
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1892082 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 535

SOFTWARE REUSABILITY BASED ON

COHESION AND COUPLING USING HYBRID

ALGORITHM

Sudhir Verma

Research Scholar, M.Tech (CSE)

RIMT IET, Mandi Gobindgarh

Punjab Technical University

Punjab INDIA

Charanjit Singh

Assistant Prof. (CSE)

RIMT IET, Mandi Gobindgarh

Punjab Technical University

Punjab INDIA

Abstract:

The object-oriented approach has been the most popular software design methodology for the past twenty-

five years. Several design patterns and principles are defined to improve the design quality of object-

oriented software systems. In addition, designers can use unique design motifs that are designed for the

specific application domains. Another commonly used technique is cloning and modifying some parts of the

software while creating new modules. Therefore, object-oriented programs can include many identical

design structures. In this paper we are developing an algorithm which help to find the connected modules

inside package or from on package to another package so that we can determine the cohesion and coupling

in project which help to determine the reusability of modules in the project.

Keywords—Reusability of module

A Introduction

Many software projects contain a significant number of software clones [1], which are duplicated parts of source code

or design models. One reason for design-level cloning is the frequent usage of software design principles and design

patterns (e.g., GRASP [2], GoF [3]). Furthermore, there are domain-specific patterns [4] that are optimal for a specific

application or Thomson Reuters, India is the “fourth most dangerous country” in the world for women, and the worst

country for women among the G20 countries. This paper focuses on a security system that is designed solely to serve

problem, which allows them to be used repeatedly in a project. In addition, there are unfavorable sources of clones,

such as anti-patterns and common design defects. Consequently, a software system can include many identical parts at

the design level. In the article „Draw Me a Picture‟ [5], Booch noted that the hidden patterns (domain-specific

patterns) in software are crucial to understanding software architecture and to assessing its quality. Domain-specific

patterns are the reused design structures in a specific project domain that are specialized to accomplish similar jobs in

a common design form. Detection of these structures will give us the opportunity to improve and publish them for all

developers. Theoretically, it is also possible to explore currently unnamed design patterns by examining reused design

structures in specific project domains. Studies on software maintenance indicate that more than 2/3 of the total

development cost is spent on software maintenance activities [6,7], and more than half of the maintenance cost is

spent on comprehension activities [8]. Nevertheless, several real-world evaluations present that the availability of

documented design patterns will reduce the cost of program comprehension for object-oriented systems [9,10].

Additionally for these reasons, it is important to discover reused design patterns. The comprehension of software

architecture also plays a key role in refactoring processes, which constitute the reactive part of maintenance tasks.

Refactoring improves the internal design structure of software by preventing the production of poor quality products.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1892082 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 536

Identifying these types of identical design structures (i.e., non-standard design patterns and common design defects)

could provide a significant advantage in terms of reducing the cost of maintenance; the reason is that the most

commonly-used structures in software design are the best places to look for refactoring opportunities because they

affect multiple parts of the design. For example, non-standard structures that are similar to design patterns might be

modified to conform to standard forms, and common design defects can be quickly identified, which allows them to

be fixed in multiple areas at once. In addition, frequently repeated identical design structures are usually the most

reusable parts of the design; these parts can provide good candidates for additional use in future designs. Another

source of the clones is the replicated code due to copy–paste activities. Mostly, developers modify these replicated

parts separately to allow their source code to change, but the design remains same [11]. The code quality could

decrease if developers apply a bug fix to one structure but fail to apply the same correction to its copies. With the help

of our approach, copy–paste type design structures can be detected even if their source code is modified. These

replicated structures can be combined into a single library entity, to be used efficiently in different parts of the current

project or in future projects. This approach will also avoid inconsistent bug fixes. The area of clone detection is

considered to be an important part of several software engineering tasks [12]. Finding repetitive design matches could

help developers and architects when evaluating reused design patterns, refactoring duplicated parts, understanding the

program architectures and detecting plagiarism. In this paper, we propose a graph mining-based approach to detecting

identical parts in an object-oriented software architecture. The proposed approach contains three main steps. In the

first step, the AST (abstract syntax tree) of the source code of the system is analyzed and the UML-based design level

of abstraction is created. Based on this abstraction, we construct a software model graph, in which classes, interfaces

and templates of software constitute the vertices, and the relations between them form the directed edges. According

to the importance of the relation type, we assign weight values to the edges of the graph. In the next step, we apply a

graph partitioning algorithm to divide the directed and weighted software model graph into small pieces. Finally, in

the last step, a sub-graph mining algorithm is applied to discover identical design structures in the generated software

model. Because the scope of our study is primarily focused on the detection stage, analyzing and automatically

classifying these structures could be an interesting topic for future studies. However, we also present several

evaluations with a manual classification to find useful and meaningful structures from open-source and industrial

projects that could inspire future studies. The remainder of this paper is organized as follows: Background and related

work are presented in the next section. The graph representation and definitions are given in Section 3. The

identification process is detailed in Section 4. In Section 5, the results obtained from exemplary projects are presented.

In Section 6, we discuss critical parts and the efficiency of our approach, and the last section concludes the paper.

A. Structural Composition

Structural composition approaches build a design by gluing pattern structures that are modeled as class diagrams. Structural

composition focuses more on the actual realization of the design rather than abstractions as role models. Behavioral composition

techniques, such as roles [18,20] leave several choices to the designer with less guidelines on how to continue to the class design

phase. This probably creates more confusion than flexibility. Therefore, we advocate a structural composition approach with

pattern class diagrams. a) Software Composition using Design Components. Keller and Schauer [10, 22] address the problem of

software composition at the design level using design components. Their project, called Software desirable Properties into the

design of ObjectOriented Large-scale software systems (SPOOL), focuses on the problem of adapting software systems in large

telecommunication companies due to rapid changing requirements. Their approach and ours share the same objective of creating

software designs that are based on well-defined and proven design patterns packaged into tangible, customizable, and composable

design components. Keller defines the evolution of a pattern in a design boundaries around pattern participants. Such a technique,

also used in [13], is cumbersome and does not support a high-level view of the design.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1892082 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 537

B Design pattern definition

In general, a design pattern is described in a template consisting of two sections, Problem Domain and Solution Domain. The

Problem Domain describes the problem context where the pattern can be applied. Analogously, the Solution Domain describes the

structure and collaborations of the pattern solution being applied to the problem. A design pattern consists of Pattern Name

section, Intent section (description ofits problem), Motivation section (a scenario that illustrates a design problem), Applicability

section (the situations in which the design pattern can be applied), Structure section (a structure of the participants in the Solution

Domain), Participants section (the classes and/or objects participating in the Solution Domain), Collaborations section

(collaboration diagrams between solution participants), Consequences section (the results and trade-offs of applying the pattern),

Implementation section, and the Related Patterns section[1]. In this paper, only the Solution Domain of each design pattern

document including Structure, Participants, Collaborations, and Implementation sections is used to detect automatically design

patterns.

C. Dynamic cohesion measurement

In object-oriented systems, attributes and methods are the basic elements of an object or a class. A well-defined theoretical
framework that formally defines these elements and depicts the relationships among the elements is the precondition of a
welldefined cohesion measure. Here, a novel theoretical framework is proposed for characterizing elements and dependence
relationships among elements of an object or class. This framework is used to describe relationships of four types: (i) write
dependence relation between attributes and methods, (ii) read dependence relation between methods and attributes, (iii) call
dependence relation among methods, and (iv) reference dependence relation among attributes. The proposed measures take into
account two types of access relationships between methods and attributes, i.e. read access relations and write access relations
between methods and attributes. If a method having some logical error writes an attribute, then the value of attribute may also be
incorrect. Thus, value of the attribute is dependent on the behaviour of the method during write access relationship between
methods and attributes. Similarly, if a method reads an attribute that has incorrect value, then behaviour of the method may also
be erroneous. Though, if method has a logical error, the value of attribute will not be affected by the method reading it. This fact
states that the behaviour of method is dependent on the value of attribute during read access relationship between methods and
attributes [1]. The proposed metrics account for inheritance and polymorphism present in object-oriented software. During
dynamic cohesion measurement, we treat class (including inherited features) as a single semantic concept. Thus, set of attributes
and set of methods of a class (formally defined in the next section) include set of inherited attributes and set of inherited methods,
respectively. The concept of polymorphism is relevant only in method invocation type of connections. Since, cohesion is being
measured for an object at run-time; polymorphic method invocations are accounted for automatically instead of static method
invocations. s

D Coupling and Cohesion

The term coupling is used to measure the relative inter- dependency between various classes as one class has the link with another
class. While on the other hand cohesion is defined as the strength of the attributes inside the class which means how the attributes
are linked inside the class. Coupling is always correlated with cohesion in such a way as if coupling is high then cohesion is low
and vice versa. One can say that a class is highly coupled or many dependent with other classes, if there are many connections and
loosely coupled or some dependent with other classes if there is a less connections. The coupling is decided at the designing phase
of the system, it de- pends on the interface complexity of the classes. There- fore, the coupling is a degree at which a class is con-
nected with other classes in the system.

Let us now describe the cohesive class which can per- form a single task within the software procedure. It re- quires little
interaction with other procedures that are used in other parts of a program. Cohesion gives the strength to the bond between
attributes of a class and it is a concept through which capture the intra-module with cohesion. Therefore, cohesion is used to
determine how closely or tightly bound the internal attributes of a class to one another. Cohesion gives an idea to the designer
about whether the different attributes of a class belong together in the same class. Thus, the coupling and cohe- sion are related
with each other.

VI. Conclusion and future work

Software Reusability play an important role in Software companies which help to the company to save time for development
of new project with specific timeline.But finding the reusability modules is based on highly managerial skills generally small
company cannot afford high skills people fo this we have developed the Tool which help to find the reusability of module in
existing software

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1892082 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 538

References

[1] G. Gui and P. D. Scott, “New Coupling and Cohesion Metrics for Evaluation of Software Component Reusabil- ity,” Proceedings of the 9th
International Conference for Young Computer Scientists, Zhangjiajie, 18-21 November 2008.

[2] I. Vanderfeesten, H. A. Reijers and W. M. P. van der Aalst, “Evaluating Workflow Process Designs Using Co- hesion and Coupling
Metrics,” Computers in Industry, Vol. 59, No. 5, 2008, pp. 420-437. doi:10.1016/j.compind.2007.12.007

[3] T. M. Meyers and D. Binkley, “An Empirical Study of Slice-Based Cohesion and Coupling Metrics,” ACM Trans- actions on
Software Engineering and Methodology, Vol. 17, No. 1, 2007, Article No. 2.

1. [4] Y. J. Jeong, H. S. Chae and C. K. Chang, “Semantics Based Cohesion and Coupling Metrics for Evaluating Understandability of
State Diagrams,” IEEE 35th Annual Computer Software and Applications Conference, IEEE Computer Society, Washington, 18-22
July 2011.

[5] M. E. Fayad and A. Altman. An introduction to software stability, Communications of ACM, Vol.44, 2001; 9: 95-98.

[6] M.E. Fayad, M. Cline. Aspect of Software Adaptability. Communications of ACM, Vol. 39, 1996; 10:58- 59.

[7] Dijkstra E. W. A Discipline of Programming. England-wood Cliff, New Jercy: Prentice-Hall; 1976.

[8] Parnas D. On the Criteria to be Used in Decomposing Systems into Modules. Communications of ACM, Vol. 15, 1972:12:1053-
1058.

[9] Lopes C. V. and W. L. Hursch. Separation of Concerns. College of Computer Science, Northeastern University, Boston; 1995.

[10] R.E. Filman et al. Aspect-Oriented Software Development, Addison-Wesley; 2004.

[11] Abreu, F.B., Melo, W., 1996. Evaluating the Impact of Object-OrientedDesign on Software Quality. In: Proceedings of
3rd InternationalSoftware Metrics Symposium (METRICS‟96), IEEE. Berlin. pp. 90–

[12] O. Hummel and C. Atkinson, Using the Web as a Reuse Repository, Reuse of Off-the-Shelf
Components, Lecture Notes in Computer Science, vol. 4039, Springer, 2006, pp.298-311.

[13]A. Ampatzoglou, K. Apostolos, G. Kakaronzzos, and I. Stamelos, An Empirical Evaluation on the
Reusability of Design Patters and Software Packages, Journal of Systems and Software, vol. 86, Dec. 2011,
pp. 2265-2283.

[14]G. Kakarontzas and I. Stamelos, Component Recycling for Agile Methods, Sev-enth International
Conference on the Quality of Information and Communications Technology (QUATIC), 29 Sept. 2010 – 2
Oct. 2010, pp.397-402.

