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Abstract 

 A transaction database (TDB) consists of a set I of items and a multiset D of nonempty subsets of I, whose elements are 

called transactions. Association rule mining seeks to discover associations among transactions encoded in a database. It can be 

used to improve decision making in a wide variety of applications such as: market basket analysis, medical diagnosis, bio-medical 

literature, protein sequences, census data, logistic regression, and fraud detection in web, CRM of credit card business etc. There 

are several algorithms for solving the popular and computationally expensive task of association rule mining from a TDB. In this 

paper we propose a novel hypergraph based model for TDB. We deal with hypergraphs as a tool to model and solve some classes 

of problems arising in Association rule mining in Data Mining. Algorithms to perform visits of hypergraphs and to find frequent 

itemset are studied in detail. Hypergraph is a generalization of a graph wherein edges can connect more than two vertices and are 

called hyper edges. We give efficient algorithms for generating the hypergraph and extracting frequent patterns for association 

rule mining. We also propose several hypergraph theoretic parameters which lead to a better understanding of the system. Our 

study shows that a new approach has high performance in various kinds of data, outperforms the previously developed algorithms 

in different settings, and is highly scalable in mining different databases. 

Keywords: Hyper graph, Association rule mining, frequent patterns, data mining. 

1 Introduction 

 The task of association rule mining in a large database of transactions was proposed by Agarwal et al. [1]. Since then this 

problem has received a great deal of attention and association rule mining is one of the most popular pattern discovery methods in 

Knowledge Discovery from Database (KDD). A broad variety of efficient algorithms such as Apriori Algorithm [3], FPgrowth 

[4], SETM [6], DIC [5], Eclat [11] FI-tree(Frequent Itemset-tree)[13], H-mine[10] and SaM algorithm[12] have been developed 

during the past few years. In this paper we propose a data structure consisting of a hypergraph [8]. We give an algorithm which 

generates the Hypergraph D and which also simultaneously computes several other measures such as frequent items, non frequent 

items, total number of hyper edges, length of a largest transaction, frequency of occurrence of various nodes and the number of 

occurrences of each arc in D. The second algorithm generates all the patterns of the transaction database using the above data 

structure. This algorithm can be modified to extract frequent patterns. The third algorithm deals with association rule mining. In 

this process we scan the database exactly once and the hypergraph is constructed dynamically. 

2 Hypergraph and Path Systems 

 A hypergraph[13] is a set V of vertices and a set of non-empty subsets of V, called hyper edges. Unlike graphs, 

hypergraphs can capture higher-order interactions in social and communication networks that go beyond a simple union of pair 

wise relationships. Just as graphs naturally represent many kinds of information in mathematical and computer science problems, 

hypergraphs also arise naturally in important practical problems, including circuit layout, numerical linear algebra, etc. A 

hypergraph is a natural extension of a graph obtained by removing the constraint on the cardinality of an edge: any non-empty 

subset of V can be an element (a hyper edge) of the edge set E. see figure 1. 

 

 
 Fig.1: Hypergraph and its incidence matrix 

 X = { x1, x2 ,x3 ,x4 ,x5, x6, x7 ,x8} and E =  { E1, E2, E3, E4, E5, E6 } = {{ x3 

,x4 ,x5}, {x5,,x8},{ x6, x7 ,x8},{ x2 ,x3, x7 },{ x1, x2 },{ x7}} 

 A hypergraph is also called a set system or a family of sets drawn from the universal set X. The difference between a set 

system and a hypergraph (which is not well defined) is in the questions being asked. Hypergraph theory tends to concern 

questions similar to those of graph theory, such as connectivity and colorability, while the theory of set systems tends to ask non-

graph-theoretical questions 

Hypergraph and Hyper path 

Let V be a finite set and E a family of subsets of V.  If for all EEi  , the following conditions are satisfied: 

VEE i
EE

i
i




,  
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Then the couple D = (V,E) is called a hypergraph. Each element v ∈ V is called a vertex and each element EEi   a hyperedge.  

Definition 1: 

 A hyperpath between two vertices u and v is a sequence of hyperedges  },...{ ,2,1 mEEE  such that u ∈ 1E , v ∈ Em, and 

1ii EE   for i = 1, ...,m− 1. A hyperpath is simple if non-adjacent hyperedges in the path are non overlapping, i.e., Ei ∩ Ej 

= ∅, ∀j ≠ i, i ±1. 

3.2 Hypergraph Model for Transaction Database 

I = {1, 2, . . . , n} set of items, ordered according to natural order of N.  TIT ,   

is  a transaction. A multiset(collection) D of transactions is a transaction  database  

DTIi  ,  such that Ti , that is DT
DT




  

 Let  DT   and IX  . Then T supports X if TX  , the support of X is )(Xf and is defined as 

D

TXDT }{ 
. For a minimum threshold   IXs  ,1,0 , is a frequent pattern if )(Xf  ≥ s. An association rule is an 

implication of the form 

YX  , where IX  , IY   and YX  .The support of the rule YX    is 
D

TYXDT
YXf

}{
)(





 . 

The confidence of the rule YX   is 
)(

)(
)(

Xf

YXf
YXConf


 .  

  We can build the hypergraph D = (I,TDB).  Each transaction corresponds to an edge, the number of distinct items is the 

order of D, and the number of m (distinct) of transactions is size of D. Since every item belongs to at least one transaction, D is a 

hypergraph in the classical sense (that is without isolated vertices). 

 The number of transaction to which an item i belongs (frequency of i) is dD(i), the degree of I in D. The maximum length 

of a transaction in TDB is the rank of D. It is defined as γ(D)=max(|T| such that  DT  ). Although D has no order by itself, the 

order given to the items allows regarding each transaction (edge) as an ordered set. 

Given D, we can recover the TDB, that is, there is no loss of information. There is a bijective correspondence between 

hypergraph of order n and TDB’s on a set of n items. To check the support of a given set IX  , we need m|X|=|D|.|X| steps, that 

is for every item in X, we must check if it belongs to each edge (transaction) in D. To check the confidence of an association rule 

X=>Y, the maximum number of steps required is }{. TXDTyXm  .After checking the support of X, we only have to 

check of Y is obtained in the edges containing X. 

 For basic terminology in TDB and association rule mining we refer to the book by Han and Kamber [7]. Normally we 

generate association rules for frequent patterns. In this paper we propose a data structure which consists of a hypergraph D and a 

system of hyper edges in D for representing a transaction database. The vertex set of the hypergraph is the item set I. Any 

transaction T of the form {x} is represented as a loop at x.  

 This paper proposes an algorithm to construct the hypergraph representing a TDB. The algorithm scans the data exactly 

once, dynamically constructs the hypergraph D and simultaneously computes several parameters such as frequency of occurrence 

of each node, number of loops at each node, number of occurrence of each arc uv, total number of arcs in D, the maximum length 

of a transaction. 

 The algorithm first creates all nodes of D, one node for each item, with support count 0. Then each transaction is scanned 

and hyper edge in D representing the transaction is constructed. If (i1, i2,….,ik) is a transaction, the arc (ij , ij+1) is represented as a 

linked list. The header of this list has two fields. One field is used to store the list of vertices (i1, i2,….,ij+1) which is called the 

label of the arc (i, j) and the other field is used to store the frequency of occurrence of the arc (i, j). Dynamic memory allocation 

method is used for storing these values. The pseudo code for the construction of hypergraph is given in Figure 2.  

Algorithm:  Construction of Hypergraph, D for TDB 

Input  :  

 TDB, Transaction Database 

 I, set of items in TDB 

 

Output: 

 D,  Hypergraph of given TDB 

 n,  Order of D 

 ),(D   Rank of D 

 ),(D   Antirank of D 

 ),( iEf  Frequency of each Ej 

 starD(i), Partial hypergraph formed by the edges containing i, Ii  

 V(Ei),  Set of vertices in the edge Ei 

 dD(i), support count or degree of vertex , Ii  
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           )(
max

D , Maximum degree of D   

         ),(
min

D  Minimum degree of D 

Method: 

  ,E m = 0; 

 for each Ii  ,  

        CreateNode(i); 

 end for; 

 for each  TDBTj     

  if( EET ij  ) // E is the set of edges in D created so far. 

  ++ ),( iEf  // increment the edge count of Ei  by 1. 

  `else 

  CreateEdge(Ej ) 

  1)( jEf ; 

  V(Ej) = { Tj}; 

   )}(:{ jj EfEE   

  m++;  // number of distinct edges 

  end if 

 end for 

 n = | I |; 

 j
j

EMaxD )( ; 

 j
j

EMinD )( ; 

 if ( )(D = ),(D  

 return the given TDB  is uniform; 

end if 

for each Ii , 

starD(i) = )}&(&)({ jjj EiEEE    

end for 

for each Ii , 

 dD(i) = 
 )(

)(
istarDE

j

j

Ef  

end for 

)(
max

D = ))(( idMax D
Ii

 

))(()(
min

idMinD D
Ii

  

Return D, Hypergraph of TDB 

Fig.2: A greedy algorithm for constructing the hypergraph 

 We illustrate the algorithm in fig.2 with a dataset of diseases where a person is suffering from cold, fever and other 

related symptoms. The real time data set of seasonal fever is collected from the local doctors of Ramachandra medical 

college,Chennai which consists of six attributes as {cold, headache, fever, bodypain, allergy, cough}. 

 

PATIENT 

ID 
SYMPTOMS 

T001 Cold, Fever and Allergy 

T002 Cold, Headache and Cough 

T003 Cold, Headache, Body pain and Fever 

T004 Fever, Body pain and Cough 

T005 Cold, Fever, Headache and Cough 

T006 Cold, Body pain and Cough 

T007 Cold, Allergy and Cough 

T008 Cold ,Cough and Body pain 

T009 Cold and Cough 

T010 Cold, Headache and Fever 

Table 1. Disease dataset 

Different patients may have the different combination of symptoms. We applied our algorithm to find the association 

among the attributes with discritised dataset in the table 2 of the above table1. 
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Table 2: Discritised data set from the table 1 

 

Hypergraph constructed from the descritised data set in table 2 is given in the figure3.  

  
Figure.3 hypergraph for the data set in table 2 

 

4 Algorithm for extracting frequent patterns from hypergraph D of a TDB 

 In this section we present an algorithm for extracting the set L of all frequent patterns from weighted hypergraph 

constructed in Section 3.2.  This algorithm used to traverse all hyper edges and extracts all the frequent patterns. The pseudo code 

for extracting frequent patterns is given the figure 4. 

Algorithm for extracting frequent patterns from hypergraph D 

 

Input:  

D, hypergraph of TDB 

 s, minimum support threshold 

Output: 

L, set of all frequent patterns 

Method: 

For each EE j  in hypergraph D 

S=Generate non empty subset of )( iEV // )( iEV  is the set of vertices in Ei 

for each SS j   

 )()( ij EfSf   

)( LSif j   

)( CSif j   

))(( sSfif j   

  )}(:{ jj SfSLL   

else 

)}(:{ jj SfSCC   

  end if 

PATIENT 

ID 
ITEMS 

T001 3, 5, 1 

T002 3,6,4 

T003 3,6,2,5 

T004 5,2,4 

T005 3,5,6,4 

T006 3,2,4 

T007 3,1,4 

T008 3,4,2 

T009 3,4 

T010 3,6,5 

SYMPTO

MS 

DESCRETIS

ED VALUE 

Allergy 1 

Body pain 2 

Cold 3 

Cough 4 

Fever 5 

Head ache 6 
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  else 

 Add  )( jSf  to the count of identical set in C 

  ))(( sSfif j   

)}(:{ jj SfSLL   

)}(:{ jj SfSCC   

end if 

  end if 

Add )( jSf  to the count of identical set in L 

end if 

end for 

end for 

Return L 

Fig.4: Greedy algorithm for extracting frequent patterns from hypergraph.  

The set of all frequent patterns generated from the above hypergraph is given in the table 4. Here we assume minimum 

support s = 20%.           

SL. 

NO. 

FREQUENT 

PATTERNS 

FREQ- 

UENCY 

SL. 

NO. 

FREQUENT 

PATTERNS 

FREQ- 

UENCY 

1 {3} 9 12 {6,4} 2 

2 {5} 4 13 {3,6,4} 2 

3 {1} 2 14 {2} 3 

4 {3,5} 4 15 {3,2} 4 

5 {3,1} 2 16 {6,5} 3 

6 {5,1} 2 17 {2,5} 2 

7 {3,5,1} 3 18 {3,6,5} 3 

8 {6} 4 19 {5,4} 2 

9 {4} 6 20 {2,4} 2 

10 {3,6} 4 21 {3,2,4} 2 

11 {3,4} 6    

Table4: Frequent patterns generated from the hypergraph with s= 20% 

  

 Strong association rules can be generated from the set of frequent patterns mined from the given TDB. An association 

rule which satisfies both minimum support threshold and minimum confidence threshold is called a strong association rule. For 

each frequent pattern X and for each nonempty proper subset Y of X the algorithm computes the support and confidence of the 

association rule Y ⇒ X − Y. 

 

Example 4.1. From Table 4 we have X = {3, 6, 5} is a frequent pattern with frequency 3. The set of all association rules 

generated from this pattern with the confidence and support for each rule is given in Table 5. We have taken the minimum 

confidence threshold c and the minimum support threshold s as 75% and 20% respectively.  
Sl.No. Association Rules Confidence of the 

Rule 
Support of the 
Rule 

R / 
R’ 

1 {3}  {6,5} 33 % 33 % R’ 

2 {6}  {3,5} 75 % 33 % R 

3 {5}   {3,6} 75 % 33 % R 

4 {3,6}  {5} 75 % 33 % R 

5 {3,5}  {6} 75 % 33 % R 

6 {5,6}  {3} 100 33 % R 

Table 5. Association Rules mined from the frequent pattern {3,6,5}. 

 For the disease dataset given in Table 1 we have generated 21 frequent patterns. The number of frequent patterns 

generated with various support counts is given in Table 4. Various association rule generated from the frequent items set 

{3,6,5}.is given in table 5. One of the association rule is {5,6}  {3} [cofidence=100, support=30 %], the infromation that the 

patient who is suffering from the disease Fever and Head ache also  tend to have the disease Cold. A support of 33 % for 

association rule means that 33%  of all the patients under analysis suffering from the diseases Fever, Head ache and Cold 

together. A confidence of 100% means that 100% of patients suffering from Fever and Head ache also suffering from Cold. The 

number of association rule generated from the above disease data set is 51.  

6 Completeness and Compactness of Hypergraph 

 Several important properties of Hypergraph can be observed from the Hypergraph construction process.  

Order of Hypergraph, D of the TDB  

 Order of the D, denoted by n(D), is the number of vertices and the number of edges will be denoted by the m(D). For the 

hypergraph D, in figure 1, n(D) = 8, m(D) = 6 

Rank of D 

The rank of a hypergraph for a TDB defined as 
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||)( EMax jD

j


  

The anti-rank is defined as  )(D = || EMin j
j

 . 

For hypergraph, D generated from TDB,  )(D  indicates the number of the items in the largest transaction, having 

maximum number of items present. s(D) indicates the minimum number of items present in the transaction. All the transactions 

having a same number of items then the hypergraph D generated from such TDB will be a uniform. Uniform hypergraph of rank 

  will also be called as  -uniform and no repeated transactions will be there in the TDB. 

For D, given in figure 1, ||)( EMax jD

j

  = 3 and )(D = || EMin j
j

  = 1 this means that largest transactions in 

TDB consists maximum 3 items and smallest transaction consists of only one item. The D is not a Uniform hypergraph since 

)(D    )(D  

Knowledge Extracted during the construction of hypergraph D for the given TDB 

1. O (D), order of hypergraph is defined as the no of vertices in the D.  

O (D) = | I | = number of distinct items. 

2. γ (D) , rank of D, j
j

EMaxD )(   

The transaction having highest number of items will be the rank of TDB for D, the edge having the maximum number of 

vertices called rank of D, γ (D) 

Anti rank of D, j
j

EMinD )(  

The edge Ej having the minimum number of vertices in D 

3. Uniform TDB 

For D, Hypergraph of TDB, if(γ (D) =  (D)) and for all EiE, f(Ei)=1  then D is uniform hypergraph. That 

is, all the edges in D, hypergraph of TDB have the same rank with no repeated edges, D is a uniform hypergraph. Its 

TDB is called uniform transaction database.   Tj TDB, having unique number of items in it  that is a uniform TDB. 

4. StarD(i) with centre i, i I, is the partial hypergraph formed by the edges containing the vertex i.  

  
IiistarD ),(

    gives the dual of the hypergraph. 

5. The degree dD
(i), of i to be the number of edes of starD(i): No of edges containing vertex i is the dD

(i) = m(D(i)) 

The number of transactions containing the item ‘i’ is the degree or support count or frequency of the item i. 

6. The degree of the hypergraph D, is defined by,  

(i)

Ddmax)(
Ii

D


  

This gives the information regarding support countt of the most frequently occur item or pattern in the TDB. 

7. Regular hypergraph/TDB 

All the vertices of the hypergraph having the same degree then D is a regular hypergraph.  

A TDB, is regular one Iji  , &  i≠j such that dD
(i) = dD

(j), where i≠j.  That is the occurrence frequency of all 

the items in TDB is unique in a regular TDB. 

Theorem 

1. A hypergraph is regular ifand only if  its D is regular. 

2. For a D of a TDB of order n=|I|, the degree dD
(i) = di, in decreasing order form n tuple d1≥d2≥…..≥dn whose properties 

can be characterized as below. 

Proposition 1 

Consider d1≥d2≥…..≥dn is the degree sequence of uniform hypergraph of ranks γ and order n possibly with repeated edeges if and 

only if 


n

ni

id  

 

is a multiple of γ(D)  and dn ≥1 

Partial Hypergraph  

 For a set J  {1,2,3,4………,m},  the partial hypegraph D’, generated by the set J can be defined as )(! JjD E j
 . 

The set of vertices of D’ is a non-empty subset of the set of all items, I in TDB. For a set A I , we call the family of transaction 

formed with set A, 

},1{  AEmjAED jjA 
 
the sub graph induced by the set A. It is similar to the definition of partial sub 

hypergraph. The subgraph induced by the set A can be defined as the set of all transactions formed using the induced set IA  . 

Example: for a set A = {x2 ,x3 ,x4 ,x5, x7 ,x8} of the subset of the X ,the set of vertices of the hypergraph given in figure 1. 

},1{  AmjA EED jjA
 , the set edges in the sub hypergraph induced by a set A contains the following edges, E 

= { E1,E2,E4,E6} is given in figure 5 
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Figure 5: DA , sub hypergraph induced by set A. 

 

Frequent subhypergraph of D induced by a frequent pattern L 

 

 Frequent subhypergraph of D induced by a frequent pattern L can be defined as follows: 

For a frequent pattern Ll  ,  we call the family  

},1|{  lEmjlED jjl  , the frequent sub hypergraph induced by the frequent pattern Ll  

A frequent sub hypergraph induced by the frequent pattern Ll  is similar to the definition of frequent partial hypergraph. 

Frequent partial hypergraph can be defined as for a set },...,3,2,1{ mj   the frequent partial hypergraph D’ generated by the set 

j is )})(&(&)(|{' LEVJjED jj   

The set of vertices of D’ is a non empty subset of I 

 

Extraction frequent sub hypergraph from the D of a TDB 

Algorithm: Extraction frequent sub hypergraph from D 

Input:  

 D, the hypergraph of D 

 L, set of all frequent itemset 

 S, minimum support 

 m, number of distinct edges is D 

Output: 

 DL, set of all frequent sub hypergraph induced by L 

Method: 

 LD  

 For each Lli   

  },1|{  ijijl lEmjlED   

  )( Li DDif   

 lL DD   

 end if 

end for 

 return LD  

Fig:6 algorithm extracting set of frequent sub hypergraphs, DL from TDB 

Lemma Given a transaction database TDB and a support threshold min sup, the support of every frequent itemset can be derived 

from TDB’s hypergraph, D.  

Proof. Based on the Hypergraph construction process, for each transaction in the TDB, its frequent item projection is mapped to a 

path through the edges in D. 

Given a frequent itemset X = x1, x2,…, xn in which items are sorted in the support descending order.  We can visit all the edges 

with label e: n in the Hypergraph. 

 For each edge e, vertex v with label e : n, the support count supv in vertex v is the number of transactions represented by 

e. If x1, . . . , xn all appear in e, then the supv transactions represented by e contain X. Thus, we accumulate such support counts. 

The sum is the support of X. 

 Based on this lemma, after a hypergraph for TDB is constructed, it contains the complete information for mining 

frequent patterns from the transaction database. Thereafter, only the D, hypergraph is needed in the remaining of the mining 

process, regardless of the number and length of the frequent patterns. The size of Hypergraph is bounded by the size of its 

corresponding TDB because each transaction will contribute at most one edge to the Hypergraph, with the length equal to the 

number of frequent items in that transaction. Since transactions often share frequent items, the size of the hypergraph is usually 

much smaller than its original database. A hypergraph never breaks a transaction into pieces. Thus, unlike the Apriori-like method 

which may generate an exponential number of candidates in the worst case, under no circumstances, may a Hypergraph with an 
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exponential number of edges be generated. The Hypergraph is a highly compact structure which stores the information for 

frequent pattern mining.  

Results and Discussion 

Dataset: For the experiment we have used datasets of different applications. These datasets was obtained from the UCI repository 

of machine learning databases[15] (http:\\www.ics.uci.edu/mlearn/MLRepository.html-1998). The characteristics of the datasets 

selected for the experiment is given in table 6. 

Files No.  of 

Records 

No. of 

Columns 

adult.D14.N48842.C2.num 48842 14 

Hepatitis.D19.N155.C2.num 155 19 

heart.D75.N303.C5.num 303 75 

Census 48842 14 

letRecog.D106.N20000.C26.num 20000 17 

MushroomD.90.N81424.C2.num 8124 23 

  Table 6 Data sets used in the analysis  

 To study the strategies we have conducted several experiments on a variety of data sizes comparing our approach with 

the well-known SaM algorithms, and FI- tree algorithm written by its original authors. The performance metrics in the 

experiments is the total execution time taken and the support count for adult, hepatitis and heart datasets. For this comparison also 

same dataset were selected as for the above experiment with 30% to 70% of minimum support threshold. The experiments were 

conducted on 2.6 GHz CPU machine with 3 Gbytes of memory using Windows XP operating system. Time needed to mine 

frequent itemset for different algorithms using the data set given in the table6 is discussed below.  
Support in  

% 

Time in seconds 

FI-Tree SaM HG model 

30 8.12 9.85 4.03 

40 5.69 6.72 2.08 

50 3.56 4.51 1.5 

60 1.99 2.69 1.1 

70 1.01 1.7 0.8 

     Table 6 Time Scalability with respect to support on the Adult dataset 

 

Time taken to mine frequent pattern with various support threshold on Adult data set is given in the table 6. The total 

execution time for our HG model is very much less than that of FI-Tree and SaM methods. The SaM algorithm and FI-Tree 

algorithms take more time see figure 6 as that compared to our approach.  

0

10

20

30 40 50 60 70

FI-Tree

 
Figure 6: Time Scalability with respect to support on the Adult dataset 

 The total execution time for our new approach HG model and the other algorithms FI-Tree and SaM on Heart data set 

given in the table7 algorithms large reduces with the increase in support threshold from 30% to 70%. Our proposed approach 

takes less time as that compared to the other two algorithms Sam and FI-Tree,. The execution time of HG Model approach with 

SaM algorithms for hepatitis data set is given in table 8. 

 
Support in  

% 

Time in seconds 

FI-Tree SaM HG model 

30 0.05 0.07 0.035 

40 0.4 0.06 0.031 

50 0.3 0.05 0.028 

60 0.03 0.03 0.02 

70 0.01 0.02 0.009 

     Table 7: Heart data set execution time 
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Support in 

% 

Time in seconds 

FI-Tree SaM HG  

model 

30 0.64 0.91 0.538 

40 0.09 0.28 0.08 

50 0.04 0.06 0.03 

60 0.03 0.04 0.028 

70 0.00 0.0 0.0 

      Table 8:  Hepatitis Data set 

 We have also conducted a detail analysis to assess the performance of the well known algorithm FP-Growth with respect 

to the other frequent itemset mining algorithms.  The performance matrix in the experiments is the total execution time taken and 

the number of item sets generated for different data sets. 

 The following performance analysis graphs show the execution time for the algorithms FP-Growth, Eclat, Relim, SaM 

with our new approach HG Model.  

 
Figure 7: comparison of Execution time of the algorithms on Adult data set  

 
Figure8:  Performance analysis on Census data set 

7 Conclusion 

In this paper we have proposed a new data structure consisting of a weighted hypergraph D and a path system in D for 

representing a TDB. We have presented algorithms for constructing D, for generating frequent patterns using D and for 

generating frequent subhpergraphs. During the entire process the data is scanned exactly once. We have conducted several types 

of experiments to test the effect of changing the support, transaction size, dimension, transaction length and use of other 

hypergraph theoretic parameters to extract new knowledge about the TDB and the comparison of the performance of this 

algorithm with other existing algorithms in the literature using real data set also studied and analyzed.  
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