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_______________________________________________________________________________________________________ 

ABSTRACT: This1paper deals1with the process1of automatically1recognizing who is1speaking on the1basis of 

individual1information included in1speech waves. Speaker1recognition methods can1be divided into1text-independent and1text 

dependent methods. In1a text independent1system, speaker1models capture characteristics1of somebody's speech, which1show 

up irrespective1of what one is1saying. In a1text-dependent system, on1the other hand, the1recognition of1the speaker's identit1 is 

based on his1or her speaking one1or more specific1phrases, like1passwords, card numbers, PIN1codes, etc. This1paper is 

based1on text independent1speaker recognition system1and makes use of mel1frequency cepstrum1coefficients to process1the 

input signal1and vector quantization1approach to identify the1speaker. The above1task is implemented using1MATLAB. This 

technique1is used in application areas1such as control access1to services like1voice dialing, banking1by telephone, 

database1access services, voice1mail, security control1for confidential information1areas, and remote1access to computers. 
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________________________________________________________________________________________________________ 

I. Principles1of Speaker Recognition 
Speaker1recognition can be1classified into identification1and verification. Speaker1identification is the process1of 

determining which1registered speaker provides1a given utterance. Speaker1verification, on the other1hand, is the1process of 

accepting or1rejecting the identity1claim of a1speaker. Figure 11shows the basic structures1of speaker identification1and 

verification systems. At1the highest level, all1speaker recognition systems1contain two main1modules (refer to1Figure 1): 

feature1extraction and feature1matching. Feature extraction1is the process that1extracts a small1amount of data1from the 

voice1signal that can1later be used1to represent each1speaker. Feature1matching involves1the actual procedure1to identify 

the1unknown speaker by comparing1extracted features1from his/her voice1input with the1ones from a1set of known1speakers. 

We1will discuss each1module in detail1in later sections. 

 
(a) Speaker1identification 
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(b) Speaker1verification 

Figure1. Basic1structures of speaker1recognition systems 

 

All1speaker recognition systems1have to serve two1distinguish phases. The1first one is1referred to the 

enrollment1sessions or training1phase while the1second one is1referred to as1the operation sessions1or testing phase. In1the 

training phase, each1registered speaker1has to1provide samples of1their speech so that the system1can build1or train a reference 

model for1that speaker. In case1of speaker verification1systems, in addition, a1speaker-specific threshold1is also computed 

from1the training1samples. During1the testing phase1 ( Figure 1), the1input speech is1matched with stored reference1model and 

recognition1decision is made. 

 

 

II. Speech Feature1Extraction 
A. Introduction: 

The purpose1of this module1is to convert1the speech waveform1to some type1of parametric representation1 (at 

a1considerably lower1information rate) for1further analysis1and processing. This1is often referred1as the signal1processing front 

end. The1speech signal is1a slowly timed1varying signal (it1is called quasi-stationary1). An example1of speech signal1is shown 

in1Figure 2. When1examined over1a sufficiently short1period of time1 (between 51and 100 msec), its characteristics1are fairly 

stationary. 1However, over1long periods of1time (on the1order of 1/5 seconds1or more) the signal1characteristic change1to 

reflect the1different speech sounds1being spoken. Therefore, 1short-time spectral analysis1is the most1common way to 

characterize1the speech signal. 

 
Figure 2. An example1of speech signal 
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Figure 3: Speech signal1in time domain 

 

B. Mel-frequency1cepstrum coefficients1processor: 

MFCC's1are based on1the known variation1of the human1ear's critical bandwidths1with frequency, filters 

spaced1linearly at low1frequencies and logarithmically at high frequencies1have been used1to capture the1phonetically 

important1characteristics of speech. This1is expressed in1the mel-frequency scale, which1is a linear1frequency spacing1below 

1000 Hz1and a logarithmic1spacing above11000 Hz. A block1diagram of the1structure of an1MFCC processor is1given in 

Figure14. The speech1input is typically1recorded at a sampling1rate above 100001Hz. This sampling1frequency was chosen1to 

minimize the1effects of aliasing1in the analog-to-digital1conversion. These1sampled signals1can capture all1frequencies up to15 

kHz, which cover1most energy of1sounds that are1generated by humans. As1been discussed1previously, the main1purpose of 

the1MFCC processor is1to mimic the1behavior of the1human ears. In addition, 1rather than the1speech waveforms1themselves, 

MFFC's are1shown to be1less susceptible to1mentioned variations. 

 
Figure 4. Block1diagram of the1MFCC processor 

 

C. Frame1Blocking : 

In1this step the1continuous speech1signal is blocked1into frames of1N samples, with1adjacent frames being1separated 

by M1 (M < N). The first1frame consists of1the first N1samples. The second1frame begins1M samples after1the first frame, 

and1overlaps it by1N - M samples. 1Similarly, the third1frame begins 2M1samples after the1first frame (or1M samples after1the 

second frame) and1overlaps it by1N - 2M samples. This1process continues until1all the speech1is accounted1for within one1or 

more1frames. Typical values1for N and1M are N = 2561 (which is1equivalent to ~ 30 msec1windowing and facilitate1the fast 

radix-21FFT) and M = 100. 

 

D. Windowing: 

The1next step in1the processing is1to window each1individual frame1so as to1minimize the signal discontinuities1at the 

beginning1and end of1each frame. The concept1here is to minimize1the spectral distortion by1using the window1to taper 

the1signal to zero1at the beginning1and end of1each frame. If we1define the window1as   

where1N is the1number of samples1in each frame, then the1result of windowing1is the signal 

 
 

Typically1the Hamming window1is used, which1has the form: 
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E. Fast Fourier1Transform (FFT) 

The1next processing1step is the1Fast Fourier Transform, which1converts each frame1of N samples from1the time 

domain1into the frequency1domain. The FFT1is a fast1algorithm to implement1the Discrete Fourier1Transform (DFT) which1is 

defined on1the set of N1samples {xn}, as1follow: 

 

Note1that we use 1j here to1denote the imaginary1unit, i.e. . In1general Xn's1are complex numbers. The1resulting 

sequence1{Xn} is interpreted1as follows: the zero1frequency corresponds1to n = 0, positive1frequencies 

correspond1to values , while1negative frequencies correspond1to . 

Here, Fs1denotes the sampling1frequency. The1result after this1step is often1referred to as1spectrum or periodogram. 

 

F. Mel-frequency1Wrapping 

As1mentioned above, psychophysical1studies have shown1that human perception1of the frequency contents1of sounds 

for1speech signals1does not follow1a linear scale. Thus1for each tone1with an actual1frequency, f, measured1in Hz, a 

subjective1pitch is measured on1a scale called1the 'mel'1scale. The1mel frequency scale1is a linear1frequency spacing1below 

1000 Hz and1a logarithmic spacing1above 1000 Hz. As1a reference point, the1pitch of a11 kHz tone, 401dB above the 

perceptual1hearing threshold, is1defined as11000 mels. 

 
One1approach to simulating1the subjective spectrum1is to use1a filter bank, spaced1uniformly on the mel1scale . That 

filter1bank has a triangular1band pass frequency1response, and1the spacing as1well as the bandwidth1is determined by1a 

constant mel1frequency interval. The1modified spectrum1of S(ω ) thus1consists of the1output power1of these filters1when S(ω) 

is1the input. The1number of mel1spectrum coefficients, K, is typically1chosen as 20 

 

G. Cepstrum 

In1this final step, the1log mel spectrum1is converted back1to time. The result1is called the1mel frequency 

cepstrum1coefficients (MFCC). The1cepstral representation of1the speech spectrum1provides a good representation1of the 

local1spectral properties1of the signal for1the given frame1analysis. Because the1mel spectrum coefficients1(and so 

their1logarithm) are1real numbers, we can1convert them to the1time domain using the Discrete1Cosine Transform (DCT). 

Therefore1if we denote those1mel power spectrum1coefficients that are the1result of the1last step are  

, 

we can1calculate the1MFCC's , as 

 

Note1that the first1component is1excluded, from the1DCT since it1represents the mean1value of the1input signal 

which1carried little speaker1specific information. By applying1the procedure described1above, for each speech1frame of 

around130msec with overlap, a1set of mel-frequency1cepstrum1coefficients is computed. These are1result of a1cosine transform 

of1the logarithm of1the short term1power spectrum1expressed on a1mel frequency1scale. This set1of coefficients is1called an 

acoustic1vector. Therefore1each input utterance1is transformed into1a sequence of1acoustic vectors. In1the next section1we will 

see how1those acoustic1vectors can be used1to represent and1recognize the voice characteristic1of the speaker. 

 

 

III. Feature Matching 
A. Introduction 

The1problem of speaker1recognition belongs1to pattern recognition. The1objective of pattern1recognition is to1classify 

objects of1interest into one1of a number1of categories or1classes. The objects1of interest are generically1called patterns and1in 

our case1are sequences of1acoustic vectors1that are extracted1from an input speech1using the techniques1described in 

the1previous section. The1classes here refer1to individual speakers. Since1the classification procedure1in our case is1applied on 

extracted1features, it can1also be referred1to as1feature matching.  

The1state-of-the-art in1feature matching techniques1used in speaker1recognition include Dynamic1Time Warping 

(DTW), Hidden1Markov Modeling1 (HMM), and Vector1Quantization (VQ). In this1paper the VQ1approach will be1used, due 

to1ease of implementation1and high accuracy. VQ1is a process1of mapping vectors1from a large vector1space to a1finite number 

of1regions in that1space. Each region1is called a cluster1and can be1represented by its1center called a1code word. 

The1collection of all1code words is1called a codebook.  
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Figure15 shows a conceptual1diagram to illustrate this1recognition process. In1the figure,  only two1speakers and 

two1dimensions of the1acoustic space are1shown. The circles1refer t the1acoustic vectors1from the speaker11 while 

the1triangles are1from the speaker12. In the1training phase, a1speaker-specific VQ1codebook is generated1for each 

known1speaker by clustering1his/her training acoustic1vectors. The result1code words (centroids) 1are shown in1Figure 5 by 

black1circles and black triangles1for speaker 11and 2, respectively. The distance1from a vector1to the closest1code word of1a 

codebook is1called a1VQ-distortion. In the1recognition phase, an1input utterance1of an unknown1voice is "vector-quantized" 

using1each trained codebook1and the total VQ1distortion is computed. The1speaker corresponding to1the VQ codebook1with 

smallest1total distortion is1identified. 

 
Figure 5. Conceptual1diagram illustrating1vector quantization codebook1formation. One speaker1can be discriminated 

from1another based of1the location of centroids. 

 

B. Clustering the1Training Vectors 

After the1enrolment session, the1acoustic vectors extracted1from input speech1of a speaker1provide a set of1training 

vectors. As1described above, the1next important step1is to build1a speaker-specific1VQ codebook for1this speaker using1those 

training1vectors. There is1a well-known1algorithm, namely1LBG algorithm [Linde, Buzo1and Gray, 1980], for1clustering a set 

of1L training vectors1into a set1of M codebook vectors. The1algorithm is formally1implemented by1the following 

recursive1procedure: 

1. Design1a 1-vector1codebook; this is1the centroid of1the entire set1of training1vectors (hence, no1iteration is 

required1here). 

2. Double1the size of1the codebook1by splitting each current1codebook Yn according1to the1rule 

 

 
where1n varies from11 to the1current size1of the codebook, and1is a splitting1parameter (we choose1=0.01). 

3. Nearest-Neighbor1Search: for1each training vector, 1find the code1word in the1current codebook that1is closest1 (in 

terms1of similarity measurement), 1and assign1that vector1to the corresponding1cell (associated1with the closest 

code1word). 

4. Centroid1Update: update1the code word1in each cell1using the centroid1of the training1vectors assigned to1that cell. 

5. Iteration11: repeat1steps 3 and14 until the average1distance falls1below a preset1threshold 

6. Iteration12: repeat steps12, 3 and 41until a codebook1size of M1is designed. 1Intuitively, the LBG1algorithm 

designs1an M1vector codebook in1stages. It starts1first by designing1a 1-vector1codebook, then1uses a splitting 

technique1on the code1words to initialize1the search for1a 2-vector1codebook, and1continues the splitting1process until 

the1desired M-vector codebook is1obtained.  

Figure16 shows, in a1flow diagram, the1detailed steps1of the LBG algorithm. "Cluster1vectors" is the1nearest-neighbor 

search1procedure which1assigns each training vector1to a cluster1associated with1the closest code1word. 

"Find1centroids" is the centroid1update procedure. "Compute1D (distortion)" sums1the distances of1all training 

vectors1in the nearest-neighbor1search so as1to determine whether1the procedure1has converged.  
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Figure 6. Flow1diagram of the1LBG Algorithm 

 

IV. Conclusion 
Even1though much care1is taken it1is difficult1to obtain an1efficient speaker1recognition system since1this task 

has1been challenged by1the highly variant input1speech signals. The principle1source of1this variance is1the speaker himself. 

Speech1signals in training1and testing sessions1can be greatly1different due to many1facts such as1people voice change1with 

time, health1conditions (e.g. the1speaker has a1cold), speaking rates, 1etc. There are1also other1factors, beyond1speaker 

variability, that1present a challenge1to speaker recognition1technology. Because1of all these1difficulties this technology1is still 

an active1area of research. 
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