THE NEIGHBORHOOD TOTAL EDGE DOMINATION NUMBER OF A JUMP GRAPH

N. Pratap Babu Rao

Department of Mathematics, S.G. College, Koppal, Karnataka, India

ABSTRACT

Let $J(G) = (V, E)$ be a jump graph without isolated vertices and isolated edges. An edge dominating set F of $J(G)$ is called a neighborhood total edge dominating set if the edge induced sub graph $< N - F >$ has no isolated edges. The neighborhood total edge domination number $\nu_{nt}(J(G))$ of jump graph $J(G)$ is the minimum cardinality of neighborhood total edge dominating set of $J(G)$. In this paper, we initiate a study of this new parameter.

Key words: edge domination, connected edge domination, total edge domination, neighborhood total edge domination.

Mathematics subject classification 05C69

1. INTRODUCTION:

All graphs considered here are finite, undirected without loops and multiple edges unless and otherwise stated, the graph $J(G) = (V, E)$ considered here have $p = |V|$ vertices and $q = |E|$ edges. Any undefined terms in this paper may found in Kulli [2].

A set D of vertices in a graph $J(G)$ is called a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\nu(J(G))$ of $J(G)$ is minimum cardinality of a dominating set of $J(G)$. {Anupama S.B. et al.,}

A set E of edges in a jump graph $J(G)$ is called an edge dominating set if every edge in $E - F$ is adjacent to at least one edge in F. The edge domination number $\nu'(J(G))$ of $J(G)$. The concept of edge domination was introduced by Mitchell and Hedetniemi in [21] and was studied by several authors.

An edge dominating set F of jump graph $J(G)$ is a connected edge dominating set if the edge induced sub graph $< F >$ is connected. The connected edge domination number $\nu'_c(J(G))$ of $J(G)$ is minimum cardinality of a connected edge dominating set of $J(G)$. The concept of connected edge domination was introduced by Kulli and Sigarkanti [16] and was studied [17]. A set F of edges in a graph $J(G) = (V, E)$ is called total edge dominating set of $J(G)$ if every edge in E is adjacent to at least one edge in F. The total edge domination number $\nu'_t(J(G))$ of $J(G)$ is the minimum cardinality of total edge dominating set of $J(G)$. This concept of edge domination number introduced by Kulli and Ptwari [15].

The vertices and edges of $J(G)$ are called elements of $J(G)$. A set X of elements of $J(G)$ is an entire dominating set if every element not in X is either adjacent or incident to at least one element in X. The entire domination number $\nu_e(J(G))$ of $J(G)$ is the minimum cardinality of entire dominating set of $J(G)$. A set X of elements in $J(G)$ is a total entire dominating set if every element in a total entire dominating set if every element in $J(G)$ is either adjacent or incident to at least one element in X. The total entire domination number $\nu'_e(J(G))$ of $J(G)$ is the minimum cardinality of a total dominating set of $J(G)$. For any vertex $v \in V(J(G))$, the open neighborhood of v the set $N(v) = \{ v \in V(J(G)) : uv \in E \}$ and closed neighborhood of v
v is the set N[v] = N(v) ∪ {v}. For a set S ∈ V(J(G)), he open neighborhood N(s) of S is defined by

N(S) = \bigcup_{v \in S} N(v) \quad \text{for all vertices } v \in S \text{ and closed neighborhood of } s \text{ is}

N[S] = N(S) \cup S. Let S be the set of vertices and let u ∈ S. The private neighbor set of u with respect to S is the set pn[u, S] = {v : N[S] \cap S = {u}}. For any edge e ∈ E the open neighborhood of e is N(e) and the closed neighborhood of e is N[e] = N(e) ∪ {e}. If F ⊆ E and e₁ = e₂ ∈ F, N(F) = ∪ N(e) and N[F] ∪ F if F ⊆ E and e ∈ S.

e₁ ∈ F, then private neighbor of e₁ with respect to F is the set

pn[e₁, F] = \{e₂ : N[e₂] \cap F = \{e₁\}\}. The degree of an edge uv is defined by deg u + deg v − 2. An edge uv is called an isolated edge if deg uv=0. Let Δ'(J(G)) denotes the maximum degree among the edges of J(G).

In the cycle C₉ = \{e₁, e₂, ..., e₉\}, F₁ = \{e₁, e₄, e₇\} and F₂ = \{e₂, e₄, e₆, e₈\} are edge dominating set of J(C₉). The induced sub graph < N(F₁)> has no isolated edges and the induced sub graph < N(F₂)> has isolated edges. We introduced the concept of neighborhood total edge domination number and study some parameters.

2. Results;
We assume throughout that J(G) in a jump gasph without isolated vertices and without isolated edges.

Definition 1. An edge dominating set F of a jump graph J(G) is called a neighborhood total edge dominating set if the induced sub graph < N – F > contains no isolated edges. The neighborhood total edge domination number √'ₚ(J(G)) of J(G) is the minimum cardinality of a neighborhood total edge dominating set of J(G).

Definition 2. A neighborhood total edge dominating set is minimal if no proper subset of F is a neighborhood total edge dominating set.

Proposition 3; For a jump graph J(G)

√'(J(G)) ≤ √'ₚ(J(G))..................(1)

Proof: Every neighborhood total edge dominating set is an edge dominating set. Thus (1) holds.

Theorem 4: If Pₙ is a path with n ≥ 4 vertices then √'(Pₙ) = \L_n/2. J.

Proof: let Pₙ = (V₁, V₂,Vₙ) be a path eith n ≥ 4 vertices. If n ≡ r (mod 4), r= 0 or 3 then F = \{eᵢ : i= 4k-2, 4k-1, k=1,2,....\} is a neighborhood total edge dominating set of Pₙ in n ≡ 2 (mod 4) then F ∪ \{eₙ-2\} is a neighborhood total edge dominating set of Pₙ.

Thus √'(Pₙ) = \L_n/2. J.

Further if n ≡ 2 (mod 4), then for any √'ᵢ-set F of Pₙ < N(F)> has at least one isolated edge. Thus √'ₚ(Pₙ) ≥ \L_n/2. J ≥ \L_n/2. J. Hence the result.

Corollary 5. If Pₙ is a path with n ≥ 4 vertices then √'ₚ(J(Pₙ)) = √'ᵢ(J(Pₙ)) if and only if n is even or n ≡ 1 (mod 4).

Proof: Since √'ᵢ(J(Pₙ)) = n/2 if n is even.
Theorem 6: If \(C_n \) is a cycle with \(n \geq 3 \) vertices then
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \left\lfloor \frac{n}{3} \right\rfloor + 1 \quad \text{if } n \equiv 2 \pmod{3}
\]
\[
= \left\lfloor \frac{n}{3} \right\rfloor \quad \text{otherwise.}
\]

Proof: Let \(C_n = \{ v_1, v_2, \ldots, v_n, v_1 \} \) be a cycle with \(n \geq 3 \) vertices if \(n \equiv r \pmod{3} \), \(r = 0 \) or 1, then \(F = \{ e_i : i = 2k-2, k=1,2,\ldots \} \) is a neighborhood total edge dominating set of \(C_n \) if \(n \equiv 2 \pmod{3} \), then \(F \cup \{ e_n \} \) is a neighborhood total edge dominating set of \(C_n \).

Then
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \left\lfloor \frac{n}{3} \right\rfloor + 1 \quad \text{if } p \equiv 2 \pmod{3}
\]
\[
= \left\lfloor \frac{n}{3} \right\rfloor \quad \text{otherwise}
\]

We have \(\sqrt{\frac{m}{3}}(J(C_n)) \geq \sqrt{\frac{m}{3}}(J(C_n)) = \left\lfloor \frac{n}{3} \right\rfloor \) if \(n \equiv 2 \pmod{3} \) then for any \(\sqrt{\frac{m}{3}} \)-set of \(F \) of \(J(C_n) \), \(\langle N(F) \rangle \) has at least one isolated edge. Thus \(\sqrt{\frac{m}{3}}(J(C_n)) \geq \left\lfloor \frac{n}{3} \right\rfloor + 1 \). Hence, the result.

Corollary 7: If \(C_n \) is a cycle with \(n \geq 3 \) vertices then
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \sqrt{\frac{m}{3}}(J(C_n)) \quad \text{if and only if } n \equiv 0 \pmod{4}
\]
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \sqrt{\frac{m}{3}}(J(C_n)) \quad \text{if and only if } n \equiv 2 \pmod{3}
\]
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \sqrt{\frac{m}{3}}(J(C_n)) \quad \text{if and only if } n \equiv 3 \pmod{3}
\]
\[
\sqrt{\frac{m}{3}}(J(C_n)) = \sqrt{\frac{m}{3}}(J(C_n)) \quad \text{if and only if } n \equiv 1 \pmod{3}
\]

Proof: Since \(\sqrt{\frac{m}{3}}(J(C_n)) = \left\lfloor \frac{n}{2} \right\rfloor \) if \(n \equiv 0 \pmod{4} \)
\[
= \left\lfloor \frac{n}{2} \right\rfloor \quad \text{if } n \equiv 1 \pmod{4} \quad \text{or } n \equiv 3 \pmod{4}
\]
\[
= \left\lfloor \frac{n}{2} \right\rfloor + 1 \quad \text{if } n \equiv 2 \pmod{4}
\]

The result follows.

Theorem 8: If \(K_{m,n} \) is a complete bipartite graph with \(2 \leq m \leq n \) then
\[
\sqrt{\frac{m}{3}}(J(K_{m,n})) = m
\]

Proof: In \(K_{m,n} \), \(v \) is a vertex such that \(\deg v = m \). Let \(F \) be the set of all edges incident with a vertex \(v \). It is easy to see that \(F \) is an edge dominating set and the induced sub graph \(\langle N(F) \rangle \) is connected and does not contain an isolated edge. Hence \(F \) is a neighborhood total edge dominating set. Then
\[
\sqrt{\frac{m}{3}}(J(K_{m,n})) \leq |F| = \deg v = m
\]
Since
\[
\sqrt{\frac{m}{3}}(J(K_{m,n})) = m
\]
The theorem follows.

Theorem 9: If \(K_p \) is a complete graph with \(p \geq 3 \) vertices then
\[
\sqrt{\frac{m}{3}}(J(K_p)) = \left\lfloor \frac{p}{2} \right\rfloor
\]

Proof: Let \(F \) be a minimum matching \(J(K_p) \). Clearly \(F \) is an edge dominating set and also \(\langle N(F) \rangle \) is connected and does not contain an isolated edge. Hence, \(F \) is a neighborhood total edge dominating set. Then
Theorem 10: A super set of a neighborhood edge total dominating set is a neighborhood total edge dominating set.

Proof; Let F be a neighborhood total edge dominating set of a jump graph J(G). Let $F_1 = F \cup \{e\}$ where $e \in E - F$. Then $e \in N(F_1)$ and F_1 is an edge dominating set of J(G). Suppose the induced subgraph $<N(F_1)>$ contains an isolated edge e_1. Then $N(e_1) \subseteq F - N(F)$. Then e_1 is an isolated edge in $<N(F)>$ which is a contradiction. Thus $<N(F_1)>$ has no isolated vertices. Therefore F_1 is a neighborhood total edge dominating set.

We establish a characterization of minimum neighborhood total edge dominating set.

Theorem 11: A neighborhood total edge dominating set F of a jump graph $J(G)$ is minimal if and only if for every $e \in F$, one of the following holds

(i) $P_n[e,F]
eq \emptyset$

(ii) There exists an edge $e_1 \in N(F - \{e\})$ such that $N(e_1) \cap N(F - \{e\}) = \emptyset$

Proof: Let F be a minimal neighborhood total edge dominating set of $J(G)$. Let $e \in F$. Then either $F - \{e\}$ is an edge dominating set. And the induced sub graph $<N(F - \{e\})>$ contains an isolated vertex. Suppose $F - \{e\}$ is not an edge dominating set. Then $P_n[e,F] = \emptyset$. Suppose $F - \{e\}$ is an edge dominating set and $e_1 = N(F - \{e\})$ is an isolated edge in $<N(F - \{e\})>$. Then $N(e_1) \cap N(F - \{e\}) = \emptyset$

Conversely consider f a neighborhood total edge dominating set of $J(G)$ satisfying the conditions (i) and (ii). Then F is a minimal neighborhood total edge dominating set. Thus by theorem 10 the result follows.

Theorem 12. Let T be a tree. Then $\sqrt{n}(T) = 1$ if and only if $T = K_{1,p}$ or $p \geq 3$, or $S = m,n \geq 2$.

Proof: Let $T = P_3$ or P_4, then clearly $\sqrt{n}(J(T)) = 2$ Thus $T \neq P_3$ or P_4. Let $\sqrt{n}(J(T)) = 1$. Let $F = \{e\}$ be the \sqrt{n}-set of $J(T)$. Let $e = uv$, since $T \neq P_3$.

deg $v \geq 3$ suppose deg $u = 2$. Then $<N(F)>$ has two components in which one component is an isolated edge. Which is a contradiction. This implies that deg $u = 1$ or deg $u \geq 3$ If deg $u = 1$ then $\sqrt{n}(J(T)) = 1$ and $J(T) = K_{1,p}$.

If deg $u \geq 3$ and $J(T) = S = m,n \geq 2 \leq m \leq n$.

Converse is obvious.

Proposition 13; If $J(G)$ is a connected jump graph with $\Delta < q - 1$ then $\sqrt{n}(J(G)) = q - \Delta$.

Proof: Let e be an edge of a connected jump graph $J(G)$ and deg $e = \Delta$. Since $\Delta < q - 1$, there exists two adjacency edge e_1 and e_2 such that $e_1 \neq e_2$, $e_1 \in N(e)$ and $e_2 \not\in N(e)$. Let $F = (N(e) - e_1) \cup \{e_2\}$. Then $|F| = \Delta$. Further it is easy to see that $E - f$ is a neighborhood total edge dominating set of $J(G)$. thus $\sqrt{n}(J(G)) \leq |E - F| = q - \Delta$.

Theorem 15: For any graph $J(G)$ $\sqrt{n}(J(G)) = q$ if and only if $J(G) = mP_3$.

Proof: Suppose $\sqrt{n}(J(G)) = q$ on the contrary assume $G \neq mP_3$. Then $J(G)$ has at least one component G_1 which is not P_3. Clearly all edges of G_1 are not in a neighborhood total edge dominating set. Hence $\sqrt{n}(J(G)) \neq q$ which is a contradiction. Hence $J(G) = mP_3$.

REFERENCES