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1.Introduction  

 

          N. Levine [16] introduced generalized closed sets (briefly g-closed set) in 1970. N. Levine [15] 

introduced the concepts of semi-open sets in 1963. Bhattacharya and Lahiri [6] introduced and investigated 

semi-generalized closed (briefly sg- closed) sets in 1987. Arya and Nour [3] defined generalized semi-

closed (briefly gs-closed) sets for obtaining some characterization of s-normal spaces in 1990. O.Njastad in 

1965 defined α-open sets [23].  

        In 1996, Dontchev [12] introduced a new class of functions called contra- continuous functions. A new 

weaker form of this class of functions called contra semi-continuous function is introduced and investigated 

by Dontchev and Noiri [13].  

        In this paper, the notion of sgα-closed sets [8] and contra sgα- continuous Space[9]and characterization 

of contra sgα-continuous functions in topological spaces [10] is applied to introduce and study a new class 

of functions called on strongly sgα-Irresolute functions in topological spaces, as a new generalization of  

strongly α -irresolute functions and strongly β- sgα -irresolute functions, to  obtain some of their 

characterizations and properties. Also the relationships with some other functions  are discussed. 

  

 2. PRELIMINARIES  
          Throught this paper (X, τ ), (Y, σ) and (Z, η) always mean topological spaces on which no separation 

axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the 

interior of A are denoted by cl (A) and int (A) respectively. (X, τ) will be replaced by X if there is no chance 

of confusion. Let us recall the following definitions as pre requests.  

A subset A of a topological space X is said to be open if A ∈  τ. A subset A of a topological space X is said 

to be closed if the set X−A is open. The interior of a subset A of a topological space X is defined as the 

union of all open sets contained in A. It is denoted by int(A). The closure of a subset A of a topological 

space X is defined as the intersection of all closed sets containing A. It is denoted by cl(A). 

 

Definitions 2.1: A subset A of a space (X, τ) is said to be  

1. semi open [15] if A ⊆cl (int (A)) and semi closed if int (cl (A))⊆A.  

 

2. α-open [23] if A⊆int (cl (int(A))) and α-closed if cl (int (cl (A)))⊆A.  

 

3. β-open or semi pre-open [1] if A⊆cl (int (cl (A))) and β-closed or semi pre-closed if int (cl (int (A)))⊆A.  

4. pre-open [11] if A⊆int (cl (A)) and pre-closed if cl (int (A))⊆A.  

 

The complement of a semi-open (resp.pre-open, α-open, β-open) set is called semi-closed (resp.pre-closed, 

α-closed, β-closed). The intersec- tion of all semi-closed (resp.pre-closed, α-closed, β-closed) sets 
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containing A is called the semi-closure (resp.pre-closure, α-closure, β-closure) of A and is denoted by 

scl(A)(resp. pcl(A), α-cl(A), β-cl(A)). The union of all semi-open (resp.pre-open, α-open, β-open) sets 

contained in A is called the semi-interior(resp.pre-interior, α-interior, β-interior) of A and is de- noted by 

sint(A)(resp. pint(A), α-int(A), β-int(A)). The family of all semi- open (resp.pre-open, α-open, β-open) sets 

is denoted by SO(X)(resp. P O(X), α − O(X), β − O(X)). The family of all semi-closed (resp.pre-closed, α-

closed, β-closed) sets is denoted by SCl(X ) (resp. P Cl(X), α-Cl(X), β-Cl(X)).  

 

Definitions 2.2: A subset A of a space (X, τ) is called  

1. g-closed[16] if cl (A) ⊆ U, whenever A ⊆U and U is open in (X, τ). The complement of a g-closed set is 

called g-open set.  

2. gs-closed set[7] if scl (A)⊆U, whenever A⊆U and U is open in (X, τ).  

3. sg-closed set[6] if scl (A)⊆U, whenever A⊆U and U is semi-open in (X, τ).  

4. 4. αg-closed[17] if α (cl (A)) ⊆U, whenever A ⊆U and U is open in (X, τ).  

5. gα-closed [18] if α (cl (A)) ⊆U, whenever A⊆U and U is α-open in (X, τ).  

6. gp-closed [19] if pcl (A)⊆U, whenever A⊆U and U is open in (X, τ).  

Definition 2.3: Let X and Y be topological spaces. A function f: X →  Y is said to be 

 

1. continuous [14] if for each open set V of Y the set f −1 (V ) is an open subset of X . 

 

2. α-continuous [23] if f −1(V) is a α-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

3. β-continuous [1] if f −1(V) is a β-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

4. pre-continuous [21] if f −1(V) is a pre-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

5. semi-continuous [15] if f −1(V) is a semi-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

Definition 2.4: A function f: (X, τ ) →  (Y, σ) is said to be 

 

1. g-continuous [16] if f −1(V) is a g-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

2. gs-continuous[7] if f −1(V) is a gs-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

3. sg-continuous [6] if f −1(V) is a sg-closed set of (X, τ) for every closed set V of (Y, ). 

 

4. αg-continuous [17] if f −1(V) is a αg-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

5. gα-continuous [18] if f −1(V) is a gα-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

6. gp-continuous [19] if f −1(V) is a gp-closed set of (X, τ ) for every closed set V of (Y, σ). 

 

 

Definitions 2.5[22]: A function f: (X, τ ) →(Y, σ) is said to be almost continuous if for every open set V of 

Y , f −1(V)is regular open in X. 

Definitions 2.6[8]: A subset A of space (X, τ ) is called sgα -closed if scl (A) ⊆U , whenever A⊆U and U is 

α-open in X . The family of all sgα-closed subsets of the space X is denoted by SGαC (X ). 

Definitions 2.7[8]: The intersection of all sgα-closed sets containing a set A is called sgα-closure of A and 

is denoted by sgα-cl(A). A set A is sgα-closed set if and only if sgα C l (A) = A. 

Definitions 2.8[8]: A subset A in X is called sgα-open in X if Ac is sgα-closed in X. The family of a sgα-

open sets is denoted by SGαO(X ). 

Definitions 2.9[8]: The union of all sg α-open sets containing a set A is called sgα-interior of A and is 

denoted by sgα-I nt(A). A set A is sgα-open set if and only if sgα I nt (A) = A. 

Definition 2.10[9]: A function f :(X, τ )→(Y, σ) is called sgα-continuous if f −1(V) is sgα-closed in (X, τ ) 

for every closed set V of (Y, σ). 
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Definition 2.11[9]: A function f: X → Y is said to be Contra sgα-Continuous if f −1 (V) is sgα-closed in X 

for each open set V of Y . 

Definition 2.12[9]: A space X is called locally sgα-indiscrete if every sgα-open set is closed in X. 

Definition 2.13 [9]: If a function f : X → Y is called almost sgα-continuous if for each x ∈  X and each open 

set V of Y containing f (x), there exists U ∈  SGαO(X, x) such that f (U )⊂I nt (cl (V )). 

Definition 2.14[9]: If a function f: X → Y is called quasi sgα-open if image of every sgα-open set of X is 

open set in Y. 

Definition 2.15[9]: If a function f : X → Y is called weakly sgα-continuous if for each x ∈  X and each open 

set V of Y containing f (x), there exists U ∈  SGαO(X, x) such that f (U ) ⊂ scl (V ). 

Definition 2.16 [9]: Let A be a subset of X. Then sgα-C l (A)-sgα-I nt (A) is called sgα-frontier of A and is 

denoted by sgα-F r (A). 

Definition 2.17 [10]: A subset A of a topological space X is said to be sgα-dense in X if sgα − Cl (A) = X. 

Definition 2.18 [10]: A space X is called sgα-connected provided that X is not the union of two disjoint 

non-empty sgα-open sets. 

Definition 2.19 [10]: A subset A of a space (x, τ) is said to be sgα-clopen if A is both sgα-open and sgα-

closed. 

Definition 2.20 [10]: A topological space X is said to be sgα-T1-space if for any pair of disjoint points x 

and y, there exist disjoint sgα-open sets G and H such that x∈G and y∈H.  

Definition 2.21 [10]: A topological space X is said to be sgα-T2-space if for any pair of disjoint points x 

and y, there exist disjoint sgα-open sets G and H such that x ∈  G and y∈H. 

Definition 2.22 [10]: A space (X, τ ) is called sgα-T 1/2 space if every sgα-closed set is semi-closed. 

The notion of sgα-T  1/2-spaces  and T 1/2  spaces are independent of each other. 

Definition 2.23 [10]: A topological space X is said to be sgα-Normal if each pair of disjoint closed sets can 

be separated by disjoint sgα-open sets.  

Definition 2.24 [10]: A function f: X → Y is said to be strongly sgα-open (resp. strongly sgα-closed) if 

image of every sgα-open(resp.sgα-closed) set of X is sgα-open (resp.sgα-closed) set in Y . 

Definition 2.25 [10]: A space X is said to be  

1. SGα-closed compact if every sgα-closed cover of X has a finite subcover.  

2. Countably SGα-closed compact if every countable cover of X by sgα- closed sets has a finite subcover.  

3. SGα-Lindeloff if every sgα-closed cover of X has countable subcover. 

 

3. Strongly sgα -irresolute functions.  

 

Definition:3.1 

A function f: X→Y is said to be strongly sgα -irresolute if f-1(V) is open in X for every sgα -open set V of 

Y. 

 

Definition:3.2 

 

A function f: X→Y is said to be strongly α- irresolute if f-1(V) is open in X for every α- open set V of Y. 

 

Theorem:3.3 

 

If f: X→Y is a strongly sgα -irresolute ,then f is strongly α-irresolute. 

 

Proof:Let V be α- open set in Y and hence V is sgα -open in Y. Since f is strongly sgα -irresolute, then f-

1(V) is open in X. Therefore f-1(V) is open in X for every α- open set V in Y. Hence f is strongly α- 

irresolute. 

 

Theorem:3.4 

 

If f: X→Y is a continuous and Y is a sgα -T1/2-space , then f is strongly sgα -irresolute. 

 

Proof:Let V be sgα -open in Y. Since Y is sgα -T1/2-space, V is α-open in Y and hence open in Y. Since f is 

continuous, f-1(V) is open in X. Thus,f-1(V) is open in X for every sgα -open set V in Y. Hence f is strongly 

sgα - irresolute. 
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Theorem:3.5 

 

If f: X→Y is a sgα -irresolute, X is a sgα -T1/2-space , then f is strongly sgα -irresolute. 

 

Proof:Let V be sgα -open in Y. Since f is sgα -irresolute, f-1(V) is sgα -open in X. Since X is a sgα -T1/2-

space, f-1(V) is α- open in X and hence open in X. Thus, f-1(V) is open in X for every sgα -open set V in Y. 

Hence f is strongly sgα - irresolute. 

 

Theorem:3.6 

 

Let f: X→Y and g:Y→Z be any functions. Then 

 

(i) g о f: X→Z is sgα -irresolute if f is sgα -continuous and g is strongly sgα -irresolute. 

(ii) g о f: X→Z is strongly sgα -irresolute if f is strongly sgα -irresolute and g is sgα –irresolute. 

 

Proof: 

(i)Let V be a sgα -open set in Z. Since g is strongly sgα -irresolute, g-1(V) is open in Y. Since f is sgα -

continuous, f-1(g-1(V)) is sgα -open in X. 

       ⟹ ( g о f)-1(V) is sgα -open in X for every sgα -open set V in Z. 

       ⟹ (g о f) is sgα -irresolute. 

 

(ii) Let V be a sgα -open set in Z. Since g is sgα -irresolute, g-1(V) is sgα -open in Y. Since f is strongly sgα -

irresolute,  f-1(g-1(V)) is open in X. 

       ⟹( g о f)-1(V) is open in X for every sgα -open set V in Z.  

       ⟹( g о f) is strongly sgα -irresolute. 

 

Theorem:3.7 

 

The following are equivalent for a function f: X→Y: 

(i) f is strongly sgα -irresolute. 

(ii) For each x  X and each sgα -open set V of Y containing f(x), there exists an open set U in X 

containing x such that f(U) V.  

(iii) f-1(V) int (f-1(V)) for each sgα -open set V of Y. 

(iv) f-1(F) is closed in X for every sgα -closed set F of Y. 

 

Proof: (i)⟹(ii): 

 

Let x X and V be a sgα -open set in Y containing f(x). By hypothesis,f-1(V) is open in X and contains x. 

 

Set U=f-1(V). Then U is open in X and f(U) V. 

 

(ii)⟹(iii): 

 

Let V be a sgα -open set in Y and x f-1(V). 

 

By assumption, there exists an open set U in X containing x , such that f(U) V. 

 

Then x U int(U) 

 

         int (f-1(V)).  

Then f-1(V) int(f-1(V)) 

 

(iii) ⟹(iv): 

 

Let F be a sgα -closed set in Y. Set V= Y – F. Then V is sgα -open in Y. 
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By (iii), f-1(V) int(f-1(V)). 

 

Hence f-1(F) is closed in X. 

 

(iv)⟹ (i): 

 

Let V be sgα -open set in Y. Let F = Y – V. That is F is sgα -closed set in Y. Then f-1(F) is closed in X,(by 

(iv)). Then f-1(V) is open in X. Hence f is strongly sgα -irresolute. 

 

 

Theorem:3.8 

 

A function f: X→Y is strongly sgα -irresolute if A is open in X, then f/A: A→Y is strongly sgα -irresolute. 

 

Proof:Let V be a sgα -open set in Y. By hypothesis, f-1(V) is open in X. But (f/A)-1(V) = A  f-1(V) is open 

in A and hence f/A is strongly sgα -irresolute. 

 

Theorem:3.9 

 

Let f: X→Y be a function and {Ai: i Λ} be a cover of X by open sets of (X,τ). Then f is strongly sgα -

irresolute if f/Ai : (Ai,τ/Ai) →(Y,σ) is strongly sgα -irresolute for each i Λ. 

 

Proof:Let V be a sgα -open set in Y. By hypothesis, (f/Ai)
-1(V) is open in Ai. Since Ai is open in X, (f/Ai)

-

1(V) is open in X for every i  Λ. 

 

f-1(V) = X f-1(V) 

 

= {Ai f-1(V): i  Λ}  

 

= {(f/Ai)
-1(V): i  Λ} is open in X. 

 

Hence f is strongly sgα -irresolute. 

 

Theorem:3.10 

 

Let f: X→Y be a strongly sgα -irresolute surjective function. If X is compact, then Y is SGαO-compact. 

 

Proof:Let {Ai: i Λ} be a cover of sgα -open sets of Y. Since f is strongly sgα -irresolute and X is compact, 

we get  X {f-1(Ai): i Λ}.Since f is surjective, Y = f(X) {Ai: i Λ}.Hence Y is SGαO-compact. 

 

Theorem:3.11 

 

If f:X → Y is strongly sgα -irresolute and a subset B of X is compact relative to X, then f(B) is SGαO-

compact relative to Y. 

 

Proof: Obvious. 

 

Definition: 3.12 

 

A function f: X→Y is said to be 

 

(i)a strongly α- sgα -irresolute function if f-1(V) is α- open in X for every sgα -open set V in Y. 

(ii) a strongly β-sgα -irresolute function if f-1(V) is β-open in X for every sgα -open set V in Y.
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Theorem:3.13 

 

(i) If f: X→Y is strongly α- sgα -irresolute , then f is strongly sgα -irresolute. 

 

(ii) If f: X→Y is strongly α-sgα -irresolute , then f is strongly β-sgα -irresolute. 

 

Proof:        (i)Let f be a strongly α- sgα -irresolute function and let V be a sgα -open set in Y. Then f-1(V) is 

α- open in X and hence open in X. 

 

    ⟹f-1(V) is open in X for every sgα -open set V in Y. 

 

  Hence f is strongly α- sgα -irresolute. 

 

(ii) Let f be a strongly α- sgα -irresolute function and let V be a sgα -open set in Y. Then 

 

f-1(V) is α-open in X and hence open in X. 

 

⟹f-1(V) is open in X for every sgα -open set V in Y. 

⟹ f-1(V) is β-open in X for every sgα -open set V in Y. 

 

Hence f is strongly β- sgα -irresolute. 

 

Remark: 3.14 

 

Converse of the above need not be true as seen in the following examples. 

 

Example: 3.15 

 

(i)Let X= Y = {a,b,c} , τ= {φ, X,{a},{b},{a,b},{a,c}} and σ ={φ, Y,{a},{b},{a,b}}. 

 

Let f:X→Y be an identity map. Here for every sgα -open set V in Y, f-1(V) is open and β-open in X. Hence f 

is strongly sgα -irresolute and strongly β-sgα -irresolute. 

 

But for every sgα -open set V in Y, f-1(V) is not α- open in X. Thus, f is not strongly α-sgα -irresolute 

.Hence strongly sgα -irresolute function need not be strongly α- sgα -irresolute function and strongly β-sgα -

irresolute function . 

 

Theorem:3.16 

 

If f:X→Y and g:Y→Z , then g о f: X→Z is 

 

(i) strongly sgα -irresolute if f is strongly α- sgα -irresolute and g is sgα -irresolute. 

(ii) strongly  β-sgα –irresolute if f is strongly sgα - irresolute and g is sgα -irresolute. 

 

Proof:Let V be an sgα -open set in Z. Since g is sgα -irresolute, g-1(V) is sgα -open in Y. Since f is strongly 

α- sgα -irresolute , f-1(g-1(V)) is α- open in X. 

 

⟹(g о f)-1(V) is regular open in X and hence open in X. 

 

Hence (g о f) is strongly sgα -irresolute. 

 

(i) Let V be an sgα -open set in Z. Since g is sgα -irresolute, g-1(V) is sgα -open in Y. Since f is 

strongly sgα -irresolute , f-1(g-1(V)) is open in X and hence β-open in X. 

 

⟹(g о f)-1(V) is β- open in X for every sgα –open set V in Z. 
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Hence (g о f) is strongly β- sgα -irresolute. 

 

Theorem:3.17 

 

If f:X→Y and g:Y→Z , then g о f: X→Z is 

 

(i) strongly α- sgα -irresolute if f is regular irresolute and g is strongly α- sgα -irresolute. 

(ii) strongly α- sgα -irresolute if f is α- continuous and g is strongly sgα -irresolute. 

(iii) strongly β- sgα -irresolute if f is continuous and g is strongly sgα -irresolute. 

 

Proof:Let V be a sgα -open set in Z. Since g is strongly α- sgα -irresolute, g-1(V) is α- open in Y. Since f is 

α- irresolute ,  f-1(g-1(V)) is α- open in X. 

 

⟹(g о f)-1(V) is α- open in X . 

 

Hence (g о f) is strongly  α-sgα -irresolute. 

 

(i) Let V be an sgα -open set in Z. Since g is strongly sgα -irresolute, g-1(V) is open in Y. Since f is 

α- continuous ,  f-1(g-1(V)) is α-open in X. 

 

⟹(g о f)-1(V) is α- open in X . 

 

Hence (g о f) is strongly α- sgα -irresolute. 

 

(ii)  Let V be an sgα -open set in Z. Since g is strongly sgα -irresolute, g-1(V) is open in Y. 

 

Since f is continuous , f-1(g-1(V)) is open in X. 

                       ⟹(g о f)-1(V) is open in X and hence β-open in X. 

 

Hence (g о f) is strongly β-sgα -irresolute. 

 

Theorem :3.18 
 
The following are equivalent for a function f: X→Y: 
 

(i) f is strongly α-sgα -irresolute.  
(ii) For each x X and each sgα -open set V of Y containing f(x), there exists a α- open set U in X 

containing x such that f(U) V.  
(iii) f-1(V)  Cl(Int (f-1(V))) for each sgα -open set V of Y. 

 

(iv)  f-1(F) is regular closed in X for every sgα -closed set F of Y. 

 

 

Proof: Similar to that of Theorem 3.7 
 
Theorem:3.19 
 
The following are equivalent for a function f: X→Y: 
 

(i) f is strongly β- sgα -irresolute.  
(ii) For each x X and each sgα -open set V of Y containing f(x), there exists a β- open set U in X 

containing x such that f(U)  V.  
(iii) f-1(V)  Cl(Int (f-1(V))) for each sgα -open set V of Y.  
(iv) f-1(F) is β-closed in X for every sgα -closed set F of Y. 
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Proof: Similar to that of Theorem 3.7. 
 
Lemma: 3.20 
 
If f: X→Y is strongly α- sgα -irresolute and A is a α- open subset of X, then f/A : A→Y is strongly α- sgα -

irresolute. 
 
Proof: 
 
Let V be a sgα -open in Y . By hypothesis, f-1(V) is α- open in X. But (f/A)-1(V) = A f-1(V) is regular open 
in A. Hence f/A is strongly α- sgα -irresolute. 
 

Theorem:3.21 
 

Let f: X→Y and {Aλ: λ Λ} be a cover of X by α- open set of (X,τ). Then f is a strongly α- sgα -irresolute 

function if f/Aλ: Aλ→Y is strongly α- sgα -irresolute for each λ  Λ. 
 
Proof:Let V be any sgα -open set in Y. By hypothesis, (f/Aλ)

-1(V) is α- open in Aλ. Since Aλ is regular open 

in X, it follows that (f/Aλ)
-1(V) is sgα -open in X for each λ  Λ. 

 

f-1(V) =X f-1(V) 

          = {Aλ f-1(V): λ Λ} 

          = {(f/Aλ)
-1(V): λ  Λ} is regular open in X. 

 
Hence f is strongly α-sgα -irresolute. 
 
Lemma:3.22 
 
If f: X→Y is strongly β- sgα -irresolute and A is a α-open subset of X, then f/A : A→Y is strongly β- sgα -
irresolute. 
 
Proof:Let V be a sgα -open in Y . By hypothesis, f-1(V) is β-open in X. But (f/A)-1(V) = A  f-1(V) is β- 

open in A.Hence f/A is strongly β- sgα -irresolute. 
 
Theorem:3.23 
 
Let f: X→Y and {Aλ: λ Λ} be a cover of X by β- open sets of (X,τ). Then f is a strongly β- sgα -irresolute 
function if f/Aλ: Aλ→Y is strongly β- sgα -irresolute for each λ Λ. 
 
Proof:Let V be any sgα -open set in Y. By hypothesis, (f/Aλ)

-1(V) is β- open in Aλ. Since Aλ is β- open in X, 
it follows that (f/Aλ)

-1(V) is β-open in X for each λ Λ. 
 
 f-1(V) =X f-1(V) 
 
           = {Aλ f-1(V): λ  Λ} 
 

= {(f/Aλ)
-1(V): λ Λ} is β- open in X. 

 Hence f is strongly β- sgα -irresolute. 

 
Theorem:3.24 
 
If a function f: X→Y is strongly β-sgα -irresolute , then f-1(B) is β-closed in X for any nowhere dense set B 

of Y. 
 
Proof: Let B be any nowhere dense subset of Y. Then Y−B is regular in Y and hence sgα -open in Y. By 

hypothesis, f-1(Y−B) is β-open in X. Hence f-1(B) is β-closed in X. 
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