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_________________________________________________________________________________________________________________ 

Abstract :  In this paper we design deep learning accelerator unit (DLAU), which is a scalable accelerator architecture for large-scale deep 

learning networks using field-programmable gate array (FPGA) as the hardware prototype. The DLAU accelerator employs three pipelined 

processing units to improve the throughput and utilizes tile techniques to explore locality for deep learning applications.As the emerging field 

of machine learning, deep learning shows excellent ability in solving complex learning problems. However, the size of the networks becomes 

increasingly large scale due to the demands of the practical applications, which poses significant challenge to construct a high performance 

implementations of deep learning neural networks. In order to improve the performance as well as to maintain the low power cost, in this paper 

we design deep learning accelerator unit (DLAU), which is a scalable accelerator architecture for large-scale deep learning networks using 

field-programmable gate array (FPGA) as the hardware prototype. The DLAU accelerator employs three pipelined processing units to improve 

the throughput and utilizes tile techniques to explore locality for deep learning applications. Experimental results on the state-of-the-art Xilinx 

FPGA board demonstrate that the DLAU accelerator is able to achieve up to 36.1× speedup comparing to the Intel Core2 processors, with the 

power consumption at 234 mW.  

IndexTerms - —Deep learning, field-programmable gate array (FPGA), hardware accelerator, neural network. 
_________________________________________________________________________________________________________________ 

I. INTRODUCTION 

 

  Recently, machine learning is widely used in applications and cloud services, such as image search, face identification, speech recognition 

and so on. In the past few years, machine learning has become pervasive in various research fields and commercial applications, and achieved 

satisfactory products. The emergence of deep learning speeded up the development of machine learning and artificial intelligence. Consequently, 

deep learning has become a research hot spot in research organizations[1]. In general, deep learning uses a multilayer neural network model to 

extract high-level features which are a combination of low-level abstractions to find the distributed data features, in order to solve complex 

problems in machine learning.  Currently, the most widely used neural models of deep learning are deep neural networks (DNNs)[2] and 

convolution neural networks (CNNs)[3], which have been proved to have excellent capability in solving picture recognition, voice recognition, 

and other complex machine learning tasks. Deep learning is a part of a boarder family of machine learning methods based on learning data 

representations, as opposed to task-specific algorithms. Learning can be supervised, semi supervised or unsupervised. Neural networks are 

universal approximator ,  and they work best if the system you are using them to model has a high tolerance to error[4]. One would therefore not 

be advised to use a neural network to balance one's cheque book! However they work very well for capturing associations or discovering 

regularities within a set of patterns; where the volume, number of variables or diversity of the data is very great; the relationships between 

variables are vaguely understood; or, the relationships are difficult to describe adequately with conventional approaches. 

Deep learning models are loosely related to information processing and communication patterns in a biological nervous system, such as neural 

coding that attempts to define a relationship between various stimuli and associated neuronal responses in the brain. Even though the role of 

neural networks in the machine learning domain has been rocky,  i.e, initially hyped in the 1980s/1990s, then fading into oblivion with the advent 

of support vector machines[5]. Since 2006, a subset of neural networks have emerged as achieving state-of-the-art machine-learning accuracy 

across a broad set of applications, partly inspired by progress in neuroscience models of computer vision. The drawbacks of the existing system 

are low speed and high power consumption. To tackle these problems, we present a scalable deep learning accelerator unit named DLAU to 

speed up the kernel computational parts of deep learning algorithms. The DLAU architecture can be configured to operate different sizes of the 

data to leverage the tradeoffs between speedup and hardware costs. Consequently, the FPGA based accelerator is more scalable to accommodate 

different machine learning applications.  

 

1.2 Neural Network Elements 

 

           Deep learning is the name we use for “stacked neural networks”; that is, networks composed of several layers. The layers are made of 

nodes. A node is just a place where computation happens, loosely patterned on a neuron in the human brain, which fires when it encounters 

sufficient stimuli. A node combines input from the data with a set of coefficients, or weights, that either amplify or dampen that input, thereby 

assigning significance to inputs for the task the algorithm is trying to learn[6]. (For example, which input is most helpful is classifying data 

without error?) These input-weight products are summed and the sum is passed through a node’s so-called activation function, to determine 

whether and to what extent that signal progresses further through the network to affect the ultimate outcome, say, an act of classification[7]. 

Deep-learning networks are distinguished from the more commonplace single-hidden-layer neural networks by their depth; that is, the number 

of node layers through which data passes in a multistep process of pattern recognition. Traditional machine learning relies on shallow nets, 

composed of one input and one output layer, and at most one hidden layer in between[8]. More than three layers (including input and output) 

qualifies as “deep” learning. So deep is a strictly defined, technical term that means more than one hidden layer. In deep-learning networks, each 

layer of nodes trains on a distinct set of features based on the previous layer’s output[9]. The further you advance into the neural net, the more 

complex the features your nodes can recognize, since they aggregate and recombine features from the previous layer. 
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Fig. 1. The schematic diagram of DNNs for Mnist 

 

 1.3 Motivation for FPGA implementation. 

                    

        There have been many attempts to create hardware implementations to speed up the performance of neural networks. A range of 

approaches have been attempted, from analog computers to VLSI systems, and they have not resulted in widely used hardware. These systems 

are usually plagued with a variety of problems including lack of resolution, limited network size, and difficult to use or no software interface. 

 
Fig. 2. DLAU accelerator architecture. 

 

II. EXECUTION OF DLAU  

Fig. 2 describes the DLAU system architecture which contains an embedded processor, a DDR3 memory controller, a DMA module, and the 

DLAU accelerator. The embedded processor is responsible for providing programming interface to the users and communicating with DLAU 

via JTAG-UART. In particular it transfers the input data and the weight matrix to internal BRAM blocks, activates the DLAU accelerator, and 

returns the results to the user after execution. The DLAU is integrated as a standalone unit which is flexible and adaptive to accommodate 

different applications with configurations. The DLAU consists of three processing units organized in a pipeline manner: 1) TMMU; 2) PSAU; 

and 3) AFAU.  

For execution, DLAU reads the tiled data from the memory by DMA, computes with all the three processing units in turn, and then writes the 

results back to the memory. In particular, the DLAU accelerator architecture has the following key features. 
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Fig. 3. TMMU schematic. 

FIFO Buffer: Each processing unit in DLAU has an input buffer and an output buffer to receive or send the data in FIFO. These buffers are 

employed to prevent the data loss caused by the inconsistent throughput between each processing unit.  

Tiled Techniques: Different machine learning applications may require specific neural network sizes. The tile technique is employed to divide 

the large volume of data into small tiles that can be cached on chip, therefore the accelerator can be adopted to different neural network size. 

Consequently, the FPGA-based accelerator is more scalable to accommodate different machine learning applications. Pipeline Accelerator: We 

use stream-like data passing mechanism (e.g., AXI-Stream for demonstration) to transfer data between the adjacent processing units, therefore, 

TMMU, PSAU, and AFAU can compute in streaming-like manner. Of these three computational modules, TMMU is the primary computational 

unit, which reads the total weights and tiled nodes data through DMA, performs the calculations, and then transfers the intermediate part sum 

results to PSAU. PSAU collects part sums and performs accumulation. When the accumulation is completed, results will be passed to AFAU. 

AFAU performs the activation function using piecewise linear interpolation methods. In the rest of this section, we will detail the implementation 

of these three processing units, respectively.  

2.1 TMMU Architecture 

 

TMMU is in charge of multiplication and accumulation operations. TMMU is specially designed to exploit the data locality of the weights 

and is responsible for calculating the part sums. TMMU employs an input FIFO buffer which receives the data transferred from DMA and an 

output FIFO buffer to send part sums to PSAU. Fig. 3  illustrates the TMMU schematic diagram, in which we set tile size = 32 as an example. 

TMMU first reads the weight matrix data from input buffer into different BRAMs in 32 by the row number of the weight matrix (n = i%32 

where n refers to the number of BRAM, and i is the row number of weight matrix). Then, TMMU begins to buffer the tiled node data. In the 

first time, TMMU reads the tiled 32 values to registers Reg_a and starts execution. In parallel to the computation at every cycle, TMMU reads 

the next node from input buffer and saves to the registers Reg_b. Consequently, the registers Reg_a and Reg_b can be used alternately. For the 

calculation, we use pipelined binary adder tree structure to optimize the performance. As depicted in Fig. 3, the weight data and the node data 

are saved in BRAMs and registers. The pipeline takes advantage of time-sharing the coarse-grained accelerators. As a consequence, this 

implementation enables the TMMU unit to produce a part sum result every clock cycle 

 

2.2 PSAU Architecture  

 

 

Fig. 4. PSAU schematic. 
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PSAU is responsible for the accumulation operation. Fig. 8 presents the PSAU architecture, which accumulates the part sum produced by 

TMMU. If the part sum is the final result, PSAU will write the value to output buffer and send results to AFAU in a pipeline manner. PSAU can 

accumulate one part sum every clock cycle, therefore the throughput of PSAU accumulation matches the generation of the part sum in TMMU. 

 

2.3.AFAU Architecture 

Finally, AFAU implements the activation function using piecewise linear interpolation (y = ai ∗ x + bi, x ∈ [x1, xi+1]). This method has been 

widely applied to implement activation functions with negligible accuracy loss when the interval between xi and xi+1 is insignificant. Equation 

(1) shows the implementation of sigmoid function. For x > 8 and x ≤ −8, the results are sufficiently close to the bounds of 1 and 0, respectively. 

For the cases in −8 < x ≤ 0 and 0 < x ≤ 8, different functions are configured. In total, we divide the sigmoid function into four segments 

 

 
 

 

Similar to PSAU, AFAU also has both input buffer and output buffer to maintain the throughput with other processing units. In particular, 

we use two separate BRAMs to store the values of a and b. The computation of AFAU is pipelined to operate sigmoid function every clock 

cycle. As a consequence, all the three processing units are fully pipelined to ensure the peak throughput of the DLAU accelerator architecture. 

 

III.SIMULATION RESULTS AND DESIGN IMPLEMENTATION 

 

The simulation results and the design implementation along with the RTL schematic diagram of the DLAU and are shown below. 

 

 

 

Fig 5 DLAU Simulation 

  

Fig 6 Device Utilization Summary 
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                                                                                 Fig 7 RTL Schematic 

IV.APPLICATIONS 

 

1. Image Recognition 

2. Automatic Colorization 

3. Automatic Machine Translation 
 

V.Advantages 

   

1. Scalable and flexible 

2. Reusable 

3. Low hardware cost 

4. Low power utilization 
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