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_________________________________________________________________________________ 

Abstract : In this paper is the work based on the domination on Hamiltonian cycles in a graph. We discussed the nature and 

impact of domination on Hamiltonian graphs. The work is planned to study the Hamiltonian graphs and domination sets on any 

graph and type of dominations. We discussed the independent domination on a graph. Then using the properties of hamiltonicity 

of graphs and domination, we tried to find the domination sets in Hamiltonian graph. 
________________________________________________________________________________________ 

I. INTRODUCTION 

 We have chosen to present mathematical topics from the field of graph theory. Graph theory to bring a 

previously unfamiliar scientist to the frontiers of research rather quickly. Graph theory has involved as a 

collection of seemingly disparate topics.Interest in a graphs and their application continues to grow rapidly, 

largely due to the usefulness of graphs as a models for the computation and optimization .In the last three 

decades, graph theory has established itself as a worthwhile mathematical discipline  and  there are many 

application of graph theory to a wide variety  of subjects which include  Operations Research, Physics, 

Chemistry, Economics, Genetics, sociology, linguistics, Engineering, computer Science, etc…  

Graph theory also has been independently discovered many items through some puzzles that arose from the 

physical world, consideration of chemical isomers, electrical, network, etc.. 

Domination in graphs is the most fascinating area for many researchers in graph theory all over the 

world. The reason for this attraction is not very difficult to fathom. The concept of domination can be 

applied to form various Mathematical models for practical problems. Several areas like communication 

network, decision making process, administration, social network theory chemical bond structure etc. used 

in domination theory. Research in domination theory centers around two major ideas. 

(i) New types of domination to suit the needs. 

(ii) New types of dominating sets to meet the demands of the practical situation. 

When different types of domination are introduced and parameters are studied, a natural question 

that arises in one’s mind is ”Is there a way to unify them with respect to a particular condition?”. The 

second major problem that plays a vital role in any branch of Mathematics is the problem of representation.  

II. Preliminaries 

Hamilton cycle: 

 Hamilton cycle in the graph G is a cycle that passes through each vertex exactly once. 

Hamilton walk: 

 Hamilton walk in a graph G is a walk that passes through each vertex exactly once. 

Hamiltonian graph: 

            If a graph has a Hamiltonian cycle it is called Hamiltonian graph. 
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Semi Hamiltonian graph: 

If a graph has a walk it is called semi Hamiltonian graph. 

PROPERTIES OF HAMILTONIAN: 

1. The graph G (2n + 2, 3n + 3) for n ≥ 1, which is regular of degree three, non-bipartite and planner, is 

always Hamiltonian. 

2. The graph G(3m + 6, 12 + 6m) for m ≥ 1, which is regular of degree four, non-bipartite and planner, has 

two edge-disjoint Hamiltonian cycles. 

3. If one vertex is added outer side the region of the graph H(3m + 6, 6m  + 12) for m ≥ 1, making the 

degree of added vertex of degree  four, the new graph H(3m + 7, 6m + 16) for m ≥ 1, which is 

 planar, non-regular, non-bipartite but always Hamiltonian graph. 

4. Intersection graph obtained from Euler diagram is not Hamiltonian.  

5. The graph structure G (3m + 7, 6m + 14) for m ≥ 1, which is regular of degree four, non-bipartite and 

planner, has two- equal path  partitions. 

6. The graph H(3m + 7, 6m + 14) for m ≥ 1, which is planner, regular of degree four, non-bipartite but 

Hamiltonian graph , has perfect  matching 4 with non- repeated edge for simultaneous changes of  m= 

2n+1 for n≥0.  

7. Let ‘G’ be a complete graph having n ≥ 3 vertices then L(G) is Complete Hamiltonian. 

 Let G be a graph in which every vertex has odd degree. Then G contains an even no. of Hamilton 

Cycles through a fixed edge of G. 

8.The total no of directed Hamilton in cycles for all simple graph of order  n=1,2,3.Thereexists a value of r 

such that if G is an r-regular Hamilton graph of n vertices,then G contains atleasttwo Hamiltonian cycles. 

9. Let G=(V,E) be a simple a graph where |V|=n≥3,if for every two vertices u,v  

V, ( , ) deg(u) deg(w) nu w E    . 

10. If G =(V,E) is a simple graph having n vertices and for every vV we have deg(v) ≥n/2 then G is 

Hamiltonian graph. 

Domination: 

 In graph theory, a dominating for a graph G=(V,E) is a subset D of V such that every vertex not in D 

is adjacent to atleast one member of D. The domination number ɣ(G) is the number of  vertices in a smallest 

dominating set of G.Or 

A subset D  V is called a dominating set of a graph G if for every v V, either vD or v is 

adjacent to a vertex in D, that is, N [D]= V. The minimum cardinality of a dominating set in G is the 

domination number of G. 

Independent domination: 

 An independent set in G is a set of pairwise nonadjacent vertices, and the independence number of 

G, P(G) is the maximum cardinality of an independent set in G. A dominating set which is also an 

independent set is called an independent dominating set. 
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III. DOMINATION IN HAMILTONIAN GRAPHS 

 This chapter provides a summary of results that have previously been obtained for domination in 

Hamiltonian graphs, and in particular, those results that motivated the new results for independent 

domination in Hamiltonian graphs and total domination in Hamiltonian graphs. Section 4.1 contains general 

results on domination in graphs and section 4.2 contains the results on domination in Hamiltonian graphs. 

DOMINATION IN GRAPHS 

Theorem 

 If  G is a connected 3- -critical graph, then G as a dominating cycle. 

Proof: 

 Since a connected 3- - critical graph G contains a dominating path, it must contain a longest such 

path by show in the longest dominating path in G is actually a Hamiltonian path, it shows G as a 

Hamiltonian cycle. 

Theorem 

 Let G be a graph on n vertices. If ( ) (y) nd x d  for every pair of non adjacent vertices x and y, then 

G is Hamiltonian . 

Proof : 

 Bondy and chvatal generalize ore’s theorem by defining the closure of a graph G to be the graph cl 

(G) obtained from G by recursively joining non adjacent vertices whose degrees sum to at least n. they 

proved that a graph G is Hamiltonian if and only if its closure is Hamiltonian . 

 A new closure concept the could be useful in the study of Hamiltonian properties of     3- - critical 

graph. It involves adding an edge uv to G when ever {u,v} v w  for some ( ) 3d w  . The obtained graph is 

denoted by D*(G). it follows the result. 

Theorem 

If G is a connected 3- - critical graph then G as a dominating cycle. 

Theorem 

If G is a 3- - critical graph on more then six vertices, then G as a Hamiltonian path . 

Theorem 

 The independence number β of a 3-  - critical graph with minimum degree 

δ 2 satisfies 2   .more over if 2   then every maximum independent set contains every vertex 

of degree δ. 

Lemma  

Let W be an independent set of k 3 vertices of a 3-  - critical graph G such that W {x} is 

independent for sum x W . 

Lemma  

( )i i j j i jIfu c and u c are twoverticeswithi j thenu u E G     
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Lemma 

 Let S be a set of vertices of C, and let A be the set of vertices of C which are adjacent on C to a 

vertex of S. If S is a C-independent set, and every vertex of A is adjacent in G−E(C) to some vertex of S, 

then G has at least one more Hamiltonian cycle. In particular, if S is a C-independent C-dominating set in G, 

then G contains at least two Hamiltonian cycles. 

Proof  
 The second statement follows immediately from the first. To prove the first statement, we remove 

edges from G − E(C) until every vertex of A has degree three, and is adjacent to exactly one vertex of S.  

Let this graph be G′. Take a Hamiltonian path P ⊂ C which begins with a vertex s ∈ S and ends (by default) 

in a vertex of A. In the Hamiltonian path graph H, defined on the Hamiltonian paths in G′ beginning with s.  

 Then every Hamiltonian path has degree at most two, since Hamiltonian paths in G′ beginning with s 

end in a vertex of A, which has degree three in G′. Now P has degree one, since P ⊂ C.  

 It follows that there is a Hamiltonian path P′ ̸⊂ C of degree one in H, which means that P′ is 

contained in a Hamiltonian cycle in G, which is distinct from C. 

Therefore to prove that a Hamiltonian graph G has at least two Hamiltonian cycles, we can find C-

independent C-dominating set in G. 

 We remark that this is only a sufficient condition, not a necessary one. In addition, this is exactly the 

situation with bipartite graphs in Theorem 4.1.2: any one of the parts is a C-independent C-dominating set. 

Using this condition, we prove our main theorem. 

Theorem 

Let G be a Hamiltonian graph of order n such that ( ) 6G  . Then 
6

(G) .
17

n
   

Proof: 
Let V(G)={1,2,……,n} and, without loss of generality, assume C=1,2,…,n,1 is a Hamiltonian cycle of G. if 

n16, then by lemma 3, (G)
3

n
 

6
.

17

n
  thus ,n17. Now let k 6 and consider the following cases. 

Case 1.n=3k-1. 

Then D={2,5,….3k-1} is a DS set of G such that |D|=K=
1

3

n 
. Since n  17. It follows that 

1
(G)

3

n





6
.

17

n
  

Case 2. n=3k. 

Then D={2,5,….3k-1} is a DS set of G such that |D|=K=
3

n
. It follows that      (G)

3

n
 

6
.

17

n
  

Case 3. n=3k+1. 

          If k8, then n25, and by lemma 4, (G) k 
6

.
17

n
 suppose k11.  

 Then n  34 and D={2,5,….3k-1,3k+1} is a DS of G such that |D|=k+1=
2

.
3

n 
 since n  34, it 

follows that 
2

(G)
3

n





6
.

17

n
  

 Hence, we only need to verify that if G has order n=28, n=31, respectively, then G has a DS of 

cardinality 9,10respectively. 

Since the proofs are similar, we consider only n=31. The proof is by contradiction ,that is we 

assume (G) 11  .  

Since ( ) 6G  ,each vertex of G is incident with at least four chords of C. we choose a lasso L of G 

of order 31,obtainable from C , such that the number of vertices comprising the body of L is maximum.  
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That is, L is a spanning sub graph of the union of C and a chord of C 

            Let ( )v V G .suppose without loss of generality, that 1 v is a chord of C such that 1,v,v-1,…1 is the 

body of L. note that 1 is adjacent to both v and 31. We consider possible values of v. if 1 is adjacent to3i for 

some 1 10i  , then by lemma 1, G can be dominated by 10 vertices , which is a contradiction. Thus we 

may assume that 1 is not adjacent to 3i for all i. by similar reasoning ,31 is not adjacent to 3i-1 for all i. 

since the body of L is a maximum, and by re-labeling if necessary, we have that 17v  . Since 1 is not 

adjacent to 3i for all I, we have          v {17,19,20,22,23,25,26,28,29}. 

          Before proceeding further, we bound the adjacencies of vertices 31 and 30. Suppose (b,c respectively) 

is adjacent to (30, 31 respectively). Then we obtain lassos L1 and L2 (L’1 and L’2, respectively) with cycle 

lengths b+1 and 32-b        (c+2 and 31-c respectively). Thus b+1v and 32-b v(c+2 v and 31-c v, 

respectively), and so 32-vbv-1(31-v cv-2, respectively). 

Case 3.1.v=17. 

          Then 31 is possibly adjacent to vertices in {32-17,…,17-1,1,30}={15,16,1,30}, contradicting the fact 

the deg(v)6. 

Case 3.2.v{19,22,25,28}. 

           Since 31-v cv-2, 30 is adjacent to some vertex on the cycle 1,v,v-1,….2,1,  as v1 and 3, lemma 

2 implies that G can be dominated by 10 vertices, a contradiction. 

Case 3.3.v=20. 

           Again we check the possible adjacencies of 31. By reasoning like in case 3.1, we  have that 31 is 

adjacent to 1,30 and possibly 12,13,….19. recall that 31 is not adjacent to 3i-1 for all 1 i 10. Thus 31 is 

not adjacent to 14 or 17. Since deg(31)6,31 must be adjacent to at least one of the vertices 12,15 or 18. 

Then D={3,6,9,1215,18,20,23,26,29} is a DS of G of cardinality 10, a contradiction. 

Case 3.4. v=23. 

Initially , 31 is adjacent to 1,30, and possibly vertices in {9,10,…21,22}. Let  

D={3,6,9,1215,18,21,23,26,29}. Then D dominates G if 31 is adjacent to3i for some 1 i 7. Hence , we 

eliminate these possibilities and also vertices of the form 3i-1. We now have that 31 is possibly adjacent to 

vertices in {10,13,16,19,22}. Since deg(31)6,31 must be adjacent to either 19 or 22. 

            Now consider the adjacencies of 30. Initially, 30 is adjacent to 29,31 and possibly vertices 

in{8,9,…..,20,21}. Let D’={1,3,6,9,12,15,18,21,25,28}. Then D’ dominates G if 30 is adjacent to 3i for 

some 1 i7.  

Hence , we eliminate these possibilities and also the vertices of the form 3i-2. We now have that 30 

is possibly adjacent to the vertices in{8,11,14,17,20}. Since deg(30)6,30 must be adjacent to either 8 or 

11. Then D”={2,5,8,11,14,17,19,22,25,28} is a DS of G of cardinality 10, a contradiction. 

Case 3.5.v=26. 

Initially , 31 is adjacent 1,30, and possibly vertices in {6,7,…,25}. Let D={3,6,9,12,15,18,21,24,26,29}. 

Then D dominates G if 31 is adjacent to 3i for some 1 i 8. 

 Hence , we eliminate these possibilities and also vertices of the form 3i-1. We now have that 31 is 

possibly adjacent to vertices in {7,10,13,16,19,22,25}. Since deg(31) 6,31 must be adjacent to at least one 

of the vertices in {16,19,22,25}. 

          Now consider the adjacencies of 30. Initially, 30 is adjacent to 29,31 and possibly vertices 

in{5,6,….,24}. Let D’={1,3,6,9,12,15,18,21,24,28}. Then D’ dominates G if 30 is adjacent to 3i for some 

1 i8.  
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 Hence , we eliminate these possibilities and also the vertices of the form 3i-2. We now have that 30 

is possibly adjacent to the vertices in{5,8,11,14,17,20,23}. Since deg(30)6,30 must be adjacent to at least 

one of the vertices in{5,8,11,14}.  

 Then D”={2,5,8,11,14,16,19,22,25,28} is a DS of G of cardinality 10, a contradiction. 

Case 3.6.v=29 

Initially , 31 is adjacent 1,30, and possibly vertices in {3,4,…,28}. Let D={3,6,9,12,15,18,21,24,27,29}. 

Then D dominates G if 31 is adjacent to 3i for some 1  i 9.Hence , we eliminate these possibilities and 

also vertices of the form 3i-1. We now have that 31 is possibly adjacent to vertices in 

{4,7,10,13,16,19,22,25,28}. Since deg(31)  6,31 must be adjacent to at least one of the vertices in 

{16,19,22,25}. 

          Now consider the adjacencies of 30. Initially, 30 is adjacent to 29,31 and possibly vertices 

in{2,3,….,27}. Let D’={1,3,6,9,12,15,18,21,25,28}. Then D’ dominates G if 30 is adjacent to 3i for some 

1 i9. Hence , we eliminate these possibilities and also the vertices of the form 3i-2. We now have that 30 

is possibly adjacent to the vertices in{2,5,8,11,14,17,20,23,26}. 

           Since deg(30)  6,30 must be adjacent to at least one of the vertices in{5,8,11,14}. Then 

D”={2,5,8,11,14,16,19,22,25,28} is a DS of G of cardinality 10, a contradiction. 

             Suppose 31 is adjacent to one of the vertices in {19,22,25,28}. Let 

D”={2,5,8,11,14,17,19,22,25,28}. Then D” dominates G if 30 is adjacent to 3i-1 for some 1 i 6. Hence , 

we eliminate these possibilities. If follows that 30 is adjacent to 29,31 and possibly to vertices in 

{20,23,26}, which implies that deg(30)5, a contradiction. We conclude that 31 is not adjacent to any of 

the vertices in {19,22,25,28}. 

              Suppose 31 is adjacent to 4. Then 2 must be adjacent to some vertex on the cycle 31,4,5,…30,31 of 

length 28. By lemma 2,G can be dominated by 10 vertices , which is a contradiction. Suppose 31 is adjacent 

to 7. Then 2 must be adjacent some vertex on the cycle 31,7,8,….30,31 of length 25.  

 By lemma 2, the vertices on the cycle and the vertices 1,2,3 can be dominated by a set composed of 

9 vertices. Adding the vertex 5 to this set yields a DS set of G of cardinality 10, a contradiction.  

 Thus , 31 is adjacent to 1,30 and possibly to vertices in {10,13,16} which implies that deg(31) 5, a 

contradiction. 

Corollary: 

  Let G be a Hamiltonian graph of order n such that ( ) 3G k   . Then (G)
3 1

kn

k
 

  
Theorem 

Let G be a graph of order n such that ( ) 7G k    then ( )
3 1

k
G

k
 


 

Proof:  Suppose 7 ( )k and let G k  .We must show that 1(1 1 ( )) 1

11

1 1
1 ( ) 1

( ) 1 1

1
( ) 1

1

G
k

x

G k
G k

f x x
x






 



   
     

   

 
   

 

 

(1 1 ( ))

1
1 ( )

( ) 1 3 1

G

k
n G

G k






  
       

 

It is suffices to shows that 

(1 1 ( ))

1
1 ( )

( ) 1 3 1

G

k
G

G k
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Let

11
1

( ) 1
1

x

f x x
x



 
   

 
 for x7.Then 

11

1 ( 1) 1
( ) 0

1

xIn x
f x

x x


  

   
 

 for x>0. Hence x 7, fis 

immediately decreasing. Since  ( ) 7G k   ,   wehave ( ( )) ( )f G f k  ;that is  

1(1 1 ( )) 1
1 1

1 ( ) 1
( ) 1 1

G
k

G k
G k






 
   

     
   

. 

Now, let 
1

( ) ( )
3

H x f x  and  notice that ,since f is monotonically decreasing ,H(x) is also. Then  for 

x=8,we have 

(1 1/8)
1 1

(8) (8) 1 8 0
9 3

h H



 
     

 
.Since h is monotonically increasing, it follows that 

( ) (8) 0h x h   for 8x  ,more over for x=7 we have 
(1 1/7)

1 7
(7) 1 7 0

8 3(7) 1
h



 
    

 
.Thus,

(1 1/k)
1

1
1 3 1

k
k

k k



 
  

  
for k7, and the result follows. 

Theorem 

Let G be the Hamiltonian graph ,suppose that P is a longest (x, y) path  such that {x∩ {x, y}} is a 

small as possible and that  for this path , d(x ) 4p k  .Let iz p .If 

i)    1, z , ,p k pa x b z x  and 1,kz p   

ii) There exist a some vertex ia A  with i j such that )     1, z , ,p k pa x b z x   then there is an 

independent set I such that px I  and 1x k   

Proof:   

 If x X  ( y Y respectively) ,  then B k ( A k , respectively). Thus by lemma is an 

independent set is required. Hence we may assume { , }x y X  which implies that for any longest (x,y) path 
1p . 

1{ , } ( )
p

x y N x   

If z p , then . By lemma  there is some vertex 1iu p   such that 1 1, ( )jb u a u E G

    which is 

contradicts Then 1jz b  . As sum there is some  ia A  such that ( )ma z E G If m j , then  the  (x, y) 

path  1 1m p k m kxPx x x pz a pza py

    is Hamiltonian path, a contradiction. If m>j  there 

a  some vertex  mu p  such that 1,a ( )zu u E G  .Thus ,the (x ,y) path 1p m mxx x pz a puzPa u Py 
ur

 is 

Hamiltonian also a contradiction. Therefore , A∪{ , }pz x
is an independent set as required. 

(1) We will 

consider the following  two cases separately . 

Case:1  j≥ i, In this case ,we will show A∪{ , }pz x
 an independent set. We will  first show that  zB. If  z∈ 

B ,then  1jz b  . That is  
1,i j pa b x

    . Thus by lemmas there is a vertex  v∈ 1p  such that 

1

1 1, ( )ja v b v E G  , which contracts  thus , zB and hence ( )pz x E G  .  

By lemma and ( )pz x E G   in order to prove that  A∪{ , }pz x
is an independent set but we need to 

show that for any , ( )m ma A a z E G  . Suppose to the contrary that there is some ,ma A  such that 

( )ma z E G . 

 

If m=1  then by lemma,  we have  2 ( )b z E G  which implies 2 ( )ia b E G  and hence 

1p m mxx x pz a puzPa u Py 
ur

 is a Hamiltonian path connecting x and y ,a contradiction. Hence 1 ( )a z E G   
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If 2≤m≤j, then since  1 ( )a z E G , we can see that 1p m mxx x pz a puzPa u Py 
ur

 is a Hamiltonian path 

connecting x and y ,a contradiction.  

Now Let  . If   then p m m mxx x pz a puzPz a Py 
ur

is a Hamiltonian path 

connecting x and y a contradiction. 

 Thus  which implies that . There exist a Vertex  such that 

Thus,the (x,y)-path 1p m mxx x pz a puzPa u Py 
ur

 is a Hamiltonian path contraction  

Case2:  : In this case, we will show  is an independent set. Since  we have 

 and hence . Since , it follows from that to prove  is an 

independent set it is enough to show that for every  ,  .Suppose to the contrary that 

there is some such that   .  

We have  Thus, We have . For any  with 

This implies  in the following, we will show that  is also 

impossible. 

If   that is , then z is a  B- vertex. Since [ ]  

we  have  

   If  then since  z is a vertex and  is a A- vertex, we have This 

implies there is some vertex  such that   

Thus , zv   is a Hamiltonian path connecting x and y, a contradiction.  

Hence we have j=i-1. If j=i-1>1, then Q=  za1  (x,y)-path of length n-2 

with . 

We have  Thus, the  (x,y)-path   is Hamiltonian. If  

 is an (x,y)-path of length n-2 with  . 

We have   Thus, the (x,y)-path  is Hamiltonian, also a contradiction. 

Now let m=i+1. If then , We have  which contradicts that   

 Conclusion: 

This dissertation is the work based on the domination on Hamiltonian cycles in a graph. We 

discussed the nature and impact of domination on Hamiltonian graphs.The work is planned to study the 

Hamiltonian graphs and domination sets on any graph and type of dominations.We discussed the 

independent domination on a graph. Then using the properties of hamiltonicity of graphs and domination, 

we tried to find the domination sets in Hamiltonian graph.This research work is framed with four chapters 

by taking the properties of Hamilton graphs and the properties of  Domination in which the work step in to 

study the construction of domination sets on the Hamilton graph. 
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