ROI BASED MEDICAL IMAGE COMPRESSION USING BLOCK BASED PCA

Nikita Mishra, Chandrashekhar Kamargaonkar
M.E. Student, Associate Professor
Department of Electronics and Telecommunication
SSTC, SSGI, Junwani, Bhilai, Chhattisgarh, India

Abstract

CT or MRI Medical imaging produces digital form of human body pictures. There exists a need for compression of these images for storage and communication purposes. Current compression schemes provide a very high compression rate with a considerable loss of quality. In medicine, it is necessary to have high image quality in region of interest, i.e. diagnostically important regions. This work discusses a model of lossless compression in region of interest with Block based PCA with high compression rate (CR) as well as high PSNR. Also the value of Mean Square Error (MSE) is very low. We evaluate our method on medical thyroid gland. This proposed method will reduce the errors caused due to manual analysis, time consuming, inaccurate and also eliminate the need of intensive trained person's in order to avoid diagnostic errors.

Keywords: Block based PCA, Region of Interest, PSNR, MSE, and CR.

I: INTRODUCTION

Medical imaging has had an excellent impact on the identification of diseases and surgical planning. However, imaging devices still generate a lot of information per patient, usually one thousand images or 500 MB (approx). These information requires large storage space and economical transmission. Regardless of greater improvement in transmission storage space and communication technologies, the medical image compression plays the demanding role[1].

Image compression is a field where an original image is reduced to a smaller sized image and then for the purpose of remote communication this reduced image is used. At the receiver site, this reduced image is again converted to original image by the implementation of some algorithms. The result of these algorithms produces another image which may be very close to the original one[2].

fig (1): block diagram of image compression

In telemedicine, medical images generated from medical centers with efficient image acquisition devices such as for example Computed Tomography (CT), Magnetic resonance Imaging (MRI), Ultrasound (US), Electrocardiogram (ECG) and Positron Emission Tomography (PET) have to be compelled to be transmitted handily over the network for studying by another medical professional Apart from preserving essential information in the medical images, high compression ratio and capability to decode the compressed images at various qualities will be the major concerns in medical image compression[1].

In this paper we describe a coding scheme based on block based principal component analysis to compress medical images. Usually only part of the image is important to the diagnosis. Using the thyroid gland image as an example, only the Region of interest areas are important and other regions can be coded with much lower bit rate without decreasing the diagnostic value of the image. The background area can be
coded as simple models. As for the region of interest, more sophisticated algorithm will be required to achieve high compression ratio and preserve necessary information for diagnosis at the same time. This suggests that block based principal component analysis will be a good candidate for the block transform coding.

II: METHODOLOGY

A: Patient
According to a study conducted among twenty five thousand four hundred and thirty seven thyroid patients were referred to the radiodiimmunoassay (RIA) laboratory of the Institute of Radiotherapy and Nuclear Medicine (INRUM), Peshawar, during the year 1984-1990 (except 1987), 1995 and 1996. The data revealed that thyroid problems prevailed more in the adults group (> 13-40 years) and females. The referral of thyroid patients was more common in summer (May-Jun.) than other seasons.

B: Processing
A grayscale image (also called gray-scale, gray scale, or gray-level) is a data matrix whose values represent intensities within some range. MATLAB stores a grayscale image as an individual matrix, with each element of the matrix corresponding to one image pixel.

C: Segmentation
Segmentation of image is very important and can be classified as the most difficult function in image processing. Segmentation is defined as the grouping of data which is share same characteristics such as color, intensities etc. The analysis task such as classification and recognition depend on the result produced from segmentation.

Segmentation of hyperspectral images enables easier analysis of hyperspectral scene using unsupervised learning methods. There are different studies on the segmentation of hyperspectral images. In one of those studies, independent component analysis based approach is proposed which extracts density of the data in each cluster and models distribution of the data using non-Gaussian methods. Two segmentation studies based on Gauss mixture models and non-Gauss mixture models using only spectral information are introduced. Hidden Markov model is another method used for segmentation of hyperspectral images. It is also aimed to obtain segmentation maps using supervised algorithms such as artificial neural networks and support vector machines. Both spectral and spatial information is utilized using hierarchical clustering in. Multi-objective optimization based segmentation approaches are also introduced for spectrospatial segmentation of hyperspectral images using genetic algorithms and particle swarm optimization.

D: Block based PCA
Rather than compressing the entire image at once, we are interested in acting on the sub-block of the original image. Block-by-block PCA was initially proposed by Taur and Tao [8] after they tested the thought of applying a different number of principal components for every blocks in the image. The input image is partitioned off into blocks of size n and PCA algorithm was applied one-by-one on every blocks. Each block \(X_i^{th} \) consists of intensity values \(f(x, y) \) where \(i \) represent the block number of the image.

\[
X_i^{th} = \begin{bmatrix}
 f(0,0) & f(0,1) & \cdots & f(0,n-1) \\
 f(1,0) & f(1,1) & \cdots & f(1,n-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 f(n-1,0) & f(n-1,1) & \cdots & f(n-1,n-1)
\end{bmatrix}_{(n \times n)}
\]

In this work, compression ratio relation is developed based on the matrix size stored in the compressed data:

\[
CR_b = 1 - \left(\frac{n^k MN}{M N^n} \right)
\]
Where $\frac{MN}{n^2}$ is the total number of blocks for an image with size $M \times N$.

E: Block to row PCA

Like block-by-block PCA, the original image is divided into $n \times n$ blocks. Every block is concatenated into row to get a transformed matrix,

$$D = [x_1 \ x_2 \ \ldots \ \ x_{\text{block}}]$$

Where x_i contains all elements within a block,

$$X_{i}^{th} = \begin{bmatrix} f(0,0) \\ f(1,0) \\ \vdots \\ f(n^2-1,0) \end{bmatrix} (n^2 \times 1)$$

PCA is then applied on the transformed matrix. The compressed information obtained during this case is,

$$Y = [V^T \times \bar{D}] (n^2 \times k)$$

Where V is the feature matrix and \bar{D} the mean-adjusted matrix. This compressed image can be reconstructed utilizing backwards strategy that was utilized in concatenation. Consequently, the compression ratio, again based on the compressed data, is characterized as:

$$CR_r = 1 - \frac{n^2k}{MN}$$

E: Proposed Work

The proposed methodology shown in fig 2. The region of interest part is segmented first and then is compressed by using Block based PCA.

![Diagram](image-url)
During segmentation no. of ROI’s are selected where diagnosis has to be done. Then the selected ROI is fed to Block based PCA algorithm i.e. Block based PCA as well as block to row PCA.

\[
\text{Resultant Compression ratio of ROI, } CR(\%) = CR_b \times ROI \text{ area}
\]

Or

\[
\text{Resultant Compression ratio of ROI, } CR(\%) = CR_r \times ROI \text{ area}
\]

Where ROI area = \(\frac{\text{Size of ROI image}}{\text{Size of original image}} \)

For image quality metric PSNR is calculated as

\[
\text{PSNR} = 10 \times \log_{10} \left(\frac{255}{\sqrt{\text{MSE}}} \right), \text{ where MSE is Mean Square Error,}
\]

\[
\text{MSE} = \frac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \|f(i, j) - g(i, j)\|^2
\]

\(f \) - Original image Pixel Value
\(g \) - Compressed image Pixel Value
\(M \) - Number of rows of the images and \(i \) represents the index of that row
\(N \) - Number of columns of the images and \(j \) represents the index of that column.

III: RESULTS AND DISCUSSION

The host medical image is tested on an Intel (R) core i5 PC using MATLAB R2014a. The host RGB image is firstly converted into GRAY scale image then segmentation is done. During segmentation ROI part is extracted from the converted image and compression of selected ROI part is done by using Block based PCA.

fig(3): detection of 1st and 2nd ROI

fig(3) shows the detection of ROI’s whereas the below fig(4) shows the detected Region of Interest blocks which will be transmitted after compression through Block based PCA. ROI region require the quality of image should be high. And fig(5) is showing the output of compression of ROI part via Block based PCA(BPCA).
PSNR in dB is the measure of quality of the reconstructed image varies with compression ratio. PSNR value equals to infinity if there is no quality discrepancy between the original gray image and the reconstructed image. Compression ratio equals to zero if all principal components are chosen while compression ratio approaches to one if lesser principal components are used.
IV: CONCLUSION
In this work we've done our work on Region of Interest of a medical image of a thyroid gland. From the work, it can be concluded that the compression performance of block-to-row PCA is better than block-by-block PCA, in terms of Mean Square Error and compression ratio. Therefore we are getting maximum CR on ROI part without degrading the quality of the image. Future work incorporates localizing the ROI in a more accurate way for example to segment the exact shape of ROI tracing the boundary since almost all of the medically vital data is in arbitrary shape.

REFERENCES