Decision Making Using C4.5,KNN,Regression Algorithm On Agricultural Factors

1Sheetal Jagtap, 2Sumedha Kolhe, 3Bhagyashri Shinde,4Pravin Tak

1Student, 2Student, 3Student, 4Assistant professor
Computer department,
Zeal college of engineering, pune

Abstract: Agriculture is the best source of earning and living a life in India from histories. Agriculture is the single most important contributor to the Indian economy. India is a country of different kind of season in every season there are different crops grown up which also depends on economic and biological conditions. The future of crop yield is challenging task for every country. Farmers usually plant the cultivation process based on their previous experiences. Due to lack of knowledge of cultivation farmers are unable to take beneficial crop. To help the farmers take decisions that can make their farming more efficient and profitable, we establish an intelligent information prediction analysis on farming. In the system, by using various techniques and terminologies we try to overcome the farmer’s problems and help them to analyze the crop selection in different area and weather. Main purpose through this system is to help farmers and decrease the percentage of farmer’s suicide deaths. System assisting farmers to make better decisions by providing them real time data processing, and a dynamic data service composition method, to enhance and monitor the agricultural productivity. Thus to help farmers in decision making and in better management of natural resources. The system suggests area based beneficial crop rank before the cultivation process. It indicates the crops that are cost effective for cultivation for a particular area of land. To achieve these results, system considers major crops. Supervised learning algorithm helps to predict the analyzed data.

IndexTerms - Data Mining, Predictive Analytics, Stepwise Linear Regression Model, C4.5 Decision Tree, K-Nearest Neighbor, Machine Learning Algorithm, Regression Techniques, and Classification Techniques, Agriculture.

I. INTRODUCTION
Agriculture, the main backbone of India, is the development of plants for food, bio-fuel, medicinal plants and other products used for sustaining and enhancing individual life. The history of agriculture engages thousands of years back, and its growth has been motivated and defined by several atmospheres, cultures and technologies. It is a crucial part of our economy and has always been one of the vital occupations that serve mankind, both in terms of livelihood and employment. Due to the substantial increase in the population, the nutritional status of the poor is growing bad, which must be improved. The major effect of population increase has been prominently shown on the environment, the damage of which is increasing rapidly, which ultimately hinders agricultural production. The vision of meeting world’s food demands for the increasing population throughout the world is becoming more important in these recent years.

India is an Agricultural nation. Almost majority of the Indians traditional occupation is Agriculture. Many of them worship their land as the god. It is one of the prominent factors that decide the economy of our country. Table 1 clearly presents the contribution of agriculture to the national income and its share in export for a period of 50 years. An examination of Table 1 makes clear that the share of agriculture in the national income and in the total export is declining consistently. Now agriculture contributes only about one-third to the national income as against 54% in 1950-51. Similarly, the share of agricultural goods in export has declined from 52.5% in 1950-51 to only 16.5% in 1990-91. To increase the agricultural contribution to the national income; the production of crops should be increased.

Due to the lack of use of technology and scientific methods to farming, farmers in most cases do not get the preferred output. In this era of technology, applying scientific methods and automated learning in problem solving has come a long way from being a trend to become a necessity. The process of extracting important and useful information from large sets of data is called Data Mining. Data mining in agriculture applications involves the conceptualization, design, development, estimation and application of modern ways for utilizing the information and communication technologies (ICT) in rural domain including with the major objective on agriculture productivity. Different modelling processes and simulation methods have been implemented for dynamic systems in agriculture. The mined information is typically represented as a model of semantic structure of database, wherein the model may be used on new data for prediction or classification of agricultural data. The major challenge in agriculture is that no specific measures have been taken out with the large sets of agricultural data. The foremost issues in agriculture and modern techniques are associated to the overall crop production. Analyzing these data, the algorithms give the result which predicts the preferred profitable output. Nowadays, plant diseases and land degradation are the most important problems in agriculture. Therefore, the improvement of agricultural is monitored by data mining techniques.

<table>
<thead>
<tr>
<th>Year</th>
<th>Contribution of agriculture to national income</th>
<th>Share of agriculture to total exports of India</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950-51</td>
<td>54</td>
<td>52.5</td>
</tr>
<tr>
<td>1950-51</td>
<td>49</td>
<td>44.0</td>
</tr>
</tbody>
</table>
II. LITERATURE SURVEY
Aditya Shastri et al. [Ref.2] in their paper, they carried out an experiment on wheat, cotton and maize data sets using Quadratic, Linear, Polynomial, GLM and SLM. By utilizing the best regression model for the survey, the forecast of generation of wheat, maize and cotton is done for chosen years. The results are compared obtained from them. The accuracy is measured by using R^2, RMSE and MPPE. It was concluded that pure quadratic model accurately predicts the wheat yield, Stepwise Linear Regression model accurately predicts the cotton yield and Generalized Linear Regression is used for Maize yield prediction.

Fahad Sheikh [Ref.3] in his paper, various data mining techniques are reviewed and performance comparison between various classification algorithms. Algorithms compared are C4.5, CART, k-means clustering, ANN and MLR. It was found that the performance of C4.5 (348) with accuracy 88.2 % is better than the Naive Bayes with accuracy 54.8%.
Dewi Sinta et al [Ref.1] in their paper, by using KNN model price prediction of rice crop is done from January to December 2012 in Indonesia. The model performance is based on the value of MAPE, MAE and RMSE. The best model is used to predict has the value of MAPE, MAE and RMSE smaller. They found that Ensemble KNN has better yield prediction than single KNN method.

R. Sujatha et al [Ref.10] in their paper stated that there are various classification methods such as Naïve Bayes, J48, Random Forest, Artificial Neural Network, Decision Tree and Support Vector Machine (SVM) for solving the problem of yield prediction. The paper describes how improving agriculture efficient by prophesying and improves yields by previous agricultural information.

Giritharan Ravichandran et al [Ref.14] in their paper, they take the input as various parameters that decides the productivity, process them based on the algorithm provided by ANN, and predict suitable crop for the land. Also, the paper suggests the some fertilizers. They found that with increase in the number of hidden layers, the performance increases along with the complexity so, hidden layer is chosen by trial and error method.

S. Ruggieri et al [Ref.11] in their paper analytical evaluation of the runtime behavior of the C4.5 algorithm is presented which gives rise to more efficient implementation, with a five times performance gain. The paper stated that the EC4.5 is among the best strategies over C4.5 according to the analytic comparison of the efficiency.

III. PROPOSED WORK
The main goal of the system is to give farmers the overview of crops that they can take in their farms with the estimated crop yield and the market price prediction of that particular crop.

System architecture includes an input module, which is responsible for taking input from the farmers. In that the farmer has to provide Location, Soil type/ Land type, Size of land, Water Source. The farmer is also responsible for interacting with predicted results. After selection the location parameter, the input query block is responsible for subset selection of an attribute from crop details. It gives all possible crops that are to be sown at a given time stamp suitable for given location. The prediction model is used to predict weather, pest/ disease build on crop and market price. Yield rates of these crops are evaluated, if yield rate per day of these crops are fair (within tolerance) then those crops are selected for crop sequences. The main feature of the system is it gives output in statistics form. To this end, the methodological approach that it will follow is composed of these steps:

1) The description of user’s farm.
2) The selection of crops suitable.
3) Predictive analytics modelling for predicting total yield and market price of those crops.

Strategic Module consists of 2 blocks:

1. Query Block
2. Predictive Analytics block

Describing the data i.e. summarizing its statistical attributes (such as means and standard deviations), visually reviewing it using charts and graphs, and looking for potentially meaningful links among variables (such as values that often occur together) is the simple first analytical step in data mining.

Data mining takes advantage of advances in the fields of artificial intelligence (AI) and statistics which is being used for pattern recognition and classification of problems [9].
Prediction types using data mining techniques are:

(1) **Classification**: predicting into what category or class a case falls.

(2) **Regression**: predicting what number value a variable will have (if it is a variable that varies with time, it’s called 'time series' prediction).

Classification:

Aim of Classification problems is to identify the characteristics that group each case. Understand the existing data and to predict how new instances will behave is the task of classification problem. Data mining builds classification models by examining already classified data (cases) and inductively finding a predictive pattern. These existing cases come from a historical. They may also come from an experiment in which a sample of the entire database is tested in the real world and the results used to create a classifier. Sometimes an expert classifies a sample of the database, and this classification is then used to create the model which will be applied to the entire database [9].

Regression

Using existing values to forecast what other values will be is Regressions. For simple case, regression uses standard statistical techniques such as linear regression. But, many real-world problems are not simply linear projections of previous values. For instance, sales volumes, stock prices, and product failure rates are all very difficult to predict because they may depend on complex interactions of multiple predictor variables. Therefore, more complex techniques may be necessary to forecast future values. The same model types can often be used for both regression and classification. There are varieties of data mining methods including Support Vector Machines (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier, Genetic Algorithm, and K-Nearest Neighbor (KNN).

The system uses predictive analytics to extract knowledge from the existing data used for future planning and also gives idea about trends and outcomes. Predictive analytics is the practice of extracting information from existing data sets in order to determine patterns and predict future outcomes and trends. Here Predictive analytics is used for predicting three terms which will greatly benefit the farmer for deciding the crop he should take [5].

- Weather
- Crop Yield
- Crop Price

Predictive model building uses three algorithms: C4.5 Classification algorithm for Weather Prediction, Generalized Linear Regression Model for Crop Yield Prediction, KNN Regression algorithm for Crop Price Prediction.

IV. ALGORITHMS

C4.5

C4.5 is an algorithm used to generate a decision tree. C4.5 is an extension to ID3 algorithm. The decision tree generated by C4.5 is used for classification and is referred as statistical classifier. C4.5 uses a information gain while generating the decision tree. It also uses a single pass pruning process for reducing the over-fitting. It works on both types of data like continuous and discrete data. C4.5 is a supervised learning algorithm. The C4.5 working is, it developed a classifier in the form of decision tree. To do this, C4.5 is given a set of data representing things that are already classified. The classifier which constructed by C4.5 is a tool in data mining that takes a bunch of data representing things we want to classify and attempts to predict which class the new data
belongs. It also support for binary and n-array outcomes. The additional feature of C4.5 is it also support for tree pruning and missing value handling [11]. Figure 2 shows the working of C4.5 Algorithm.

The objective is to predict if the crop is suitable or not in that weather by using C4.5. C4.5 generated decision tree is used as Classification method. Suppose a dataset contains a list of crops information which includes name, location, crop yield, crop price, etc. These are all called attributes. Now from these entire attribute we want to predict whether the crop is suitable or not in that environment. Using these crop attributes and crop information class, C4.5 developed a decision tree which will predict the class for new crop based on their attributes [11].

C4.5 Tree-Construction Algorithm

The decision tree is constructed by using training data set S, which is set of tuples in database terminology. Each attribute have either discrete or continuous values. A decision tree creates something similar to flowchart to classify new data. Decision tree contain decision node and leaves. The leaf specifies a class value and decision node specifies a test over one of the attribute. For each possible outcome, a child node is present. The path from root to leaf of decision tree is followed by attribute values of case. The class which is present at leaf node is predicted by the decision tree [11].

Tree-Construction Algorithm

The C4.5 constructs the tree using divide and conquer method. Construction of the decision tree is done by selecting the best possible attribute which will be able to split set of samples in effective manner. The attribute which contain highest entropy difference or gain is selected as the splitting criteria for that node. Each penultimate node contains the multiple or last attribute for making the final decision. In C4.5, each node contains a set of cases. Cases have weight to take into account unknown attribute values. At start only the root node is available and associated with whole training set S and with all case weights equal to 1.0 [11].

ALGORITHM C4.5(S)

Input: Dataset S with attribute value
Output: Decision tree or/and set of rules that assigns a class to a new case

1) Tree= {}
2) ComputeClassFrequency(S)
3) If oneClass
 return leaf;
 create decision Tree D
4) ForEach Attribute A;
 ComputeGain (A);
5) D.test=Best attribute according to above Criteria(Step 4);
6) if D.test continue
 find threshold;
7) ForEach S’ in the splitting of S
8) if S’ is Empty
 child of D is a leaf
else

9) Child of D = formTree(S')

 Attach T Tree to the corresponding branch of Tree;

10) Compute Errors of D;

 Return decision Tree D;

Let S be the dataset given to the system. At start the Tree is empty having no node. The weighted frequency of dataset S is computed (step (2)) \(\text{freq}(b, S) \) in S which contain class \(b \) for \(i \in [1, D_{\text{class}}] \). If all cases belong to same class (step (3)), then the node becomes leaf with given class (respectively with most frequent class). If S contain cases belonging to two or more classes (step (4)), then information gain is calculated. For discrete attributes, the information Gain helps to split the cases in S into sets with distinct an attribute values. For continues attributes, the information gain split the set S into subsets, namely, cases with an attribute value which is not greater than a local threshold which is determined during gain [11].

Information Gain

The information gain of an attribute A for a set of cases S is calculated as follows:

\[
\text{Gain} = \text{Entropy}(S) - \sum_{i=1}^{t} \frac{|S_i|}{|S|} \times \text{Entropy}(S_i)
\]

where,

\[
\text{Entropy}(S) = - \sum_{i=1}^{N_{\text{class}}} \frac{\text{freq}(b_i, S)}{|S|} \times \log \frac{\text{freq}(b_i, S)}{|S|}
\]

The attribute which contain high gain is (step (5)) is selected for next process. The test select the continuous attribute then threshold is calculated (step (6)) as the calculated threshold is below the local threshold. If S, empty then the child c node is set as leaf, with associated class the most frequently used class. If S, is not empty, then divide and conquer approach apply recursively on same operation n set and also on unknown parameters. The unknown parameter of selected attribute is replicated in each child with their weights proportional to cases in S with their known value of selected attribute. Finally classification error is calculated as sum of error of child node [11].

REGRESSION

To solve the selection problem there are many regression algorithms are available. The stepwise regression predicts the variables choice for regression models and this process done automatically. In each step variable is added or subtracted from set. It also works on forward selection, backward elimination, and bidirectional elimination. In forward selection, start from no variables in model; test the addition of each model according to the given criteria. This process continues till the adding variable gives statically improved fitting. Backward elimination starts from all candidate variables. It deletes the each variable according to the fit criteria. Delete the variable whose loss gives the most statically significant loss fit[13]. The goal of stepwise regression is to maximize the prediction by using minimum number of variables[12]. The objective of paper is to predict the suitable and favourable crop for farmer by using the stepwise linear regression. The Fig. shows the actual working of SLM.

Regression Algorithm

Input: Independent variable for crop dataset

Output: Predict crop yield for the dataset

1. Initially all observations are in the root node;
2. Start from the root node, partition the samples using the recursive procedure;
3. Giving a tree node;
4. Perform stepwise linear regression on samples in current node;
5. Calculate the residual sum square(RSSnode);
6. If (number of samples>predefined minimum node size);
7. For each predictor variable x;
8. Sort x in ascending order;
9. for each value d in the above sorted list;
10. using d as the threshold value, partition the samples within current node into two subsets;
11. perform stepwise regression on each subset and calculate the corresponding RSS;
12. calculate the subtotal RSS as the sum of those of the two subsets;
13. end of for loop on threshold value d;
14. find the minimum subtotal RSS achievable from splitting current node on x;
15. end of for loop on predictor variable x;
16. find the minimum RSS of all possible splits of current node(MinRSSsplitting);
17. calculate the improvement from splitting current node using equation (4);
18. if(improvement>predefined minimum improvement);
19. split current node into two new nodes using the variable and threshold value that give the MinRSSsplitting;
20. for each of the two new nodes, go to step 3;
21. end of if in step 18;
22. end of if in step 6;
23. end of recursion;

Initially all observations are in a set, the root node of the regression tree. The programme starts from the root node and recursively partitions the samples into subsets until no leaf node can be further split. A node is split into two subsets when a split leads to substantial reduction in the residual sum square (RSS) of estimation. For a given node RSS is calculated using equation (3), and is referred to as RSSnode. Similarly the RSSs of the two subsets after a split, referred to as RSSleft and RSSright, are also calculated using this equation. The total RSS after a split, referred to as RSSsplitting, is the sum of RSSleft and RSSright. The minimum RSSsplitting of all possible splits of a node is referred to as MinRSSsplitting. A node can not be further split when the number of samples in that node is less than a predefined minimum node size or when the improvement from splitting that node is less than a predefined threshold value [13]. The improvement from splitting a node is calculated as:

\[
\text{Improvement} = \frac{\text{RSSnode} - \text{MinRSSsplitting}}{\text{RSSnode}} \times 100\%
\]

Fig 3: Regression Methodology for crop yield prediction

KNN

K-nearest neighbor is the fundamental and simple classification technique which is suitable for little or no prior knowledge about how data is distributed.

This technique is a machine learning algorithm that has easy implementation. kNN is lazy learning which gives the closest k records of the training data set that have the highest similarity to the test (i.e. query record) unlike other learning that builds a model or function. An example for the k-nearest neighbor classification is given in figure 4 [8]
Regression problems deal with prediction of the outcome of a dependent variable while set of independent variables are known. Figure 5 shows the relationship between the independent variable x and the dependent variable y (red curve) by a set of points (green squares). Given the set of green objects (known as examples) the KNN method is used to predict the outcome of X (also known as query point) given the example set (green squares) [9].

Consider an example of the 1-nearest neighbor method. In such case the example set (green squares) is searched and located the one which is closest to the query point X. For such particular case, it happens to be x_4. The outcome of x_4 (i.e., y_4) is thus then taken to be the answer for the outcome of X (i.e., Y). Hence for 1-nearest neighbor we can write:

$$Y = y_4$$

In next step, the 2-nearest neighbor method is considered. Here, the first two closest points to X are located, which happen to be y_3 and y_4. Taking the average of their outcome, the solution for Y is then given by:

$$Y = \frac{y_3 + y_4}{2}$$

The average of the outcomes of its K nearest neighbors is the outcome Y of the query point X.

Similarly, assigning the property value for the object to be the average of the values of its K nearest neighbors can be used for regression. It can be useful to determine the contributions of the neighbors, so that the nearer neighbors contribute more to the average than the more distant ones. K neighbors closest to that point is responsible for the predictions made by KNN. Therefore, to make predictions with KNN, we need to define a metric for measuring the distance between the query point and cases from the examples sample. Euclidean is mostly used measure this distance. Also, Euclidean squared, City-block, and Chebychev can be used [9].

$$D(x, p) = \sqrt{((x - p)^2)}$$ \hspace{1cm} \text{Euclidean}

$$D(x, p) = (x - p)^2$$ \hspace{1cm} \text{Euclidean squared}

$$D(x, p) = |x - p|$$ \hspace{1cm} \text{City-block}

$$D(x, p) = \text{Max}(|x - p|)$$ \hspace{1cm} \text{Chebychev}
where \(x \) and \(p \) are the query point and a case from the examples sample, respectively.

Predictions based on the KNN examples are made after selecting the value of \(K \). For regression, KNN prediction is the average of the \(K \) nearest neighbors outcome:

\[
y = \frac{1}{K} \sum_{i=1}^{K} y_i
\]

where \(y_i \) is the \(i \)th case of the examples sample and \(y \) is the prediction (outcome) of the query point [9]. Unlike regression, in classification problems, for determining the class label a majority vote is performed among the selected \(k \) records which are later assigned to the query record on which KNN prediction is based [7].

KNN has several many advantages such as simplicity, effectiveness, intuitiveness and competitive classification performance in many domains. It is Robust to noisy training data and is effective if the training data is large [9].

Despite the advantages, KNN has a few limitations such as poor run-time performance when the training set is large. It is very sensitive to irrelevant or redundant features because all features contribute to the similarity and thus to the classification. By careful feature selection or feature weighting, this can be avoided. Two other disadvantages of the method are [9]:

- Distance based learning is not clear which type of distance to use and which attribute to use to produce the best results.
- Computation cost is quite high because we need to compute distance of each query instance to all training samples.

V. CONCLUSION
Defining decisional result data set from existing data set is crucial task especially if that correlates with agriculture. Since data set is somewhat complex and ambiguous in nature. As by considering the motivation behind this work the algorithmic strategies such as C4.5, KNN, SLM are used to define effective result data set so that the farmer will help them to take real time decisions awhile in agriculture.

VI. ACKNOWLEDGMENTS
The authors would like to thank their family, supportive knowledge given reference papers and management of Zeal College of Engineering for their kind support.

REFERENCES