Extension Of Quasimetric On An Arbitrary Atomistic Lattice Mahendra Kumar Sah

Research Scholar, Univ. Dept. of Mathematics T.M. Bhagalpur University, Bhagalpur, Bihar, India-812007

ABSTRACT

The present paper proposes to extend the notion of quasimetric on an arbitrary atomistic lattice L. Such a matric lattice on L will determine a neighbourhood (shortly nhd) structure, a generalisation of which leads to the concepts of uniformity as well as proximity on L.

Keywords : quasimetric lattice (non-symmetric metric), arbitrary atomistic lattice, uniformity, proximity

A set topology is a Kuratowskian Closure operator on the power set which is isomorphic to a complete Boolean lattice and which is also characterised in terms of quasimetric (non-symmetric metric). It is, therefore, possible to formulate a metric structure on such a lattice [1].

The present paper proposes to extend the notion of quasimetric on an arbitrary atomistic lattice L. Such a matric lattice on L will determine a neighbourhood (shortly nhd) structure, a generalisation of which leads to the concepts of uniformity as well as proximity on L. Throughout the section lattice L will be assumed to be atomistic unless and otherwise stated in which atoms will be denoted by p, q, r, ...

Definition 1. A quasimetric on an atomic lattice L is a positive real valued function defined on $L \times L$ such JCR that

 $M_1: p = q \Longrightarrow \partial(p, q) = 0$

 $M_2: \partial(p, r) \leq \partial(p, q) + \partial(q, r)$

 (L, ∂) is, then, called a quasimetric lattice.

Definition 2. If $x \neq 0$, then the distance function $\partial(x, p)$ on *L* is given by :

$$\partial(x,p) = \bigwedge_{q \le x} \left\{ \partial(p,q) \right\}$$

The notion of closure operator is introduced as follows:

Definition 3. A closure operator (-) on *L* is a unary operator on *L* such that

$$c_1:\overline{0}=0$$

$$c_2: \overline{x} = \bigvee_{\substack{\partial(x,p)=0}}, \quad \text{if } x \neq 0$$

Theorem 1. (L, ∂) is a Kuratowskian topological space.

Proof. I. Let $p \le x$. Then by M, $\partial(x, p) = 0$ and consequently $p \le \overline{x}$.

Hence $x \leq \overline{x}$.

II. $q \leq \overline{\overline{x}} \Longrightarrow \partial(\overline{x}, q) = 0$

 \Rightarrow for a given positive there exists

an atom p_1 such that $\partial(q, p_1) < \epsilon$ for $p_1 \leq \overline{x}$.

Similarly $p_1 \leq \overline{x}$

 \Rightarrow for the same \in there exists

an atom p_2 such that $\partial(p_1, p_2) < \in$ for $p_2 \leq \overline{x}$.

Hence for a given \in we find atoms p_1 and p_2 such that

 $\partial(q, p_2) \leq \partial(q, p_1) + (p_1, p_2) < 2 \in \text{ for } p_2 \leq x. \text{ Hence } \partial(x, q) = 0 \text{ and } q \leq \overline{x}. \text{ Hence } \overline{\overline{x}} \leq \overline{x}. \text{ But from the first part } \overline{x} \leq \overline{\overline{x}}. \text{ Hence } \overline{\overline{x}} = \overline{\overline{x}}.$

III. $q \le \overline{x \lor y} \Rightarrow \partial(x \lor y, q) = 0$ $\Rightarrow \bigwedge_{p \le x \lor y} \partial(q, p) = 0$ \Rightarrow there exists an atom $p_n \le x \lor y$ such that $\partial(q, p_n) < \frac{1}{n}$ for all positive integers n $\Rightarrow \land \partial(q, p_n) = 0 = \partial(x, q)$ or $\partial(y, q)$ \Rightarrow either $q \le \overline{x}$ or $q \le \overline{y}$ $\Rightarrow q \le \overline{x} \lor \overline{y}$ $\Rightarrow \overline{x \lor y} \le \overline{x} \lor \overline{y}$ Next, $x < x \lor y \Rightarrow p \le x \Rightarrow p \le x \lor y$ $\partial(x, p) = 0 \Rightarrow \partial(x \lor y, p) = 0$ $\Rightarrow \overline{x} \le \overline{x \lor y}$

Similarly $\overline{y} \le \overline{x \lor y}$

Hence $\overline{x \lor y} \le \overline{x} \lor \overline{y}$. This prove the theorem.

Every quasimetric on *L* introduces the notion of a basic nhd structure on *L*.

Definition 4. Let \in be any positive number. Then \in -nhd of *p* in *L*, i.e.,

 $n_p(\in) = \bigvee_{\partial(p,q) < \in} q$

Theorem 2. The set $N = \{n_p(\in)\}$ is a basic nhd on *L*.

Proof. N_1 : By M_L we have $p \le n_p$ (\in)

 $N_2: n_p (\in_1)$ and $n_p (\in_2)$ there exists a neighbourhood $n_p (\eta)$ such that $n_p (\eta) \leq n_p (\in_1)$ and $n_p (\eta) \leq n_p (\in_2)$, where $\eta = \min (\in_1, \in_2)$

 $N_3: q \le n_p \ (\in) \Longrightarrow \partial(p,q) = \in -\eta,$

where $0 < \eta < \in$ and $q \neq p$.

 $n_4(\eta) \leq n_p(\in)$, for if $r \leq n_q(\eta)$, then

 $\partial(q, r) < \eta$ and by M_2 :

 $\partial(p, r) \leq \partial(p, q) + \partial(q, r) = \epsilon - \eta + \eta = \epsilon$

i.e.,
$$r \leq n_p(\in)$$
.

Theorem 3. If ∂ is symmetric on *L*, then (L, ∂) is a Hausdorff space.

Proof. Let $\partial(p, q) = 3 \in > 0$. Then $p \neq q$ and $n_p(\in) \wedge n_p(\in) = 0$ for otherwise there would be an atom r such that $r \leq n_p(\in)$ and $r \leq n_q(\in)$ so that $\partial(r, p) < \epsilon$ and $\partial(q, r) < \epsilon$. Then by $M_2(p, q) < \partial(r, p) + \partial(r, q) < 2\epsilon$ contracting the previous assumption.

In addition to a basic nhd structure there exist an open and a general a nhd structure [2]. Throughout the rest of the section we shall confine to a general nhd structure on an arbitrary atomistic lattice.

Definition 5. A general nhd N on L is a set of all nhds of all atoms of L in which the following axioms, in addition to N_1 and N_3 of Theorem 2 hold :

 N_2^* : If n_1 and n_2 are nhds of p, then $n_1 \wedge n_2$ is a nhd of p.

*N*₄: If n_p is a nhd of p and $m > n_p$, then m is a nhd of p.

N is said to be symmetric iff $p < n_q \Rightarrow q < n_p$.

Definition 6. (L, N^*) is called a nhd lattice.

A closure of operator on (L, N^*) can be introduced as follows

Definition 7. The closure x of an element x in (L, N^*) is given by

 $\overline{x} = n_p \wedge x > o p$ for every nhd $n_p \in \overset{*}{N}$.

Theorem 4. The closure operator (-) in (L, N^*) satisfies the following properties [3]

 $X < \overline{x}, \overline{o} = o, x < y \Longrightarrow \overline{x} < \overline{y} \text{ and } \overline{\overline{x}} = \overline{x}.$

Proof : I. Let p < x, $p < n_p \Rightarrow o < p < x \land n_p \Rightarrow p < \overline{x}$.

II. \overline{o} is the sup of all atoms *p* such that $o \wedge n_p > o$, but no such atom *p* exists, whence $\overline{o} = o$.

III. $p < x < y \implies x \land n_p > o$ $\implies y \land n_p > o$ $\implies \overline{x} < \overline{y}.$

IV. $p \not< x \Longrightarrow n_p \land x = o$ for some $n_p \in N$

$$\Rightarrow n_p \wedge \overline{x} = o \text{ for some } n_p \in N .$$
$$\Rightarrow p \nleq \overline{\overline{x}}.$$

Hence $\overline{x} \ge \overline{\overline{x}}$. But from the first part $\overline{x} \le \overline{\overline{x}}$. Hence $\overline{x} \ge \overline{\overline{x}}$.

Theorem 5. The closure operator in a symmetric nhd lattice (L, N^*) is symmetric.

Proof. Let *p* and *q* be distinct atoms in *L*. Then $q < \overline{p} \Rightarrow p < n_q \Rightarrow q < n_p \Rightarrow p < \overline{q}$.

Theorem 6. A general nhd structure N on L superimposes an open elemental structure by difining an element x to be open 1ff it includes a general nhd of every atom included in it.

Proof. I. $o, 1 \in L \Rightarrow o$ and 1 are open.

II. *x*, *y* open and $p < x \land y \Rightarrow$ there exist n_p and m_p in *N* such that $n_p < x$ and $m_p < y \Rightarrow n_p \land m_p < x \land y \Rightarrow x \land y$ is open.

III. If $\{x_{\alpha} : \alpha \in I\}$ is an open elemental set and $\bigvee_{\alpha \in I} X_{\alpha}$ exists,

Then $\bigvee_{\alpha \in I} X_{\alpha}$ is evidently a open element.

Theorem 7. The interior \underline{x} of an element x in a nhd lattice is the sup of all atoms p such that $n_p < x$ for some $n_p \in \overset{*}{N}$.

Proof. Since every open element z < x is contained in x, it suffices to prove that <u>x</u> is open. Now,

$$p < x \Longrightarrow n < x$$
 for some $n_n \in N$

 \Rightarrow $L_q < m_q < x$ for every $q < m_q$, by Theorem 4 IV,

for some L_q , $m_q < N^*$

 $\Rightarrow m_q < \underline{x} \text{ for every } p < \underline{x}$

 $\Rightarrow \underline{x}$ is open.

Remark 1. An interior operator in a general nhd lattice is distributive over \wedge .

For, $p < \underline{x} \land \underline{y} \Rightarrow p < \underline{x}, p < \underline{y}$ $\Rightarrow n_p < x, m_p < y$ for some $n_p, m_p \in \overset{*}{N}$ $\Rightarrow n_p \land m_p < x \land y$ $\Rightarrow p < \underline{x \land y}$

Uniformizations of and structure on *L* leads the following uniformity.

Definition 8. A uniform structure [4] on *L* is a family

 $U = \{(u, L_0, L) : L_0 \text{ is the set of all atoms of } L\}$ of mappings defined on L_0 into L such that

 $U_1: p < u(p)$ for every $p \in L_0$, i.e., the identity function *I* defined by $I_{(p)} = p$ for all $p \in L_0$ is included in every function *u*.

 $U_2: v > u \in U \Rightarrow v \in U$, i.e., if $u \in U$ and u(p) < v(p) for all $p \in L_0$, then $v \in U$ for all $p \in L_0$, then $v \in U$

 $U_3: u, v \in U \Rightarrow u \land v \in U$, where $u \land v$ denotes the function defined by $u \land v(p) = u(p) \land v(p)$ for every $p \in L_0$.

 $U_4 : u \in U \Rightarrow$ there exists a $v \in U$ such that $v \circ v < u$ where $v \circ v$ means v(q) < u(p) for every q < v(p).

(L, U) is called a uniform lattice which can be evident from the following theorem :

Definition 9. A function $u \in U$ defines a binary relation \hat{u} on L_o by setting

 $\hat{u}:\{(p,q) \quad p,q \in L_o \text{ and } q < u(p)\}.$

Theorem 8. (*L*, \hat{u}) is a uniform space consisting of a lattice and family.

 $\hat{u} = \{\hat{u} : u \in u\}$ of relations on $L_o \subset L$

satisfying U_1 - U_4 and conversely, provided that L is closed with respect to arbitrary sup.

Proof. I. (i) $p < u(p) \Rightarrow I < u > \Rightarrow (p, p) \in \hat{I}$

$$\Rightarrow (p,q) \in \hat{u} \Rightarrow \hat{I} \subset \hat{u}$$

(ii)
$$\hat{v} \supset \hat{u} \in U \Rightarrow (p,q) \in \hat{u}$$

 $\Rightarrow (p,q) \in \hat{u} \Rightarrow q < u(p)$
 $\Rightarrow q < v(p) \Rightarrow v \in U \Rightarrow \hat{v} \subset \hat{U}.$
(iii) $\hat{u}, \hat{v} \in \hat{U} \Rightarrow u \land v \in U \Rightarrow (u \land v)^{\wedge} \in \hat{U}$
(iv) $vov < u \Rightarrow \hat{v}o\hat{v} \subset \hat{u}$

II. Conversely, let \hat{U} be a family of relations on L_o satisfying the usual conditions of uniformity. Then associating a relation u with a function u by defining

 $u(p) = \bigvee_{(p,q)\in\hat{u}} q$, the set $\{\hat{u}: \hat{u} \in \hat{U}\}$ is easily verified to satisfy the conditions $U_1 - U_4$.

Separation axioms in a uniform lattice are also definiable [5].

Definition 10. A uniform lattice (L, U) is called :

 T_0 provide for distinct atoms p and q of L there exists a function $u \in U$ for which $p \not\leq u(q)$, or there exists a $v \in U$ such that $q \not\leq v(p)$;

 T_1 provided for distinct atoms p and q there exist functions u and $v \in U$ for which $p \neq u(q)$ and $q \neq v(p)$;

 T_2 provided for distinct atoms p and q there exist functions u and $v \in U$ for which $p \not< u(q)$, $q \not< v(p)$, u(q) and v(p) are disjoint elements.

Theorem 9. A uniform complete lattice is T_o iff $\bigwedge_{u \in U} u$ is an antisymmetric function,

 T_1 iff $\bigwedge_{u \in U} u = I$ (identity function).

Proof. I. For $\wedge u(p)$ is antisymmetric iff $p \leq u(q)$ for distinct atom p and q and for some $u \in U$.

II. Since $I < u, I \land u$, it suffices to prove $\land u < I$. T_1 -ness \Rightarrow for distinct atom p and q i.e., $q \not< I(p)$, there exists a $u \in U$ such that $q \not< u(p)$, i.e., u < I, whence $\land u < I$.

Theorem 10. A symmetric function *T*_o-lattice is *T*₂-lattice.

Proof. I. T_0 -ness \Rightarrow for distinct atom p and q, $p \not\leq u(q)$, or $q \not\leq u(p)$ for some $u \in U$. Choose a symmetric function v such that $v \circ v < u$. Then v(p) and v(q) are distinct elements. If possible, let r < v(p) and r < v(q) whence q < v(r) for symmetry, then q < v(v(p)) < u(p) and by symmetry p < v(v(p)) < u(q), which contradicts that $p \not\leq u(q)$ or $q \not\leq u(p)$.

A uniform structure on a sup complete atomistic lattice has its conjugate.

Definition 11. The function u^* on L_o into uniform sup complete lattice L defined by $u^*(p) = \bigvee_{q \in L_o} q$ for $p < d_{q \in L_o}$

u(q) is called the conjugate of u.

Theorem 11. The set $u^* : \{u^* : u \in U\}$ of conjugate functions of u in U is uniformity, called the conjugate uniformity.

Proof. I. $p < u(p) \Rightarrow p < u^*(p)$

II. $u^* \in U^*$ and $q < u^*(p) \Rightarrow p < u(q)$, $u \in U$. $q < u^*(p)$, $u^*(p) < v^*(p)$. $u^* \in U^* \Rightarrow p < u(q) < v(q) \Rightarrow v \in U \Rightarrow v^* \in U^*$

III. $u_1^*, u_2^* \in U^* \Longrightarrow u_1, u_2 \in U \Longrightarrow (u_1 \land u_2)^* \in U^*$

IV. $u^* \in U^* \Rightarrow u \in U \Rightarrow$ there exists a *v* such that $v \circ v < u \Rightarrow$ for $q < v(p), r < v(q) \Rightarrow r < u(p)$. Hence $v^* \circ v^*(r) < u^*(r)$.

Remark 2. A uniform lattice is symmetric iff $U = U^*$.

Remark 3. T_1 -ness property of a uniform lattice is conjugate invaritant, i.e., whenever a uniformity is T_1 , then so in its conjugate.

Theorem 12. A T_1 uniform Boolean algebra has a T_1 open elemental structure, i.e. for which an antiatom h is an open elemental.

Proof. I. Let q < h. As the uniformity is T_1 , for distinct atoms p and q, i.e. for $q \neq I(p) \land u < I$. Obviously, then there exists $u \in U$ such that $q \neq u(p)$ and $r < u(q) \Rightarrow r < h$, i.e. u(q) < h, whence is open.

As extension of uniformity U on an atomistic sup complete lattice L leads to a proximity structure on L.

REFERENCES

- [1] Rutherford, D.E. (1966) : Introduction to Lattice Theory, Oliver and Boyd, Edinburg and London.
- [2] Thrown, W.J. (1966) : Topological Structures, Holt. Chicago San Fransisco, Tornto, London.
- [3] Szasz, G. (1963) : Introduction to Lattice Theory, Acad. Press, New York and London.
- [4] Lal, R.N. (1975) : Uniform Posets, Indian J. Pure Appl. Math., Vol. 6, 1526-1533.
- [5] Murdeshwa, M.G. (1966) : Trennung Axioms in Quasiuniform Spaces, Nieu Archief Voor, Viskunde, vol. 3, No. 14, 99-101.
