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ABSTRACT 

Large quantities of images are shared through multi platform services. The most image cloud processing 

applications, designed for large scale image. The Hadoop framework which provides a hadoop based library 

to support large scale image. The framework provides a high level transparency and efficiency for creating 

large scale image processing applications on top of hadoops MapReduce framework. The proposed Image 

Cloud Processing (ICP) framework consists of two mechanisms. Static ICP (SICP), Dynamic ICP (DICP). 

SICP and DICP representation named P- Image and B- Image are designed to cooperate with MapReduce. 

SICP is processed mainly for efficiency processing large scale images that have already been stored in the 

distributed system. DICP implemented through a parallel processing procedure working with the traditional 

processing mechanism of distributed system. 
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1. Introduction 

Big data is sprouting up everywhere and using it appropriately will drive competitive advantage. 

Ignoring big data will put on organization at risk and cause it to fall behind the competition. To stay 

competitive, it is imperative that organizations aggressively pursue capturing and analyzing these new data 

source to gain the insights they offers. Big data is not about the size of the data in terms of how much data 

there is. According the group the “big” in big data also refers to several other characteristics of a big data 

sources. While big data certainly involves a lot of data does not refers to data volume alone. Big data also 

has increased velocity, complexity and variety of data source of the past. It is needless to say how important 

of image classification/ recognition is in the field of computer vision – image recognition is essential for 

bridging the huge\ semantic gap between an image, which is simply a scatter of pixels to untrained 

computers, and the object it presents. Therefore, there have been extensive research efforts on developing 

effective visual object recognizers. Most research efforts on image classification so far have been focused 

on medium-scale datasets, which are often defined as datasets that can fit into the memory of a desktop. We 

then cluster graph vertices associated with the compatibility matrix and extract its dominant set as the 

optimal matches. 

2. Related Work 

Image cloud processing is implemented in parallel and wants a framework structure for image processing 

and gain a raise in time efficiency without compromising the result. SICP representation named P- Image 

and B- Image are designed to cooperate with MapReduce [1]. There are two main reasons for the limited 

effort on large-scale image classification. First, until the emergence of Image Net dataset, there was almost 

no publicly available large-scale benchmark data for image classification. This is mostly because class 

labels are expensive to obtain. Second, large-scale classification is hard because it poses more challenges 
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than its medium-scale counterparts [5]. A key challenge is how to achieve efficiency in both feature 

extraction and classifier training without compromising performance. Cloud computing is an emerging 

commercial infrastructure paradigm that promises to eliminate the need for maintaining expensive 

computing facilities by companies and institutes alike. Thus, clouds have the potential to provide to their 

owners the benefits of an economy of scale and, at the same time, become an alternative for scientists to 

clusters, grids, and parallel production environments [4]. Hadoop Distributed File System (HDFS) is widely 

used in large-scale data storage and processing. HDFS uses MapReduce programming model for parallel 

processing. The work presented in this paper proposes a novel Hadoop plug-in to process image files with 

MapReduce model. [9]The proposed technique is based on merging multiple small size files into one large 

file to prevent the performance loss stemming from working with large number of small size files. In that 

way, each task becomes capable of processing multiple images in a single run cycle. The effectiveness of 

the proposed technique is proven by an application scenario for face detection on distributed image files. 

MapReduce framework to implement our algorithms and demonstrated the performance in terms of 

classification accuracy, speedup and scale up using a wide variety of synthetic and real-world data sets. 

Building the next generation of multimedia systems for content retrieval navigation and browsing hinges on 

solving critical tasks such as image classification, event detection, and video summarization. In turn, these 

tasks are based on accurately detecting semantic categories from very large repositories of visual 

information, i.e., images and videos. In practical applications, this key classification problem is further 

compounded by the visual ambiguity induced by a noisy content. Although a lot of research has been 

conducted to address semantic classification of visual information, most techniques from the literature 

hardly address the fundamental problem of blurry and noisy content. However, low-quality content ranging 

from noisy to motion-blurred key frames is prevalent in broadcasting applications and even more in 

currently pervasive nonprofessional user-generated images and videos. The underlying approach is based on 

three strategies: extraction of essential signatures captured from a global context, simulating the global 

pathway; highlight detection based on local conspicuous features of the reconstructed image, simulating the 

local pathway; and hierarchical classification of extracted features using probabilistic techniques.  

3. Static Image Cloud Processing 

Our ICP framework consists of two complementary processing mechanisms, i.e., SICP (Static Image Cloud 

Processing) and DICP (Dynamic Image Cloud Processing). As shown in Fig.5.1, SICP is aimed at 

processing those large-scale image data that have been stored in the distributed system. Decode these static 

images first to maintain the necessary information as their corresponding P-Images which will be then 

stored in the data file contained in Big- Image. Then, when image processing is required, we just need to 

index the index file also stored in Big-Image to find the demanded P-Images which provide the needed 

image information. Traditional image processing methods usually utilize the small image files as serial 

processing units, which seriously limits the processing efficiency and even results in a breakdown once the 

cluster fails to timely process such huge amounts of small image files. To overcome these constraints, our 

SICP mechanism provides a different design. The dataset contains 30 image groups, each of which 

represents a distinct scene or object. The first image of each group is the query image and the correct 

retrieval results are the other images of the group. 
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Fig 3.1System architecture diagram

3.1 Modeling for P- Image  

P-Image includes the filename, the pixel values, and the width height of the initial image. To our 

best knowledge, almost all of the image processing algorithms in computer vision are based on pixel 

information. Once contained in P-Image, this information would not get lost and hence, time consumption 

will be greatly reduced by avoiding the repeated decoding operations. In our design, we utilize a two-

dimensional matrix to store the pixel values corresponding to those stored in the P-Image. By accessing the 

matrix, we can obtain the pixel values at a high speed owing to the one-to-one correspondence between the 

pixel coordinates recorded in the matrix and those contained in P-Image. 

 

 

 

 

 

Fig 3.2 Structure of P-Image 

The structure of Big-Image which consists of a data file and an index file. The data file is employed 

to store the aforementioned P-Images, and the index file is utilized to record the ID and Offset of each P-

Image stored in the data file. Here, we store the P-Images in Big-Image so as to save memory space, avoid a 

loss of image information, and process huge amount of images at a time. The catalogue of the index file is 

made up of two fields, i.e. ID and Offset. The P-Image ID is computed by the Hash function with the P-

Image filename, and the P-Image Offset denotes its corresponding location in the data file. Indexing through 

the index file using the ID to get the corresponding offset, we can directly get the P-Images stored in the 

data file to extract the needed image information for subsequent processing. Compared with the traditional 

small image files, Big-Image effectively avoids the queuing delay.  

Filename 

Width Height 

       Pixel values 
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Fig 3.3 Structure of B-Image 

In image processing field, RGB and Grey color modes are the most widely used color space to 

represent images. As depicted in RGB color mode contains a 1*3 array to store the key of the three 

channels. By contrast, Grey color mode only contains a single key. Despite this difference, the key ranges 

from 0 to 255 no matter what the color mode is. Sometimes, we need to transform the RGB mode to Grey 

mode when using P-Image. In our work, we employ a famous formula of psychology to accomplish the 

transformation: 

M(x; y) =M(x, y) R*0.2989 +M(x,y)G * 0.5870+M(x,y)B*0.1140 (1) 

 

Partition of Big-Image, each Map Node would deal with its corresponding GP[k] (the kth group of P-

Images) in parallel to gain pixel values and accomplish feature extraction. We call this processing procedure 

mapping function, i.e. M {.}, which takes GP[k] as input. The eventually gained features can be defined as 

 

          FI(k)=M{GP[k]} (2)                                                                                            

 

Where FI (k) represents the total features of each GP[k] after the M {.} operation. The gained FI (k) 

would act as input to the reducing function, i.e. R {.}, in which αk is another input coefficient (we will 

define the role of αk shortly). The final output θ is expressed as equation (3) 

θ=R { } (3) 

6.1.2 Mapping a Image Dataset 

Framework also designed for improving computational efficiency and with a strong focus on real 

applications. The image processing, P-Image producing, and Big-Image producing can be implemented in 

parallel, which demonstrates that producing P-Image and Big-Image will not drag down the whole 

efficiency. 

Table 6.1 Splitting an image based on File Name, Width, Height and Size 

 

4.  Feature Extraction  

All of the operations, that are partitioning Big-Image, gaining pixel values, extracting features, 

mapping, reducing, etc., can be implemented in parallel. Apparently, compared with traditional methods 

taking single image file as input to be processed serially, P-Image and Big-Image contribute a lot to the 

parallel processing in SICP mechanism. Instead of suffering a breakdown of the cluster, SICP guarantees a 

stable processing procedure even when the image scale reaches a huge extent, which largely attributes to the 

high scalability that the cloud computing platform owns. With the excellent cloud computing capability, the 
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image processing equals to processing several big image files after the simple partition of Big-Image. Big 

Image data Processing on SICP, 

Step 1: Produce P-Images 

 

P-Image: an image representation containing filename, width-height, and pixel values; 

Input: Image [1 : : : N]; 

1: for each Image[i] do 

2: Decode Image[i] to retain its filename, width, height, and pixel values; 

3: end for 

Step 2: Produce Big-Image 

Big-Image: a huge file containing a data file and an index file; 

ID: image filename; Offset: P-Image[i]’s size; Offset 0; 

4: for each P-Image[i] do 

5: Offset  Offset + the size of P-Image[i]; 

6: Insert ID and Offset of P-Image[i] into Big-Image.index; 

7: Insert P-Image[i] into Big-Image.data; 

8: end for 

Step 3: Partition Big Image 

GP[k]: the kth group of P-Images; 

BLOCKSIZE: the size of GP[k]; 

NumMapTask: the number of Map Nodes; 

NumMapTask Big-Image.size=BLOCKSIZE+1;  

Offset  0; count  1; i   0; k   1; 

 9: while NumMapTask> 0 do 

10:whileOffset<BLOCKSIZE_count do 

        11: Extract the P-Image[i] from Big-Image. Data according to P-Image[i] Offset; 

12: Insert P-Image[i] into GP[k]; 

13: Offset  Offset + size of P-Image[i]; 

14: i    i + 1; 

15: end while 

16: k   k + 1; 

17:Allocate GP[k] to the corresponding Map Node; 

18: NumMapTask NumMapTask􀀀1; count count+1; 

19: end while 

Step 1: Produce P-Images. Since that all of the images are typically represented by the structured 

data after encoding, we firstly produce P-Images. Different from the traditional image processing procedure, 

P-Image, which is composed of the extracted necessary information, successfully helps to avoid the repeated 

and time-consuming decoding operation and most importantly, it helps to release memory demanding by 

storing the numerous P-Images in the hard disk. 

Step 2: Produce Big-Image. After completion of Step 1,design a special representation of file called 

Big-Image to store all of the gained P-Images. Big-Image consists of a data file to store the P-Images and an 

index file to store the corresponding ID and Offset (Line 4 to 8). Owing to the elegant design of the index 

structure, Big- Image contributes a lot to rapidly locate the P-Images required for processing. Besides, Big-

Image contributes a lot to reduce the disk I/O when compared with conventional small files. 

Step 3: Partition Big-Image. The core of our SICP lies in the parallel processing on a cluster of 

machines by utilizing the computing resources provided by the distributed system. Therefore, the single Big-

Image needs to be partitioned into several groups to be processed on the Map Nodes in parallel. The P-Image 

amount in each group can be set in accordance with the real applications. Search the P-Images stored in the 

data file via their corresponding Offsets, and then insert these P-Images into one group. (Line 10 to 15). 
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Fig3.4 Comparison between file name and Size 

5.  Conclusion   

SICP is aimed at processing those large-scale image data that have been stored in the distributed 

system. Decode these static images first to maintain the necessary information as their corresponding P-

Images which will be then stored in the data file contained in Big- Image. Then, when image processing is 

required, we just need to index the index file also stored in Big-Image to find the demanded P-Images which 

provide the needed image information. Given the needed image information, we can then implement the 

related image processing algorithms aimed at image classification, retrieval, detection, etc. 
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