Reliability-Centered Maintenance Methodology for Compressed Air System

Pradeep C. TupakeUmesh B. GundYogesh B. hagareStudentstudentstudentDr D Y Patil Institute Of Engg and Technology Pimri, pune

Abstract:

Maintenance is the work which carried out keep or protect and assets to continuous use of apparatus in industrial application without failure or above a least acceptable level of performance and its design characteristics and service life without unforeseen renewable and major failure that cause stopping production. However, conventional maintenance strategy is commonly defined empirically based on personal experience. Due to this practice maintenance plans are not related to failure mode of equipment. Therefore company spend time, money and resources to maintain equipment. Be that as it may, there is no assurance of maintenance program viability.

This paper presents the new approach of maintenance called reliability cantered maintenance for compressed air system. Compressed air system consist of electric motor, compressed pump, pressure switch, receiver etc. RCM is a systematic risk based method for achieving cost effective maintenance task. RCM has aim to make sure that maintenance strategy result largest availability of equipment for operation and efficiency up to maximum operating life. By applying RCM it demonstrated that the essential time between failure for plant equipment and the chances of sudden equipment failure diminished.

Idex	terms:	RCM,	Preventive [Variable]	Maintenance,	FMEA,	Criticality,	Reliability
1. Intr	oduction						1

Compressed air system is an important part of many processing industry, application, maintenance, unwavering quality, accessibility and aggregate maintenance dependability cost are some of most critical factor in Compressed air system. Compressed air system provide compressed air for various application in industrial process. This work mean to create maintenance program in light of the RCM technique for the Compressed air systemThis method should be able to cut the down time DT and enhance accessibility, and dependability of plant gear also, it should be advantages to diminish the unexpected failure and substitution of system components.

RCM is a deliberated way to find the maintenance requirement of plants and equipment in its proper operating[1].it is used advanced preventive maintenance (CP) technique. The developed preventive maintenance program limited equipment failure and gives industrial plant with effective equipments[2]. RCM is the outstanding among other know and most utilized device to safeguard the operation efficiently of the compressed air system.

RCM works by changing the high remedial maintenance cost with the cost of altered Preventive or prescient polices, thinking about the potential shortening of "useful life" of the equipment considered In some cases, it is hard to choose suitable maintenance strategy for each bit of equipment and each failure mode, for the great measure of equipment and dubious cause of maintenance strategy determination.

RCM method uses predictive maintenance, preventive maintenance, real time monitoring(RTM), and proactive maintenance techniques in a co-ordinate way to increase the chance. That a machine or part will work in the required way up to its design life cycle with a minimum maintenance cost[5,6]

2. Reliability-Cantered

Maintenance Methodology

Reliability cantered maintenance RCM is nothing but a mix of different maintenance practice such as time or interval based, condition based, reactivate and proactive only difference in the strategy is that, rather than being applied independently, they are integrated to take benefits of their strength to increase efficiency, equipment reliability and life cycle cost.

www.ijcrt.org

Many innovative approaches to maintenance like, total productive maintenance(TPM), preventive maintenance, reliability centered maintenance has aim to ensure enhancing of effectiveness of machine to ultimately improve the productivity and cut down time[7].

2.1. component of reliability cantered maintenance

Various components of RCM is shown in fig. RCM methodology consist of preventive maintenance, condition based maintenance, productive maintenance and reactive maintenance and its example which shown in **fig.1** [9].

This methodology can be applied in seven steps

- □ Step1: system selection and data collection.
- □ Step2: system boundary definition.
- □ Step3: system description and functional block.
- □ Step4: failure mode effect analysis.
- \Box Step5 : logic tree diagram.
- □ Step6: Criticality analysis.
- \Box Step7: task selection.

Fig.3 steps for applying methodology in compressed air system

3. Case Study

3.1 Selection Of Criticality Equipment For Analysis

Here we selected compressed air system as a critical system which is used in almost all industrial applications. This system provide compressed air for various industrial application like air hammers drill wrenches etc.

3.2 System boundary overview

Standard ISO 14224[8] recommends a taxonomy and how to proceed to define boundaries. Boundary description is imperative for collecting, merging and analysing RM data from different industry, plants or sources. **fig.4** and **fig.5** shows boundary diagram for motor and air compressor respectively

3.3 system description

Air compressor unit is a important part in thermal power plant and industrial like auto part manufacturing etc. Air compressor is a device that convert power using electric motor, diesel engine into potential energy stored in pressurised air. Compressor unit consist of various component like motor, drain valve and exhaust valve etc. component of typical compressor unit shown in **fig.2** electric motor provide power to the

compressor head, in turn compressor head compresses quantity of air into storage tank. There are two basic type compressor used

1) Positive displacement

It has two type reciprocating and rotary.

2) dynamic

While dynamic has also two types one is centrifugal and another is axial.

Various component in compressor unit perform various function. Proper working of these component ensures the safe operation of compressor.

While studding the failure pattern of component its far determine that a number of them are often fail to work earlier than predicted. Moreover, disaster of such component reason the shutdown of compressor unit and subsequently affects the running of overall plant.

Fig.4 Boundary Diagram of Motor

Fig.5 boundary diagram for air compressor

3.4 Functional block diagram

The functional block diagram for compressed air system shown in **fig.6**. this figure shows the input output resources of compress air system.

Fig.6 Functional block diagram of compressor

4. FMEA Analysis

4.1 Failure mode effect analysis of compressor

Failure mode and impact analysis is a tool that examines capacity product or process failure, also evaluates risk priorities, allow decide remedial action to keep away from diagnosed issues, The spreadsheet format permits smooth evaluation of the analysis .FMEA figuring out and the advent of purposeful failure [10]

Table 1 shows the failure mode effect analysis for critical equipment in compressed air system.

Table 1. FMEA of compressor

Compressor equipment	Failure mode	Effect	Task Performed Description
1) Delivery valve & Air	Components of valve	Moderate cost	1) check fracture component
suction		Very high failure	2)check chock up of valve
		rate	component
			3) Replace lapping if
			necessary
			4) Periodic cleaning of air
			suction valve
	Failure in piston ring	Moderate cost of	1) Inspect for suction pressure
		replacement	weather it is high or low
		High failure rate	2) check piston ring
2) Piston ring rod assembly	Failure in guide ring	Moderate in cost	1) check suction pressure high
		High failure rate	or low
			2) check piston ring

© 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

	Other piston assembly part	Low failure rate High cost	 keep one H.P / L.P piston assembly with guide ring check guide ring every 6 month
3) Unloader assembly	' O' ring for unloader	Low cost Low failure rate	1) replace when Necessary
4) Main bearing	Bearing seized	High cost Low failure rate	Check during over hand
5) Lubrication system	Oil level trapping Oil level gasket 'O' ring for oil filter	Low cost Low failure	Check for oil level &replace parts
6) Belt	Belt	High cost Moderate failure	 Tightening of belt Keep match sets of belt
7) NRV (Non Return Valve)	NRV seat NRV plate NRV spring NRV holder	Low cost Low failure	 Replace Failure pack
8) Packing	Oil seal Spice packing	Moderate cost Moderate failure rate	1) Check with 3 month
	Thrust washer 'O' ring sealing ring	Low cost Low failure	1) Replace failure part
9) Suction failure	All suction failure	Moderate cost Moderate failure	 Cleaning of suction failure Replaceable
10) Cooling system	'O' Ring for I/C 'o' Ring for A/C water leakage gasket	Moderate cost Moderate failure	 Acid cleaning Use clean water for cooling Use of strainer for filtration

4.1.2 FMEA For compressor motor

Table.2 FMEA of Compressor

MEA FOR Compre	Tal	ble.2 FMEA of	Compressor	3
Motor	Failure	Effect	Cause	Recommendation
component	mode			
Bearing	High	Overload and	Incorrect	1) Monitor bearing
Rotating shaft	vibration	overheat	type of	health condition with
	Bearing		lubrication	vibration and
	failed	High	Aging	thermograph
		repairing cost	Lack of	2) Use standard
		due to	maintenance	procedure for bearing
		possible shaft		mounting and
		damage		lubrication
Shaft	Misalignment	Equipment	Physical	1) Take the care while
		shut down to	damage	alignment of motor
		avoid bearing	Improper	shaft with load
		damaged	manufacture	2)Check alignment if
		expensive	Corrosion	any vibration is affected
		repair		
Stator part	Stator defect	Motor	Eccentricity	1) Monitor motor stator
		inefficiency	Short	condition with proper
		and high cost	lamination	method

		to repair	Loose connection	
Rotor part	Rotor defect	Bearing	Eccentric	Monitor rotor condition
		damage motor	rotor	with proper method
		Motor	Broken rotor	
		rebuild high	part	
		cost		
Winding	Winding	Motor failure	Overheat	Monitor machine
	failure and		Moisture	vibration on regular
	shortage		Insulation	basic
			breakdown	
			High	
			vibration	

5. Logic tree Analysis

Fig.7 shows the logic tree analysis of reliability centered maintenance strategy applied to compressed air system. In logic tree failure modes which have passed the earlier screening will again be checked against the logic tree to allot the resources.

Fig.7 Logic Tree Analysis

6. Criticality Analysis Of System Components

Criticality evaluation is a method used to evaluate how equipment failure effect organization overall performance as a way to systematically rank plant assets for the motive of work prioritization. In standard, FMEA and criticality analysis require the identification of data given in table 3. The criticality classed primarily based on impact of fault and on the time, from occurrence till the effect takes place at the installation. From **table 3** we can write

 $CE = (\ 35^*P + 30^*S + 20^*A + 15^*\ C) \ / \ 4$

Where,

CE = Criticality of equipment

P = Impact on production

S = Is the safety factor

A = Availability of standby equipment

C = Capital cost

Fig.8 Shows the algorithm for criticality analysis. This figure suggest the calculation step of equipment criticality. criticality value and index find out by taking safety related effects weight of 30%, production related 35%, and cost & availability for standby related 15% & 20% respectively. **table.4** shows the criticality index and according to this failure classified in group A, B, C & D **table 5** and **6** shows criticality analysis for compressor and motor.

Criteria		Weight	Importance levels		
Impact on production	Р	35%	3 = Very important		
			2 = Important		
			1 = Normal		
Impact on safety	S	30%	3 = Very important		
			2 = Important		
			1 = Normal		
Availability of standby	А	20%	3 = Without standby		
			2 = With standby and medium		
			availability		

www.ijcrt.org	©	2018 IJCRT V	olume 6, Issue 2 April 2018 ISSN: 2320-2882
			1 = With standby and high availability
Equipment value	С	15%	3 = High value
			2 = Normal
			1 = Low value

Table 4. Criticality muex Group				
Group	Criticality index			
А	3 - 2.5			
В	2.5 - 2			
С	2 - 1.5			
D	1.5 - 1			

Table 4. Criticality Index Group

Table 5. Criticality Analysis For Compressor

Failure	Failure	Criticality A	iticality Analysis			Criticality	Group
Mode	Cause	Production	Safety	Standby	Cost	Index	
	1. Fracture of	2	2	2	1	1.85	D
	components						
	2. Failure of	3	2	3	2	2.5	B
	air suction						
Failure	filter						
delivery	3.Lapping	3	2	1	1	2	С
valve	failure		1				
	4.Dirty air	3	3	3	3	3	Α
	suction filter						
Failure in	1. Due to	1	2	1	3	1.6	D
piston	high suction						
ring-rod	pressure						
assembly	2.Guide ring	2	1	2	3	1.85	С
Main 💽	Misalignment	3	2	3	3	2.87	Α
bearing	and improper					C N	I
1	lubrication						
Belt	Improper	3	2	3	2	2.55	B
assembly	selection and						
	tightening						

Table 6. Criticality Analysis For Motor

Failure	Failure	Criticality A	Criticality Analysis				Group
Mode	Cause	Production	Safety	Standby	Cost	Index	
High	Overload and	2	2	1	3	1.8	С
vibration	overheat						
bearing							
failure							
Shaft	Misalignment	3	3	1	3	2.6	Α
failure							
Stator	Stator defect	3	3	1	3	2.7	Α
failure							
Rotor	Rotor defect	3	3	2	3	2.8	Α
failure							

7. Task Selection

A notable power of RCM is the way it gives simple, specific and without difficulty understood Criteria. For finding out which of the proactive duties is technically viable in any context. Technical feasibility of proactive task depends on technical characteristics of task. It worth doing is also governed by how well it react or deals with the consequences of failure.

If preventive or proactive task cannot be found technically possible and well worth doing, then suitable default movement should be taken. Preservation duties such as Run-to Failure (RTF), Time Directed (TD) maintenance, condition directed maintenance (CD) and failure finding (FF). **Table.7** shows the maintenance task for compressor according to RCM

Components /	Previous	Previous PM	RCM	Frequency				
failure mode	preventive	frequency	maintenance					
	maintenance							
1.valve	Cleaning of air	3 Months	FF	Monthly				
components	suction filter and							
-	valve							
2. Piston ring	Piston ring,	6 months	CD	6 Months				
rod assembly	guide ring							
-	assembly							
	Other piston	6 months	TD	12 months				
	assembly							
3. unloader	Check unloader	12 months	RTF					
	part							
4. main bearing	Bearing check	12 months	TD	12 months				
5. NRV	Replace	12 months	CD	3 months				
fractured part			. 12					
6. lubrication	Oil filter	3 months	RTF					
	cleaning							
7. belt	Belt tightening	3 months	CD or RTF					

Table.7 Maintenance tasks

Table.8 Labour saving cost

Item	Labour type	Number o <mark>f labour</mark>	Number of labour
		per day (current	per day(RCM
		maintenance)	proposed)
Engineer	Mechanical	6	5
(1000\$/month)	Electrical	5	4
	Control	4	3
	Mechanical	7	5
	Electrical	7	5
Total cost (\$/year)		314400	240000
Cost saving(%) = 23.0	67		

From table saving in cost

Current maintenance labour cost (Engineer + technicians)

1) Engineers (Mechanical + Electrical + control)= 15nos. With 1000\$/ months

- 15*12 months 1000 = 180000 /months
- 2) **Technicians** (Mechanical + Electrical) = 14nos.with 800\$/months 14*12months*800 = 134400\$/months

Total Current maintenance labour cost (Engineer + technicians) =180000 + 134400= **314400\$/year**

RCM proposed labour cost(Engineer + technicians)

1) **Engineers**(Mechanical + Electrical + Control) =12nos.with 1000\$/months 12*12months*1000 = 144000\$/months 2) **Technicians** (Mechanical + Electrical)

= 10 nos.with 800% months

10*12months*800 = 96000\$/months

RCM proposed total maintenance labour cost(Engineers + Technicians) = 144000 + 96000 = 240000\$/year

% saving in cost =

(100 – ((RCM proposed maintenance cost / current maintenance labour cost)*100))

% saving in cost = (100-((240000 / 314400)*100)) = **23.67%**

Result

Papers shows that if RCM proposed maintenance is carried out results cost of labour for maintenance is decreased from 314000\$/a\$/year to 2400000\$/year (about 23.67%) cost saving.

Conclusion-

After performing RCM on compressed air system following points are observed

- Air suction filter should be cleaned monthly. It will prevent the dust dirt chock up the valve parts so that failure rate will minimize.
- Lubrication of oil sample should be tested periodically in laboratory so that the strategy for oil replacement can be made.
- > Water strainer should be provided for filtering the raw water. It will prevent the failures in the cooling system.

RCM prepared maintenance scheduled leads to saving in upkeep price in each class. Its far concluded that reliability cantered maintenance is pattern and effective preservation making sure in the course of that maintenance caused disasters are either removed or minimize. It does no longer required e numerical calculation. It re-examine the validity of preceding preventive preservation agenda and develop cost powerful preventive protection agenda. It predicts spare elements inventories and risk maintenance decision for the machine or plant.

References

[1] *Professional Engineering*, Vol. 6, No. 6, June 1993, pp. 23-25. M. Dixey, "Putting Reliability at the Center of Maintenance,

[2] *International Journal of Industrial Engineering*, Vol. 7, No. 2, 2000, S. A. Abdulrohim, O. D. Salih and A. Raouf, "RCM Concepts and Application: A Case Study,"pp. 123-132

[3] *International Journal of Production Economics*, Vol.107, No. 1, 2007, pp. 151-163. Wang and J. Chu, "Selection of Optimum Maintenance Strategies Based on a Fuzzy Analytic Hierarchy Process,"

[4] MISO Model," Journal of Quality in Maintenance Engineering, Vol. 11, No. 4, 2005, pp. 359-374.

R. K. Sharma, D. Kumar and P. Kumar, "FLM to Select Suitable Maintenance Strategy in Process Industries Using

[5] The National Aeronautics and Space Administration, "Reliability-Centered Maintenance Guide for Facilities and Collateral Equipment," NASA, Washington D.C, February 2000.

[6] A. M. Smith, "Reliability-Centered Maintenance," McGraw-Hill, New York, 1993.

[7] ," *Robotics and Computer-Integrated Manufacturing*, Vol. 23, No. 6, 2007, pp. 614-623. J. Shayeri, "Development of Computer-Aided Maintenance Resources Planning (CAMRP): A Case of Multiple CNC Machining Centers

[8] Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability and maintenance data for equipment, ISO 14224, 2006.

[9] *Reliability engineering and system safety*, Vol. 60, No. 2, 1998, pp.121-132 M. Rausand, "Reliability centered maintenance"

[10] Implementation of reliability centered maintenance in compressed air system. Vivek S. Narnaware1, Ganesh D.Gosavi2, Pravin V. Jadhav3, Rahul D. Gorle