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ABSTRACT 

The present paper proposes to extend the notion of quasimetric on an arbitrary atomistic lattice L. 

Such a matric lattice on L will determine a neighbourhood (shortly nhd) structure, a generalisation of which 

leads to the concepts of uniformity as well as proximity on L. 
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A set topology is a Kuratowskian Closure operator on the power set which is isomorphic to a 

complete Boolean lattice and which is also characterised in terms of quasimetric (non-symmetric metric). It 

is, therefore, possible to formulate a metric structure on such a lattice [1]. 

The present paper proposes to extend the notion of quasimetric on an arbitrary atomistic lattice L. 

Such a matric lattice on L will determine a neighbourhood (shortly nhd) structure, a generalisation of which 

leads to the concepts of uniformity as well as proximity on L. Throughout the section lattice L will be 

assumed to be atomistic unless and otherwise stated in which atoms will be denoted by p, q, r, …  

Definition 1. A quasimetric on an atomic lattice L is a positive real valued function defined on L × L such 

that  

M1 : p = q  (p, q) = 0  

M2 : (p, r)  (p, q) + (q, r) 

 (L, ) is, then, called a quasimetric lattice.  

Definition 2. If x  0, then the distance function (x, p) on L is given by :  

 ( , ) ( , )


   
q x

x p p q   

The notion of closure operator is introduced as follows:  

Definition 3. A closure operator ( - ) on L is a unary operator on L such that  

1

2

( , ) 0

: 0 0

: , if 0


 



  
x p

c

c x x  

Theorem 1. (L, ) is a Kuratowskian topological space.  

Proof. I. Let p  x. Then by M, (x, p) = 0 and consequently .p x   
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Hence .x x  

II. ( , ) 0  q x x q  

  for a given positive there exists  

  an atom p1 such that (q, p1) <  for 1 .p x   

Similarly 1 p x   

  for the same  there exists  

  an atom p2 such that ( p1, p2) <  for 2 .p x   

Hence for a given  we find atoms p1 and p2 such that  

(q, p2)  (q, p1) + (p1, p2) < 2 for p2  x. Hence (x, q) = 0 and .q x  Hence .x x  But from the 

first part .x x
 
Hence .x x   

III. ( , ) 0    q x y x y q
 

( , ) 0
p x y

q p
 

     

 there exists an atom  np x y   such that  

1
( , )nq p

n
   for all positive integers n  

( , ) 0 ( , ) or ( , )    nq p x q y q
 

 either  or   q x q y
 

  q x y
 

    x y x y  

Next,       x x y p x p x y
 

( , ) 0 ( , ) 0     x p x y p  

  x x y  

Similarly y x y    

Hence .  x y x y  This prove the theorem. 

Every quasimetric on L introduces the notion of a basic nhd structure on L.  
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Definition 4. Let  be any positive number. Then -nhd of p in L, i.e.,  

( , )
( )

 
  p

p q
n q  

Theorem 2. The set N = {np()} is a basic nhd on L.  

Proof. N1 : By ML we have p  np ()  

N2 : np (1) and np (2)  there exists a neighbourhood np ()  such that np ()   np (1) and np ()   np 

(2), where  = min (1, 2) 

N3 : q  np ()  ( p, q) =  - ,  

where 0 <  <  and q  p. 

n4 ()   np (), for if r  nq (), then 

(q, r) <  and by M2 :  

(p, r)  (p, q) + (q, r) =  -  +  =  

i.e.,  r  np(). 

Theorem 3. If  is symmetric on L, then (L, ) is a Hausdorff space.  

Proof. Let (p, q)  = 3 > 0. Then p  q and ( ) ( ) 0   p pn n  for otherwise there would be an atom r such 

that ( ) pr n  and ( ) qr n  so that (r, p) <  and (q, r) < . Then by M2(p, q) < (r, p) + (r, q) < 2 

contracting the previous assumption.  

In addition to a basic nhd structure there exist an open and a general a nhd structure [2]. Throughout 

the rest of the section we shall confine to a general nhd structure on an arbitrary atomistic lattice.  

Definition 5. A general nhd 
*

N  on L is a set of all nhds of all atoms of L in which the following axioms, in 

addition to N1 and N3 of Theorem 2 hold :  

*

2N  : If n1 and n2 are nhds of p, then n1  n2 is a nhd of p.  

N4: If np is a nhd of p and m > np, then m is a nhd of p.  

*

N  is said to be symmetric iff p < nq  q < np.  

Definition 6. (L, N*) is called a nhd lattice.  

A closure of operator on (L, N*) can be introduced as follows  

Definition 7. The closure x of an element x in (L, N*) is given by  



  px n x o  p for every nhd 
*

pn N .  
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Theorem 4. The closure operator (-) in (L, N*) satisfies the following properties [3] 

, ,  and .     X x o o x y x y x x  

Proof : I. Let p < x, p < np  o < p < x  np  p < .x  

II. o  is the sup of all atoms p such that o  np > o, but no such atom p exists, whence o o .  

III. p < x < y   x  np > o  

  y  np > o 

  . x y  

IV.     pp x n x o  for some 
*

pn N  

 
  pn x o

 
for some 

*

pn N . 

  .p x   

Hence .x x  But from the first part .x x  Hence .x x  

Theorem 5. The closure operator in a symmetric nhd lattice (L, N*) is symmetric.  

Proof. Let p and q be distinct atoms in L. Then .      q pq p p n q n p q  

Theorem 6. A general nhd structure 
*

N  on L superimposes an open elemental structure by difining an 

element x to be open 1ff it includes a general nhd of every atom included in it.  

Proof. I. o, 1  L  o and 1 are open.  

II. x, y open and p < x  y  there exist np and mp in 
*

N  such that np < x and mp < y  np  mp < x  

y  x  y is open.  

III. If  :  x I  is an open elemental set and 



I
X   exists, 

Then 



I
X

 
 is evidently a open element.  

Theorem 7. The interior x  of an element x in a nhd lattice is the sup of all atoms p such that          np < x for 

some 
*

pn N .  

Proof. Since every open element z < x is contained in x, it suffices to prove that x  is open. Now,  

p < x  n < x for some 
*

pn N  

 Lq < mq < x for every q < mq, by Theorem 4 IV, 
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for some Lq, mq < N*  

 qm x
 
for every p x  

 x  is open.  

Remark 1. An interior operator in a general nhd lattice is distributive over .  

For, ,p x y p x p y       

,  p pn x m y  for some 
*

, p pn m N   

   p pn m x y   

  p x y   

Uniformizations of and structure on L leads the following uniformity.  

Definition 8. A uniform structure [4] on L is a family  

U = {(u, Lo, L) : Lo is the set of all atoms of L} of mappings defined on Lo into L such that  

U1 : p < u(p) for every p  Lo, i.e., the identity function I defined by I(p) = p for all p  Lo is included 

in every function u.  

U2 : v > u  U  v  U, i.e., if u  U and u(p) < v(p) for all p  Lo, then v  U for all             p  

Lo, then v  U  

U3 : u, v  U  u  v  U, where u  v denotes the function defined by u  v(p) = u(p)  v (p) for every p 

 Lo. 

U4 : u  U  there exists a v  U such that v o v < u where v o v means v(q) < u(p) for every q < 

v(p).  

(L, U) is called a uniform lattice which can be evident from the following theorem : 

Definition 9. A function u  U defines a binary relation û  on Lo by setting 

ˆ :{( , ) ,  and ( )}.ou p q p q L q u p 
 

Theorem 8. (L, û ) is a uniform space consisting of a lattice and family.  

 ˆ ˆ : u u u u
 
of relations on Lo  L  

satisfying U1 - U4 and conversely, provided that L is closed with respect to arbitrary sup.  

Proof. I. (i) p < u(p)  I < u >  (p, p)   Î  

ˆˆ ˆ( , )   p q u I u
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(ii) ˆˆ ˆ ˆ( , )v u U p q u   
 

ˆ( , ) ( )

ˆˆ( ) .

   

     

p q u q u p

q v p v U v U

 

(iii) ˆ ˆˆ ˆ, ( )      u v U u v U u v U  

(iv) ˆ ˆ ˆ  o ov v u v v u  

II. Conversely, let Û  be a family of relations on Lo satisfying the usual conditions of uniformity. 

Then associating a relation u with a function u by defining  

ˆ( , )
( ) ,


 

p q u
u p q

 
the set  ˆˆ ˆ: u u U  is easily verified to satisfy the conditions U1 - U4.  

Separation axioms in a uniform lattice are also definiable [5].  

Definition 10. A uniform lattice (L, U) is called :  

To provide for distinct atoms p and q of L there exists a function u  U for which ( ),p u q  or there 

exists a v  U such that ( )q v p ;  

T1 provided for distinct atoms p and q there exist functions u and v  U for which ( )p u q  and 

( )q v p ; 

T2 provided for distinct atoms p and q there exist functions u and v  U for which ( )p u q , 

( )q v p , u(q) and v(p) are disjoint elements.  

Theorem 9. A uniform complete lattice is To iff 



u U
 u is an antisymmetric function, 

T1 iff 



u U
 u = I (identity function). 

Proof. I. For  u(p) is antisymmetric iff ( )p u q  for distinct atom p and q and for some u  U. 

II. Since I < u, I  u, it suffices to prove  u < I. T1-ness  for distinct atom p and q i.e., ( ),q I p  

there exists a u  U such that ( ),q u p  i.e., u < I, whence  u < I.  

Theorem 10. A symmetric function To-lattice is T2-lattice.  

Proof. I. T0-ness  for distinct atom p and q, ( ),p u q
 
or ( )q u p  for some u  U. Choose a symmetric 

function v such that v o v < u. Then v(p) and v(q) are distinct elements. If possible, let r < v(p) and r < v(q) 

whence q < v(r) for symmetry, then q < v(v(p)) < u(p) and by symmetry             p < v(v(p)) < u(q), which 

contradicts that ( )p u q  or ( )q u p . 

A uniform structure on a sup complete atomistic lattice has its conjugate. 
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Definition 11. The function u* on Lo into uniform sup complete lattice L defined by *( )


 
oq L

u p q  for p < 

u(q) is called the conjugate of u.  

Theorem 11. The set * *:{ : }u u u U  of conjugate functions of u in U is uniformity, called the conjugate 

uniformity.  

Proof. I. p < u(p)  p < u*(p)  

II. * *u U  and *( ) ( ),  q u p p u q
 

u  U. *( ),q u p
 

* *( ) ( ).u p v p * * * *( ) ( )       u U p u q v q v U v U  

III. * * * * *

1 2 1 2 1 2, , ( )     u u U u u U u u U   

IV. * *   u U u U
 
there exists a v such that v o v < u  for q < v(p), r < v(q)  r < u(p). Hence v* o 

v* (r) < u*(r).  

Remark 2. A uniform lattice is symmetric iff U = U*. 

Remark 3. T1-ness property of a uniform lattice is conjugate invaritant, i.e., whenever a uniformity is T1, 

then so in its conjugate. 

Theorem 12. A T1 uniform Boolean algebra has a T1 open elemental structure, i.e. for which an antiatom h 

is an open elemental.  

Proof. I. Let q < h. As the uniformity is T1, for distinct atoms p and q, i.e. for ( ) .  q I p u I  Obviously, 

then there exists u  U such that ( )q u p  and r < u(q)  r < h, i.e. u(q) < h, whence is open. 

As extension of uniformity U on an atomistic sup complete lattice L leads to a proximity structure on L. 
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