological space \(X \) is said to be s\(g \alpha \)-T\(2 \)-space if for any pair of disjoint points \(x \) and \(y \), there exist disjoint s\(g \alpha \)-open sets \(G \) and \(H \) such that \(x \in G \) and \(y \in H \).

Definition 2.22 [10]: A space \((X, \tau)\) is said to be s\(g \alpha \)-T\(1/2 \)-space if every s\(g \alpha \)-closed set is semi-closed. The notion of s\(g \alpha \)-T\(1/2 \)-spaces and T\(1/2 \) spaces are independent of each other.

Definition 2.23 [10]: A topological space \(X \) is said to be s\(g \alpha \)-Normal if each pair of disjoint closed sets can be separated by disjoint s\(g \alpha \)-open sets.

Definition 2.24 [10]: A function \(f: X \to Y \) is said to be strongly s\(g \alpha \)-open (resp. strongly s\(g \alpha \)-closed) if image of every s\(g \alpha \)-open (resp. s\(g \alpha \)-closed) set of \(X \) is s\(g \alpha \)-open (resp. s\(g \alpha \)-closed) set in \(Y \).

Definition 2.25 [10]: A space \(X \) is said to be

1. s\(g \alpha \)-closed compact if every s\(g \alpha \)-closed cover of \(X \) has a finite subcover.
2. Countably s\(g \alpha \)-closed compact if every countable cover of \(X \) by s\(g \alpha \)-closed sets has a finite subcover.
3. s\(g \alpha \)-Lindelöf if every s\(g \alpha \)-closed cover of \(X \) has countable subcover.

3. Strongly s\(g \alpha \)-Irresolute functions.

Definition 3.1: A function \(f: X \to Y \) is said to be strongly s\(g \alpha \)-irresolute if \(f^{-1}(V) \) is open in \(X \) for every s\(g \alpha \)-open set \(V \) of \(Y \).

Definition 3.2: A function \(f: X \to Y \) is said to be strongly s\(g \alpha \)-irresolute if \(f^{-1}(V) \) is open in \(X \) for every s\(g \alpha \)-open set \(V \) of \(Y \).

Theorem 3.3: If \(f: X \to Y \) is a strongly s\(g \alpha \)-irresolute, then \(f \) is strongly s\(g \alpha \)-irresolute.

Proof: Let \(V \) be s\(g \alpha \)-open in \(Y \) and hence \(V \) is s\(g \alpha \)-open in \(Y \). Since \(f \) is strongly s\(g \alpha \)-irresolute, then \(f^{-1}(V) \) is open in \(X \). Therefore \(f^{-1}(V) \) is open in \(X \) for every s\(g \alpha \)-open set \(V \) in \(Y \). Hence \(f \) is strongly s\(g \alpha \)-irresolute.

Theorem 3.4: If \(f: X \to Y \) is a continuous and \(Y \) is a s\(g \alpha \)-T\(1/2 \)-space, then \(f \) is strongly s\(g \alpha \)-irresolute.

Proof: Let \(V \) be s\(g \alpha \)-open in \(Y \). Since \(Y \) is s\(g \alpha \)-T\(1/2 \)-space, \(V \) is s\(g \alpha \)-open in \(Y \) and hence open in \(Y \). Since \(f \) is continuous, \(f^{-1}(V) \) is open in \(X \). Thus, \(f^{-1}(V) \) is open in \(X \) for every s\(g \alpha \)-open set \(V \) in \(Y \). Hence \(f \) is strongly s\(g \alpha \)-irresolute.
Theorem: 3.5

If \(f: X \to Y \) is a sga-irresolute, \(X \) is a sga-\(-T_{1/2}\)-space, then \(f \) is strongly sga-irresolute.

Proof: Let \(V \) be sga-open in \(Y \). Since \(f \) is sga-irresolute, \(f^{-1}(V) \) is sga-open in \(X \). Since \(X \) is a sga-\(-T_{1/2}\)-space, \(f^{-1}(V) \) is \(\alpha \)-open in \(X \) and hence open in \(X \). Thus, \(f^{-1}(V) \) is open in \(X \) for every sga-open set \(V \) in \(Y \). Hence \(f \) is strongly sga-irresolute.

Theorem: 3.6

Let \(f: X \to Y \) and \(g: Y \to Z \) be any functions. Then

(i) \(g \circ f: X \to Z \) is sga-irresolute if \(f \) is sga-continuous and \(g \) is strongly sga-irresolute.

(ii) \(g \circ f: X \to Z \) is strongly sga-irresolute if \(f \) is strongly sga-irresolute and \(g \) is sga-irresolute.

Proof:

(i) Let \(V \) be a sga-open set in \(Z \). Since \(g \) is strongly sga-irresolute, \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is sga-continuous, \(f^{-1}(g^{-1}(V)) \) is sga-open in \(X \).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is sga-open in } X \text{ for every sga-open set } V \text{ in } Z. \]

\[\Rightarrow (g \circ f) \text{ is sga-irresolute.} \]

(ii) Let \(V \) be a sga-open set in \(Z \). Since \(g \) is sga-irresolute, \(g^{-1}(V) \) is sga-open in \(Y \). Since \(f \) is strongly sga-irresolute, \(f^{-1}(g^{-1}(V)) \) is open in \(X \).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is open in } X \text{ for every sga-open set } V \text{ in } Z. \]

\[\Rightarrow (g \circ f) \text{ is strongly sga-irresolute.} \]

Theorem: 3.7

The following are equivalent for a function \(f: X \to Y \):

(i) \(f \) is strongly sga-irresolute.

(ii) For each \(x \in X \) and each sga-open set \(V \) of \(Y \) containing \(f(x) \), there exists an open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \).

(iii) \(f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \) for each sga-open set \(V \) of \(Y \).

(iv) \(f^{-1}(F) \) is closed in \(X \) for every sga-closed set \(F \) of \(Y \).

Proof: (i) \(\Rightarrow \) (ii):

Let \(x \in X \) and \(V \) be a sga-open set in \(Y \) containing \(f(x) \). By hypothesis, \(f^{-1}(V) \) is open in \(X \) and contains \(x \).

Set \(U = f^{-1}(V) \). Then \(U \) is open in \(X \) and \(f(U) \subseteq V \).

(ii) \(\Rightarrow \) (iii):

Let \(V \) be a sga-open set in \(Y \) and \(x \in f^{-1}(V) \).

By assumption, there exists an open set \(U \) in \(X \) containing \(x \), such that \(f(U) \subseteq V \).

Then \(x \in U \subseteq \text{int}(U) \)

\[\subseteq \text{int}(f^{-1}(V)). \]

Then \(f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \)

(iii) \(\Rightarrow \) (iv):

Let \(F \) be a sga-closed set in \(Y \). Set \(V = Y - F \). Then \(V \) is sga-open in \(Y \).
By (iii), \(f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \).

Hence \(f^{-1}(F) \) is closed in \(X \).

(iv) \(\Rightarrow \) (i):

Let \(V \) be \(\text{sg} \alpha \)-open set in \(Y \). Let \(F = Y - V \). That is \(F \) is \(\text{sg} \alpha \)-closed set in \(Y \). Then \(f^{-1}(F) \) is closed in \(X \), (by (iv)). Then \(f^{-1}(V) \) is open in \(X \). Hence \(f \) is strongly \(\text{sg} \alpha \)-irresolute.

Theorem:3.8

A function \(f: X \rightarrow Y \) is strongly \(\text{sg} \alpha \)-irresolute if \(A \) is open in \(X \), then \(f/A: A \rightarrow Y \) is strongly \(\text{sg} \alpha \)-irresolute.

Proof: Let \(V \) be a \(\text{sg} \alpha \)-open set in \(Y \). By hypothesis, \(f^{-1}(V) \) is open in \(X \). But \((f/A)^{-1}(V) = A \neq f^{-1}(V) \) is open in \(A \) and hence \(f/A \) is strongly \(\text{sg} \alpha \)-irresolute.

Theorem:3.9

Let \(f: X \rightarrow Y \) be a function and \(\{A_i: i \in \Lambda\} \) be a cover of \(X \) by open sets of \((X, \tau) \). Then \(f \) is strongly \(\text{sg} \alpha \)-irresolute if \(f/A_i: (A_i, \tau/A_i) \rightarrow (Y, \sigma) \) is strongly \(\text{sg} \alpha \)-irresolute for each \(i \in \Lambda \).

Proof: Let \(V \) be a \(\text{sg} \alpha \)-open set in \(Y \). By hypothesis, \((f/A_i)^{-1}(V) \) is open in \(A_i \). Since \(A_i \) is open in \(X \), \((f/A_i)^{-1}(V) \) is open in \(X \) for every \(i \in \Lambda \).

\[
f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{A_i \cap f^{-1}(V): i \in \Lambda\}
\]

Hence \(f \) is strongly \(\text{sg} \alpha \)-irresolute.

Theorem:3.10

Let \(f: X \rightarrow Y \) be a strongly \(\text{sg} \alpha \)-irresolute surjective function. If \(X \) is compact, then \(Y \) is \(\text{SG} \alpha \text{O}\)-compact.

Proof: Let \(\{A_i: i \in \Lambda\} \) be a cover of \(\text{sg} \alpha \)-open sets of \(Y \). Since \(f \) is strongly \(\text{sg} \alpha \)-irresolute and \(X \) is compact, we get \(X \subseteq \bigcup \{f^{-1}(A_i): i \in \Lambda\} \). Since \(f \) is surjective, \(Y = f(X) \subseteq \bigcup \{A_i: i \in \Lambda\} \). Hence \(Y \) is \(\text{SG} \alpha \text{O}\)-compact.

Theorem:3.11

If \(f: X \rightarrow Y \) is strongly \(\text{sg} \alpha \)-irresolute and a subset \(B \) of \(X \) is compact relative to \(X \), then \(f(B) \) is \(\text{SG} \alpha \text{O}\)-compact relative to \(Y \).

Proof: Obvious.

Definition: 3.12

A function \(f: X \rightarrow Y \) is said to be

(i) a strongly \(\alpha \)-\(\text{sg} \alpha \)-irresolute function if \(f^{-1}(V) \) is \(\alpha \)-open in \(X \) for every \(\text{sg} \alpha \)-open set \(V \) in \(Y \).

(ii) a strongly \(\beta \)-\(\text{sg} \alpha \)-irresolute function if \(f^{-1}(V) \) is \(\beta \)-open in \(X \) for every \(\text{sg} \alpha \)-open set \(V \) in \(Y \).
Theorem: 3.13

(i) If \(f: X \rightarrow Y \) is strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute, then \(f \) is strongly s\(\gamma \alpha \)-irresolute.

(ii) If \(f: X \rightarrow Y \) is strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute, then \(f \) is strongly \(\beta \)-s\(\gamma \alpha \)-irresolute.

Proof:

(i) Let \(f \) be a strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute function and let \(V \) be a s\(\gamma \alpha \)-open set in \(Y \). Then \(f^{-1}(V) \) is \(\alpha \)-open in \(X \) and hence open in \(X \).

\[
\Rightarrow f^{-1}(V) \text{ is open in } X \text{ for every s}\(\gamma \alpha \)-open set } V \text{ in } Y.
\]

Hence \(f \) is strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute.

(ii) Let \(f \) be a strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute function and let \(V \) be a s\(\gamma \alpha \)-open set in \(Y \). Then

\[
f^{-1}(V) \text{ is } \alpha\text{-open in } X \text{ and hence open in } X.
\]

\[
\Rightarrow f^{-1}(V) \text{ is open in } X \text{ for every s}\(\gamma \alpha \)-open set } V \text{ in } Y.
\]

\[
\Rightarrow f^{-1}(V) \text{ is } \beta\text{-open in } X \text{ for every s}\(\gamma \alpha \)-open set } V \text{ in } Y.
\]

Hence \(f \) is strongly \(\beta \)-s\(\gamma \alpha \)-irresolute.

Remark: 3.14

Converse of the above need not be true as seen in the following examples.

Example: 3.15

(i) Let \(X = Y = \{a,b,c\} \), \(\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}\} \) and \(\sigma = \{\phi, Y, \{a\}, \{b\}, \{a,b\}\} \).

Let \(f: X \rightarrow Y \) be an identity map. Here for every s\(\gamma \alpha \)-open set \(V \) in \(Y \), \(f^{-1}(V) \) is s\(\gamma \alpha \)-open and \(\beta\)-open in \(X \). Hence \(f \) is strongly s\(\gamma \alpha \)-irresolute and strongly \(\beta \)-s\(\gamma \alpha \)-irresolute.

But for every s\(\gamma \alpha \)-open set \(V \) in \(Y \), \(f^{-1}(V) \) is not \(\alpha \)-open in \(X \). Thus, \(f \) is not strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute. Hence strongly s\(\gamma \alpha \)-irresolute function need not be strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute function and strongly \(\beta \)-s\(\gamma \alpha \)-irresolute function.

Theorem: 3.16

If \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \), then \(g \circ f: X \rightarrow Z \) is

(i) strongly s\(\gamma \alpha \)-irresolute if \(f \) is strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute and \(g \) is s\(\gamma \alpha \)-irresolute.

(ii) strongly \(\beta \)-s\(\gamma \alpha \)-irresolute if \(f \) is strongly s\(\gamma \alpha \)-irresolute and \(g \) is s\(\gamma \alpha \)-irresolute.

Proof: Let \(V \) be an s\(\gamma \alpha \)-open set in \(Z \). Since \(g \) is s\(\gamma \alpha \)-irresolute, \(g^{-1}(V) \) is s\(\gamma \alpha \)-open in \(Y \). Since \(f \) is strongly \(\alpha \)-s\(\gamma \alpha \)-irresolute, \(f^{-1}(g^{-1}(V)) \) is \(\alpha \)-open in \(X \).

\[
\Rightarrow (g \circ f)^{-1}(V) \text{ is regular open in } X \text{ and hence open in } X.
\]

Hence \((g \circ f)^{-1}(V) \) is strongly s\(\gamma \alpha \)-irresolute.

(i) Let \(V \) be an s\(\gamma \alpha \)-open set in \(Z \). Since \(g \) is s\(\gamma \alpha \)-irresolute, \(g^{-1}(V) \) is s\(\gamma \alpha \)-open in \(Y \). Since \(f \) is strongly s\(\gamma \alpha \)-irresolute, \(f^{-1}(g^{-1}(V)) \) is open in \(X \) and hence \(\beta \)-open in \(X \).

\[
\Rightarrow (g \circ f)^{-1}(V) \text{ is } \beta\text{-open in } X \text{ for every s}\(\gamma \alpha \)-open set } V \text{ in } Z.
\]
Hence \((g \circ f)\) is strongly \(\beta\)-\(\text{sg} \alpha\)- irresolute.

Theorem: 3.17

If \(f: X \to Y\) and \(g: Y \to Z\), then \(g \circ f: X \to Z\) is

(i) strongly \(\alpha\)-\(\text{sg} \alpha\)- irresolute if \(f\) is regular irresolute and \(g\) is strongly \(\alpha\)-\(\text{sg} \alpha\)- irresolute.

(ii) strongly \(\alpha\)-\(\text{sg} \alpha\)- irresolute if \(f\) is \(\alpha\)- continuous and \(g\) is strongly \(\text{sg} \alpha\)- irresolute.

(iii) strongly \(\beta\)-\(\text{sg} \alpha\)- irresolute if \(f\) is continuous and \(g\) is strongly \(\text{sg} \alpha\)- irresolute.

Proof: Let \(V\) be a \(\text{sg} \alpha\)-open set in \(Z\). Since \(g\) is strongly \(\alpha\)-\(\text{sg} \alpha\)- irresolute, \(g^{-1}(V)\) is \(\alpha\)- open in \(Y\). Since \(f\) is \(\alpha\)- irresolute, \(f^{-1}(g^{-1}(V))\) is \(\alpha\)- open in \(X\).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is } \alpha\text{- open in } X.\]

Hence \((g \circ f)^{-1}(V)\) is \(\alpha\)-open in \(X\).

(i) Let \(V\) be an \(\text{sg} \alpha\)-open set in \(Z\). Since \(g\) is strongly \(\text{sg} \alpha\)- irresolute, \(g^{-1}(V)\) is open in \(Y\). Since \(f\) is \(\alpha\)- continuous, \(f^{-1}(g^{-1}(V))\) is \(\alpha\)-open in \(X\).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is } \alpha\text{- open in } X.\]

Hence \((g \circ f)^{-1}(V)\) is \(\alpha\)-open in \(X\).

(ii) Let \(V\) be an \(\text{sg} \alpha\)-open set in \(Z\). Since \(g\) is strongly \(\text{sg} \alpha\)- irresolute, \(g^{-1}(V)\) is open in \(Y\). Since \(f\) is continuous, \(f^{-1}(g^{-1}(V))\) is open in \(X\).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is open in } X \text{ and hence } \beta\text{- open in } X.\]

Hence \((g \circ f)^{-1}(V)\) is \(\beta\)-open in \(X\).

Theorem: 3.18

The following are equivalent for a function \(f: X \to Y\):

(i) \(f\) is strongly \(\alpha\)-\(\text{sg} \alpha\)- irresolute.

(ii) For each \(x \in X\) and each \(\text{sg} \alpha\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists a \(\alpha\)- open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subset V\).

(iii) \(f^{-1}(V) \subset \text{Cl}(\text{Int}(f^{-1}(V)))\) for each \(\text{sg} \alpha\)-open set \(V\) of \(Y\).

(iv) \(f^{-1}(F)\) is regular closed in \(X\) for every \(\text{sg} \alpha\)-closed set \(F\) of \(Y\).

Proof: Similar to that of Theorem 3.7

Theorem: 3.19

The following are equivalent for a function \(f: X \to Y\):

(i) \(f\) is strongly \(\beta\)-\(\text{sg} \alpha\)- irresolute.

(ii) For each \(x \in X\) and each \(\text{sg} \alpha\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists a \(\beta\)- open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subset V\).

(iii) \(f^{-1}(V) \subset \text{Cl}(\text{Int}(f^{-1}(V)))\) for each \(\text{sg} \alpha\)-open set \(V\) of \(Y\).

(iv) \(f^{-1}(F)\) is \(\beta\)-closed in \(X\) for every \(\text{sg} \alpha\)-closed set \(F\) of \(Y\).
Proof: Similar to that of Theorem 3.7.

Lemma: 3.20

If \(f: X \rightarrow Y \) is strongly \(\alpha \)-sg\(\alpha \)-irresolute and \(A \) is a \(\alpha \)-open subset of \(X \), then \(f/A : A \rightarrow Y \) is strongly \(\alpha \)-sg\(\alpha \)-irresolute.

Proof:

Let \(V \) be a sg\(\alpha \)-open in \(Y \). By hypothesis, \(f^{-1}(V) \) is \(\alpha \)-open in \(X \). But \((f/A)^{-1}(V) = A \cap f^{-1}(V)\) is regular open in \(A \). Hence \(f/A \) is strongly \(\alpha \)-sg\(\alpha \)-irresolute.

Theorem: 3.21

Let \(f: X \rightarrow Y \) and \(\{A_\lambda : \lambda \in \Lambda\} \) be a cover of \(X \) by \(\alpha \)-open set of \((X, \tau)\). Then \(f \) is a strongly \(\alpha \)-sg\(\alpha \)-irresolute function if \(f/A_\lambda : A_\lambda \rightarrow Y \) is strongly \(\alpha \)-sg\(\alpha \)-irresolute for each \(\lambda \in \Lambda \).

Proof: Let \(V \) be any sg\(\alpha \)-open set in \(Y \). By hypothesis, \((f/A_\lambda)^{-1}(V) \) is \(\alpha \)-open in \(A_\lambda \). Since \(A_\lambda \) is regular open in \(X \), it follows that \((f/A_\lambda)^{-1}(V) \) is sg\(\alpha \)-open in \(X \) for each \(\lambda \in \Lambda \).

\[
f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{A_\lambda \cap f^{-1}(V) : \lambda \in \Lambda\} = \bigcup \{(f/A_\lambda)^{-1}(V) : \lambda \in \Lambda\}
\]

Hence \(f \) is strongly \(\alpha \)-sg\(\alpha \)-irresolute.

Lemma: 3.22

If \(f: X \rightarrow Y \) is strongly \(\beta \)-sg\(\alpha \)-irresolute and \(A \) is a \(\alpha \)-open subset of \(X \), then \(f/A : A \rightarrow Y \) is strongly \(\beta \)-sg\(\alpha \)-irresolute.

Proof: Let \(V \) be a sg\(\alpha \)-open in \(Y \). By hypothesis, \(f^{-1}(V) \) is \(\beta \)-open in \(X \). But \((f/A)^{-1}(V) = A \cap f^{-1}(V)\) is \(\beta \)-open in \(A \). Hence \(f/A \) is strongly \(\beta \)-sg\(\alpha \)-irresolute.

Theorem: 3.23

Let \(f: X \rightarrow Y \) and \(\{A_\lambda : \lambda \in \Lambda\} \) be a cover of \(X \) by \(\beta \)-open sets of \((X, \tau)\). Then \(f \) is a strongly \(\beta \)-sg\(\alpha \)-irresolute function if \(f/A_\lambda : A_\lambda \rightarrow Y \) is strongly \(\beta \)-sg\(\alpha \)-irresolute for each \(\lambda \in \Lambda \).

Proof: Let \(V \) be any sg\(\alpha \)-open set in \(Y \). By hypothesis, \((f/A_\lambda)^{-1}(V) \) is \(\beta \)-open in \(A_\lambda \). Since \(A_\lambda \) is \(\beta \)-open in \(X \), it follows that \((f/A_\lambda)^{-1}(V) \) is \(\beta \)-open in \(X \) for each \(\lambda \in \Lambda \).

\[
f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{A_\lambda \cap f^{-1}(V) : \lambda \in \Lambda\} = \bigcup \{(f/A_\lambda)^{-1}(V) : \lambda \in \Lambda\}
\]

Hence \(f \) is strongly \(\beta \)-sg\(\alpha \)-irresolute.

Theorem: 3.24

If a function \(f: X \rightarrow Y \) is strongly \(\beta \)-sg\(\alpha \)-irresolute, then \(f^{-1}(B) \) is \(\beta \)-closed in \(X \) for any nowhere dense set \(B \) of \(Y \).

Proof: Let \(B \) be any nowhere dense subset of \(Y \). Then \(Y - B \) is regular in \(Y \) and hence sg\(\alpha \)-open in \(Y \). By hypothesis, \(f^{-1}(Y - B) \) is \(\beta \)-open in \(X \). Hence \(f^{-1}(B) \) is \(\beta \)-closed in \(X \).
REFERENCES