THE NEIGHBORHOOD TOTAL EDGE DOMINATION NUMBER OF A JUMP GRAPH

N .Pratap Babu Rao department of mathematics S.G. College koppal (Karnataka) INDIA

ABSTRACT

Let J(G)=(V, E) be a jump graph without isolated vertices and isolated edges. An edge dominating set F of J(G) is called a neighborhood total edge dominating set if the edge induced sub graph < N - F > has no isolated edges. The neighborhood total edge domination number $\sqrt{n_{t}(J(G))}$ of jump graph J(G) is the minimum cardinality of neighborhood total edge dominating set of J(G). In this paper, we initiate a study of this new parameter. **Key words:** edge domination, connected edge domination total edge domination,

neighborhood total edge domination.

Mathematics subject classification 05C69

1. INTRODUCTION:

All graphs considered here are finite, undirected without loops and multiple edges unless and otherwise stated, the graph J(G)=(V, E) considered here have p=|V| vertices and q=|E| edges .Any undefined terms in this paper may found in kulli [2].

A set D of vertices in a graph J(G) is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\sqrt{J(G)}$ of J(G) is minimum cardinality of a dominating set of J(G) {Anupama S.B.et. al.,]

A set E of edges in ajump graph J(G) is called an edge dominating set if every edge in E-F is adjacent to at least one edge in F. The edge domination number $\sqrt{(J(G))}$ of J(G). The concept of edge domination was introduced by Mitchell and Hedetiniemi in [21] and was studied by several authors.

An edge dominating set F of jump graph J(G) is a connected edge dominating set if the edge induced sub graph < F > is connected. The connected edge domination number $\sqrt[3]{c}(J(G))$ of J(G) is minmum cardinality of a connected edge dominating set of J(G). The concept of connected edge domination was introduced by kulli and Sigarkanti [16] and was studied [17]. A set F of edges in a graph J(G)= (v, E) is called totl edge dominating set o9f J(G) if every edge in E is adjacent to at least one edge in F. The total edge domination number $\sqrt[3]{t}(J(G))$ of J(G) is the minimum cardinality of total edge dominating set of J(G). this concept of edge domination number introduced by Kulli and Ptwari [15].

The vertices and edges of J(G) are called elements of J(G). A set X of elements of J(G) is an entire dominating set if every element not in X is either adjacent or incident to at least one element in X. The entire domination number $\sqrt{\varepsilon}$ (J(G)) of J(G) is the minimum cardinality of entire dominating set of J(G). A set X of elements in J(G) is a total entire dominating set if every element in a total entire dominating set if every element in J(G) is either adjacent or incident to at least one element in X. The total entire domination number $\sqrt{\varepsilon}$ (J(G) of J(G) is the minimum cardinality of a total dominating set of J(G). For any vertex $v \in V(J(G))$, the open neighborhood of v the set N(v)= { $v \in V(J(G))$, : $uv \in E$ } and closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subset V(J(G))$, he open neighborhood N(s) of S is defined by

 $N(S)= \bigcup N(v)$ for all vertices $v \in S$ and closed neighborhood of s is $v \in S$

 $N[S] = N(S) \cup S$. Let S be the set of vertices and let $u \in S$. The private neighbor set of u with respect to S is the set pn[u, S] = { v: N[S] $\cap S = \{u\}$ }. For any edge $e \in E$ the open neighborhood of e is N(e) and the closed neighborhood of e is

N[e] = N(e) U{e}. If $F \subseteq E$ and $e_{1=} \in F$, N(F) = $\bigcup N(e)$ and $N[F] \cup F$ if $F \subseteq E$ and $e \in S$

 $e_1 \in F$, then private neighbor of e_1 with respect to F is the set

 $pn[e_1 F] = \{e_2 : N[e_2] \cap F = \{e_1\}\}$. The degree of an edge uv is defined by deg u + deg v - 2. An edge uv is called an isolated edge if deg uv=0 Let Δ '(J(G)) denotes the maximum degree among the edges of J(G).

In the cycle $C_9 = \{ e_1, e_2, \dots, e_9 \}$, $F_1 = \{e_1, e_4, e_7\}$ and $F_{2==\{e^2, e^4, e^{6, e_8}\}}$ are edge dominating set of $J(C_9)$. The induced sub graph $< N(F_1) >$ has no isolated edges and the induced sub gaph $< N(F_2) >$ has isolated edges. We introduced the concept of neighborhood total edge domination number and study some parameters.

2.Results;

We assume throughout that J(G) in a jump gasph without isolated vertices and without isolated edges

Definition 1. An edge dominating set F of a jump graph J(G) is called a neighborhood total edge dominating set if the induced sub graph < N - F > contains no isolated edges. The neighborhood total edge domination number $\sqrt{n_t(J(G))}$ of J(G) is the minimum cardinality of a neighborhood total edge dominating set of J(G).

Definition 2. A neighborhood total edge dominating set is minimal if no proper subset of F is a neighborhood total edge dominating set.

Poposition 3; For a jump graph J(G)

 $\sqrt[n]{\mathbf{J}(\mathbf{G})} \leq \sqrt[n]{\mathbf{nt}}(\mathbf{J}(\mathbf{G}))....(1)$

Proof; Every neighborhood total edge dominating set is an edge dominating set. Thus (1) holds.

Theorem 4: If P_n is a path with $n \ge 4$ vertices then $\sqrt{(P_n)} = \lfloor \frac{n}{2} \rfloor$.

Proof: let $P_n = (V_1, V_2, \dots, V_n)$ be a path eith $n \ge 4$ vertices If $n \equiv r \pmod{4}$

 $r=0 \ 0r \ 3 \ then \ F=\{ \ e_i: i=4k-2, 4k-1, k=1,2,\ldots..\} \ is \ a \ neighborhood \ total \ edge \ dominating \ set \ of \ P_n \ in \ n\equiv 2 \ (mod \ 4) \ then \ F \ U \ \{ \ e_{n-2} \} \ is \ a \ neighborhood \ total \ edge \ dominating \ set \ of \ P_n \ .$

Thus $\sqrt{(P_n)} = \frac{\lfloor \frac{n}{2} \rfloor}{2}$.

Further if $n \equiv 2 \pmod{4}$, then for any $\sqrt[n]{t}$ -set F of $P_n < N(F)$ > has at least one isolated edge. Thus $\sqrt[n]{n_t} (P_n) \ge \lceil \frac{n}{2} \rceil \ge \lfloor \frac{n}{2} \rfloor$. Hence the result.

Corollary 5. If P_n is a path with $n \ge 4$ vertices then $\sqrt[4]{n}(J(P_n)) = \sqrt[4]{t}(J(P_n))$ if and only if n is even or $n \equiv 1 \pmod{4}$

Proof: Since
$$\sqrt[n]{t}(J(P_n)) = \frac{n}{2}$$
 if n is even

 $= \lfloor \frac{n}{2} \rfloor$, if $n \equiv 1 \pmod{4}$, the result follows.

Theorem 6: If C_n is a cycle with $n \ge 3$ vertices then

$$\sqrt[n]{nt}(J(C_n)) = \lceil \frac{n}{3} \rceil + 1 \text{ if } n \equiv 2 \pmod{3}$$
$$= \lceil \frac{n}{3} \rceil \text{ otherwise.}$$

Proof: Let $C_n = \{v_1, v_2, \dots, v_n, v_1\}$ be a cycle with $n \ge 3$ vertices if $n \equiv r \pmod{3}$, r = 0or 1, then $F = \{ e_i : i = 3k-2, k=1,2,... \}$ is a neighborhood total edge dominating set of C_n if n $\equiv 2 \pmod{3}$, then F $\cup \{e_n\}$ is a neighborhood total edge dominating set of C_n .

Then
$$\sqrt[n]{n}(J(Cn)) = \begin{cases} \Gamma \frac{n}{3} \rceil + 1 & \text{if } p \equiv 2 \pmod{3} \\ \Gamma \frac{n}{3} \rceil & \text{otherwise} \end{cases}$$

We have $\sqrt[n]{n}(J(C_n)) \ge \sqrt[n]{(J(C_n))} = \Gamma \frac{n}{3} \rceil & \text{if } n \equiv 2 \pmod{3}$ then for any $\sqrt[n]{-\text{set of } F \text{ of } J(C_n)}$, $\langle N(F) \rangle$ has at least one isolated edge. Thus $\sqrt[n]{n}(J(Cn)) \ge \Gamma \frac{n}{3} \rceil + 1$ Hence the

result.

Corollary 7: If C_n is a cycle with $n \ge 3$ vertices then $\sqrt[n]{t}(J(C_n)) = \sqrt[n]{t}(J(C_n))$ if and only if n=4,5 or 8

 $\sqrt[n]{nt}(J(C_n)) = \sqrt[n]{c}(J(C_n)) \text{ if and only if } n=3, 4 \text{ or } 5$ $\sqrt[n]{nt}(J(C_n)) = \sqrt[n]{(J(C_n))} \text{ if and only if } n \equiv 0 \pmod{30} \text{ OR } n \equiv 1 \pmod{3}$

Proof: Since
$$\sqrt[n]{t}(J(C_n)) = \frac{n}{2}$$
 if $n \equiv 0 \pmod{4}$

$$= \frac{\lfloor \frac{n}{2} \rfloor}{1}$$
 if $n \equiv 1 \pmod{4}$ or $n \equiv 3 \pmod{4}$

$$= \frac{\lfloor \frac{n}{2} \rfloor}{1} + 1$$
 if $n \equiv 2 \pmod{4}$
 $\sqrt[n]{t}(C_n) = \frac{n}{3} \rceil$ the result follows

 $\sqrt[n]{c}(J(C_n)) = n-2$ $\sqrt[n]{c}(C_n) = \lceil \frac{n}{3} \rceil$ the result follows

Theorem 8: If $K_{m,n}$ is a complete bipartite graph with $2 \le m \le n$ then $\sqrt{V_{nt}(J(K_{mn}))} = m$

Proof: In $K_{m,n}$ v is a vertex such that deg v = m Let F be the set of all edges incident with a vertex v. It is easy to see that f is an edge dominating set and the induced sub graph N(F) is connected and does not contain an isolated edge.

Hence f is a neighborhood total edge dominating set.

 $\sqrt{V_{nt}(J(K_{m,n}))} \leq |F| = \deg v = m$ since Then $\sqrt{J}(J(K_{m,n})) = m$

The theorem follows.

Theorem9: If K_p is a complete graph with $p \ge 3$ vertices then $\sqrt[n]{t}(J(K_p)) = \lfloor \frac{p}{2} \rfloor$

Proof; Let F be a minimum matching $J(K_p)$. clearly F is an edge dominating set and also N(F) is connected and does not contain an isolated edge. hence f is a neighborhood total edge dominating set. Then

$$\begin{split} & \sqrt[4]{}_{nt}(J(K_{m,n})) \leq |F| = \frac{\lfloor \frac{p}{2} \rfloor}{2} \\ & \text{since } \sqrt[4]{}(J(K_p)) = \frac{\lfloor \frac{p}{2} \rfloor}{2} \text{ the result follows.} \end{split}$$

Theorem 10: A super set of a neighborhood edge total dominating set is a neighborhood total edge dominating set.

Proof; Let F be a neighborhood total edge dominating set of a jump graph J(G). Let $F_1 = F$ U {e} where $e \in E - F$. Then $e \in N(F_1)$ and F_1 is an edge dominating set of J(G). Suppose the induced subgraph $< N(F_1) >$ contains an isolated edge e_1 . Then $N(e_1) \subseteq F - N(F)$. Then e_1 is an isolated edgein <N(F)> which is a contradiction. Thus $<N(F_1)>$ has no isolated vertices. Therefore F_1 is a neighborhood total edge dominating set.

We establish a characterization of minimumneighborhod total edge dominating set.

Theorem 11: A neighborhood total edge dominating set F of a jump graph J(G) is minimal if and only if for every $e \in F$. one of the following holds

(i) Pn[e, F] **≠ Ø**

(ii) There exists an edge $e_1 \in N(F - \{e\})$ such that $N(e_1) \cap N(F - \{e\}) = \emptyset$

Proof: Let F be a minimal neighborhood total edge dominating set of J(G). let

 $e \in F$. Then either $F - \{e\}$ is an edge dominating set. And the induced sub graph $\langle N(F - \{e\}) \rangle$ contains an isolated vertex. Suppose $F - \{e\}$ is not an edge dominating set. Then Pn[e, F] $\neq \emptyset$. Suppose $F - \{e\}$ is an edge dominating set and $e_{1=} \in N(F - \{e\})$ is an isolated edge in $\langle N(F - \{e\}) \rangle$. Then $N(e_1) \cap N(F - \{e\}) = \emptyset$

Conersly suppose f is a neighborhood total edge dominating set of J(G) satisfying the conditions (i) and (ii). Then F is a minimal neighborhood total edge dominating set. Thus by theorem 10 the result follows.

Theorem 12. Let T be a tree. Then $\sqrt[n]{nt}(T) = 1$ if and only if $T = K_{1,p} p \ge 3$ or $S=m,n=2 \le m \le n$

Proof: Let $T = p_3$ or $p_{4=}$ then clearly $\sqrt[4]{}_{nt}(J(T)) = 2$ Thus $T \neq P_3$ or P_4 . Let $\sqrt[4]{}_{nt}(J(T)) = 1$. Let $F = \{e\}$ be the $\sqrt[4]{}_{nt}$ -set of J(T). Let e = uv, since $T \neq P_3$

deg v \geq 3 suppose deg u =2. Then $\langle N(F) \rangle$ has two components in which one component is an isolated edge. which is a contradiction. This implies that deg u = 1 or deg u \geq 3 If deg u =1 then $\sqrt{n_t(J(T))} = 1$ and $J(T) = K_{1,p}$

 $p \ge 3$ If deg $u \ge 3$ $\sqrt[n]{nt}(J(T)) = 1$ and J(T) = S = m, n $2 \le m \le n$. Converse is obvious.

Proposition 13 ; If J(G) is a connected jump gaph with $\Delta' < q - 1$ then $\sqrt{n_t(J(G))} = q - \Delta'$. **Proof:** Let e be an edge of a connected jump graphJ(G) and deg $e = \Delta'$ Since $\Delta' < q - 1$, there exists two adjacentedge e_1 and e_2 such that

 $e_1 \neq e_2$, $e_1 \in N(e)$ and $e_2 \notin N9e$). Let $F = (N9e) - e_1 \cup \{e_{2=}\}$. Then $|F| = \Delta$ '. Further it is easy to see that E - f is a neighborhood total edge dominating set of J(G). thus $\sqrt[n]{nt}(J(G)) \leq |E - F| = q - \Delta'$.

Theorem 15: for any graph J(G) $\sqrt[4]{nt}(J(G)) = q$ if and only if $J(G) = mP_{3}$.

Proof: suppose $\sqrt[4]{n_t(J(G))} = q$ on the contrary assume $G \neq mP_3$. Then J(G) has at least one component G₁ which is not P₃. Clearly all edges of G₁ are not in a neighborhood total edge dominating set. Hence $\sqrt[4]{n_t(J(G))} \neq q$ which is a contradiction. Hence J(G) = mP₃.

REFERENCES

[1] S.R.Jayram, Line domination in gaphs, graphic Combi.3,357-363 (1987)

[2] V.R. Kulli. College Graph Theory, Vishwa international Publicitons, Gulbarga.India (2012)

[3] V.R. Kulli. Theory of domination in Graphs, Vishwa international Publicitons, Gulbarga.India (2012)

[4] .R. Kulli. Advances in Domination Theory 1 Vishwa international Publicitons, Gulbarga.India (2012)

[5] .R. Kulli. Advances in Domination TheoryII Vishwa international Publicitons, Gulbarga.India (2012)

[6] V.R Kulli Middle edge dominating gaph, J,Computer and Mathematical Sciences, Vol 4, No 5 372-372 (2013).

[7] V.R. Kulli, Maximal total edge domination I graphs, In Advances in domination Theory I, V.R. kulli ed., Vishwa international publication, Gulbarga India 25-33 (2012)

[8] V.R. Kulli. Inverse total edge domination in graphs In advances in Domination Theory 1 V.R. Kulli ed., Vishwa international Publicitons, Gulbarga.India 35-44 (2012)

[9]V.R. Kulli. The edge dominating graph of a graph In Advances in Domination Theory 1 Vishwa international Publictions, Gulbarga.India 127-131 (2012)

[10] V.R. Kulli. The semi entire edge dominating graph, Ultra Scientist Vol 25 (3) A, 431-434 (2013).

[11] V.R. Kulli. The entire domination in graph, Acta Ciencia Indica, vol 40 No.4 to appear.
[12] V.R. Kulli. Edge entire domination in gaphs, International journal of mathematical Archive, 5(10)275-278 (2014).

[13] V.R. Kulli. Advances in GraphTheory, Vishwa international Publictions, Gulbarga.India (1991).

[14]V.R. Kulli, Neighborhood total edge domination in graphs InAdvances in Domination Theory II . V.R Kulli.ed. Vishwa international Publicitions, Gulbarga.India (2012)

[15] V.R. Kulli and D.K. Patwari On the total edge domination number of a graph In Proc, Symp on graph Theory and Combinatories. A.M Mathai ed., Kochi, Kerala,India 75-81 (1991).

[16] V.R.Kulli and S.C. sigarkanti, The connected edge domination number, Proc.R.C.Bose Mem.Conf,Abstract (1988).

[17] V.R.Kulli and S.C. sigarkanti, The connected edge domination number of a graph Technicl report 8801, Dept.Math.Gulbarga University (1988).

[18] V.R.Kulli and S.C. sigarkanti, Total entire domination in gaphs In Advances in domination theory, I V.R. Kulli ed., Vishwa International Publication, Gulbarga, India 53-62 (1991)

[19] V.R.Kulli and S.C. sigarkanti, and N.D Sonar, Entire domination in gaphs In Advances in Graph Theory, Vishwa International Publications, Gulbarga India 237-243 (1991).

[20] V.R.Kulli and N.D. Sonar Complementary edge domination in graphs, Indian J Pure Appl Math 28, 917-920 (1997).

[21] S.L Mitchell and S.T. Hedetniemi, Edge domination in graphs Congr numer., 19,489-509 (1977)

[22] V.R. Kulli, The neighborhood total edge domination number of a Graph, International Research journal of Pure Algebra-5(3) 26-30 (2015).