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Abstract: This Paper representation DNA sequencing & Biomolecules dection Using Nanopore device with help of genomic cloud pipelining. 

The bearing outstand potential  outstanding potential to short time results and it is likely to received achievement such as the rapidly diagnosis 
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samples as well as mixed species bacterial and strains information obtained the information with in 30 minutes of sequence the data more than 

500 times reads and easily find drugs resistance within 8-10 hours with using cloud pipelining , Its used stand Alone desktop computer or 

laptop .   
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Review Work (Background) 

Massively parallel, short-read sequencing has profoundly 

transformed genomics research 1,2 and has become the predominant 

technology for sequencing DNA. Still, one inherent limitation of 

the most current technologies is that the sequencing run must end 

up before data analysis can begin. As a resolution, sequence 

analysis algorithms have been designed to make inference on a 

complete sequencing data set. In contrast, streaming algorithms are 

shown in a chronological succession of data fields and typically 

maintain an Internal summary of the information, as well as an 

estimate of the full inference, without requiring to store all of the 

observations 3. Streaming algorithms have applications in particle 

and solar physics, computer network analysis and finance 4. A 

portable MinION sequencing device, which utilizes Nanopore 

sequencing technology originally proposed in the 1990s 5. The 

central invention of this gimmick is that it measures changes in 

electrical current as single-stranded DNA passes through the 

Nanopore and uses the sign to determine the base sequence of the 

DNA strand 6. These sequence data can be recovered and analyzed 

as they are generated, providing the chance to obtain answers in 

the shortest possible time. Real-time sequencing has many 

potential applications, especially in time-critical regions such as 

rapid clinical diagnosis. 

 

 In order to understand this potential there is a need to develop 

streaming Bioinformatics algorithms that continuously update and 

report results as each sequence record is generated. To be of 

practical exercise – for example to know when creating a diagnosis 

in the clinical – these algorithms must continuously update not only 

a point estimate (e.g., which species are present and their 

proportions), but also confidence intervals in that thought. 

Different kind of system using in real time DNA sequencing with 

The Help of NCBI genomic cloud using Nanopore device and 

detection types of viruses.8,9. Here we present a flexible framework 

for the real time analysis of MinION sequence data at once as it is 

sequenced and base-called. The framework can integrate Multiple 

real-time analyses to suit the problems at hand and can be deployed 

on a single computer or On a high-performance computing facility 

and computing cloud. We also present four streaming algorithms 

for the identification and characterization of pathogen samples. 

 

  It is confidence and secure data for DNA sequencing Through 

pipelining, stored result in confidence level run time sequencing. 

By sequencing of bacterial isolate samples and a mixed sample on 

the MinION sequencer, we march That we can reliably determine 

the species and breed of a sequenced sample with only 500 books. 

This was carried out in less than half an hour of sequencing with 

the current throughput of the MinION. Furthermore, we prove that 

we can identify most of the drug resistance genes present in a 

sample within 2 h of sequencing, and the full drug resistance 

profile within 10 h. The pipeline can cause all these analyses on a 
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single computer at a throughput of over 100 times higher than our 

best runs. As The throughput of Nanopore sequencing is expected 

to increase, the time to obtain these effects will be significantly 

shortened. Our findings support the probable use of MinION 

sequencing for the real-time analysis of clinical samples for species 

detection and analysis of antibiotic resistance. 

 

1.1 REAL TIME ANALYSIS METHDOLOGY: 

In Real time streaming program communication network with help 

of LINUX operating Systems These plans typically require a 

succession of items as input and process them every time a given 

small number of items arrive. They either keep only the relevant 

statistics of the data, or upon processing any data items, 

immediately forward only the necessary information to the 

downstream programs for further processing. This information 

processing methodology requires only a little storage footprint and 

hence is relevant for treating large quantities of information, 

especially real-time data from MinION sequencing. 

We acquired a number of accessory programs to facilitate setting 

up a real-time pipeline to analyze MinION sequencing data. These 

include books for setting up communication channels in a pipeline, 

thereby leaving the pipeline to be deployed on a high-performance 

computing cluster to scale with massive quantities of information. 

Plans for simple analyses of MinION sequencing data, such as 

starting data streaming and filter string matching and show the 

different type of species, types of disease and identified resistance 

of antibiotic. We integrated the implementations of these 

algorithms into the analysis pipeline (see Fig. 1). In this pipeline, 

npReader 10 continuously scans the folder containing sequencing 

data in parallel with Min- ION sequencing. It picks up sequenced 

reads as soon as they are generated (from Metrichor), and 

simultaneously streams them through the pipeline for identification 

analyses. 

 

 The pipeline also makes use of off-the-shelf bioinformatics tools 

such as BWA-MEM12, as described later. In each step of this 

pipeline, data are piped from one operation to the following 

without being written to disk, with the exception of base-calling 

via Metrichor in which each study is written to disk once it has 

been base-called, and is then picked up virtually immediately by 

npReader. Also evaluation to real time data through pipeline and 

using Nanopore Min-ION. Four of these data sets were compiled 

before the pipeline was broken, and hence we emulated the timing 

of the sequencing for the evaluation from these information sets. 

Specifically, we extracted the time that each. 

 

 The road was sequenced, and streamed the sequence reads in the 

exact order and timing into the line. With the emulation, we were 

able to stream the sequencing data at a hypothetical throughput 120 

times higher than that we got with the MinION. This allowed us to 

examine the scalability of the pipeline against the projected future 

throughput such as from the promotional program. The fifth data 

set was handed through our pipeline as it was base-called from 

Metrichor, and therefore presents a true presentment of the real-

time capability of the pipeline. Proposed method for the result 

analysis in MiSeq and Well define Bioinformatics information. 

  

 

 

 

 

 

 

 

Fig. 1 Schematic of the real-time analysis pipeline. Once the 

MinION starts sequencing, DNA fragments are sequenced (on the 

MinION) and base-called (by Metrichor cloud) instantaneously, 

and are simultaneously streamed through the pipeline where they 

are aligned by BWA-MEM 11. Arrows show the data flow 

 

1.2 SPECIES DETECTION: 

 

 

 

Fig. 2 Species detection ,sequence reads aligned to bacterial 

database using BWA from Bacterial database 

 

1.3 STRAIN TYPING: 

 

 

 

 

 

Fig. 3 Strain Typing, Sequences reads aligned to gene profile 

database using BWE from database of gene profile individual 

strain 

 

1.4 ANTIBIOTIC RESISTANCE PROFILE: 
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Fig. 4 Antibiotic Resistance Profile, Gene sequence reads aligned 

from gene database using BWA from resistance gene database. 

1.5 Data driven clock generation:  

We got samples from cultured isolates of two Klebsiella 

pneumoniae strains ATCC BAA-2146, ATCC 13883; one 

Klebsiella quasipneumoniae strain ATCC 700603 and a library 

mixture sample. This mixture sample contained two different 

sequencing libraries prepared from the Escherichia coli strain 

ATCC 25922 and the Staphylococcus aureus strain ATCC 25923, 

pooled at different levels prior to sequencing (Table 1). We 

sequenced sample ATCC BAA-2146 and ATCC 700603 with the 

MinION using chemistry R7 and the others using the improved 

chemistry R7.3 (see Methods). 

Table: 1 Details of the four samples 

Sample Species Strain  Informati

on 

Proportio

n 

Single 

Sample1 

K. 

pneumonia

e 

ACCT 

BBA-

2146 

NDM-1 Positive 

Resistance 

100% 

Single 

Sample2 

K. 

pneumonia

e 

ACCT 

700603

3 

Multi Drug 

Resistance 

100% 

Single 

Sample3 

K. 

pneumonia

e 

ATCC 

25922 

Type Strain 75% 

Mixture 

Sample(Librar

y Mix) 

E. coli 

 

S. Aureus 

ATCC 

25922 

 

ATCC 

25923 

Methicillin 

sensitive 

25% 

 

To confirm the analysis results from MinION sequencing, we 

sequenced all aforementioned isolates with the established 

Illumina platform MiSeq to a coverage exceeding 100-fold. 

Isolates in the mixed sample were sequenced on an individual base. 

We assembled the MiSeq sequencing reads to hold high quality 

assemblies of the five songs. With the meeting places, we were able 

to distinguish the sequence types and the antibiotic resistance 

profiles of these lines (see Methods). These results were used as 

the benchmarks to validate the analysis of MinION sequencing 

data. 

1.6 Sequencing yields and quality of MinION sequencing: - 

This generates sequence by the morning show in data template and 

2 D representation. The average Phred quality of template and 

complement reads across four runs was in the region of 5, while 

2D reads were in higher quality, with average Phred quality about 

9 (see Table 2 and Additional file 1: Figure S1). The median read 

lengths of three K. Pneumonia samples were approximately 5 KB, 

while the mixture sample was entirely less than 1 KB. We 

sequenced sample K. pneumoniae ATCC 13883 and the mixture 

sample for 36 and 20 h respectively, both with the chemistry 7.3, 

but the yields were markedly different. The read length and 

accuracy of our runs were consistent with other user reports12-15. 

We observed variation in terms of sequence yields across the four 

runs. While we obtained about 36 000 reads (185 MB) for 

sample K. Pneumonia ATCC BAA-2146 after 60 h of sequencing, 

the run for sample K. quasipneumoniae ATCC 700603 yielded 

only 7092 reads (39 Mb) with the same running time (Fig. 2). 

 

 

 

Fig. 2 

Sequencing yields over time for the four samples. Yields are shown 

in terms of read count (left) and base count (right) 

Table 2: Details of the four MinION sequencing runs 

Sample Chemistry Basecall 

Version 

Time(Hrs) Read 

Count 

Single 

Sample1 

R7 1.4 60 38165 

Single 

Sample2 

R7 1.4 60 7293 

Single 

Sample3 

R7.3 1.9 36 15911 

Mixture 

Sample 

R7.3 1.10 21 5631 

 

1.7 Species detection 

For real-time bacterial species detection, we constructed a database 

from 2785 complete genomes of 1489 bacterial species available 

in GenBank (accessed Nov 2014), augmented with two K. 

quasipneumoniae genomes (which was not the strain we 

sequenced) as none were present in the database. The database 

contained several K. Pneumonia, E. coli and S. Areas strains (10, 

63 and 49 respectively), but none of the five stresses in our samples 

were present. The create a pipeline and generate sequences of 

database in sequence. The species typing algorithm periodically 

compute the simultaneous proportions of the species present in the 
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sample and reports the 95 % confidence intervals of these 

dimensions. 

 

In both K. pneumoniae samples as well as the K. Quasipneumoniae 

sample, we successfully found the major species presence in the 

isolate. This was achieved with as small as 120 sequence reads 

requiring only 5 min of sequencing time (Fig. 3a, b and c). For K. 

pneumoniae strains ATCC BAA-2146 and ATCC 13883, it 

required less than 500 reads (10 and 15 min of sequencing, 

respectively) to reach a 95 % confidence interval of less than 0.05. 

For strain ATCC 700603 it took only 300 reads to correctly identify 

K. quasipneumoniae as the species. 

 

Fig. 5 Real-time identification of bacterial species from MinION 

sequencing data for four different bacterial samples: a) K. 

pneumoniae ATCC BAA-2146, b) K. quasi pneumoniae ATCC 

700603, c) K. pneumoniae ATCC 13883 and d) Mixture of 75 % E. 

coli ATCC 25922 and 25 % S. aureus ATCC 25923. The bars 

represent the confidence intervals at the 95 % point 

    The pipeline accurately identified the two species in the mixture 

sample as E. coli and S. aureus after obtaining around 100 reads (5 

min of sequencing). The reported proportions became stable after 

around 1200 reads (35 min of sequencing). E. coli was the 

predominant species type in the mixture sample and it was evident 

with high proportion of sequencing reads supporting the E. coli 

species. 

 

1.8 Multi-locus sequence typing: - 

Most bacteria are conventionally straining-typed using a multi-

locus sequence typing (MLST) scheme that requires accurate 

genotyping to distinguish the alleles of seven housekeeping 

genes16. Our analysis of MinION raw read quality (Additional file 

1: Figure S1), together with other user reports, indicated high error 

rates in MinION sequencing in comparison to Illumina MiSeq 

sequencing. This suggested that MLST analysis would be 

challenging with MinION sequence data, especially in real-time 

manner. 

     We developed a method to carry out MLST using MinION 

sequence data. Our method selected reads spanning each of the 

house-keeping genes. It then used multiple reads aligned to the 

same gene to correct error in the raw sequence reads and 

subsequently combined information across multiple alleles in a 

likelihood-based framework (see Methods). Table 3 shows the top 

five highest score, sequence types (in log-likelihood) for K. 

pneumoniae and K. quasi pneumoniae strains using MinION 

sequencing. In all three phases, the correct sequence types were the 

highest score out of 1678 sequence types available in the MLST 

database. We remarked that the typing system also outputted 

several other sequence types with the same likelihood (e.g., ST-

751 and ST-864 for strain ATCC BAA-2146 and ST-851 for strain 

ATCC 700603). We examined the profiles of these sequence types, 

and found them to be extremely similar. For example, sequence 

types ST-751 and ST-864 (reported for strain ATCC BAA-2146) 

differed to the correct sequence type ST-11 by only one single 

nucleotide polymorphism (SNP) from the total of 3012 bases in 

seven games. Similarly, sequence no. ST-489 (genes pho E and ton 

B) differed to the correct sequence no. ST-851 by two alleles (co-

highest score reported for strain ATCC 700603). Because the run 

had a poor yield, only one road was aligned to these two genes by 

the rest of the run, which may have also contributed to the inability 

to split these two sequence types. The MLST with Nanopore 

requires high coverage to result of the sequence. A more accurate 

strain-typing methodology would need to take in all of the 

sequenced reads, instead than just those 7 housekeeping genes. So 

we further devised a method for strain-typing which was based on 

the presence or absence of genes. 

Table: 3 MLST results for three K. pneumoniae strains 

 ATCC BAA-

2146 

ATCC 

700603 

ATCC 13883 

 ST-11 ST-489 ST-3 

Rank Case Mark Case Mark Case Mark 

1 ST-

11 

1985.47 ST-

489 

418.45 ST-3 1451.65 

2 ST-

751 

1985.47 ST-

851 

418.45 ST-

136 

1450.21 

3 ST-

864 

1985.47 ST-

257 

413.57 ST-

38 

1444.81 

4 ST-

1080 

1984.46 ST-

356 

413.57 ST-

1106 

1444.19 
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5 ST-

1680 

1982.62 ST-

414 

413.57 ST-

931 

1441.44 

 

The top five probable sequence types are shown for each sample. 

The highest score, sequence types are played up in bold. 

 

1.9 Strain typing by presence or absence of genes:  

We developed a novel strain typing method to put a known 

bacterial strain from the MinION sequence reads based on patterns 

of gene presence and absence. This advance is meant to rapidly 

identify the bearing of a sequence type that has already been 

characterized, for instance in an outbreak scenario, with 

subsequent confirmation using MLST once more information has 

been gathered. The download genomic data base through all data 

strain K.Pneumoniae , S. Aureus, E.Coli with MLST schemes. This 

resulted in sets of 125 sequence types for K. pneumoniae, 353 for 

E. coli and 107 for S. Fields. For each sequence type, we picked 

the highest quality meeting place (in terms of N50 statistics) and 

extracted gene sequences from its RefSeq gene annotation. We 

then grouped genes from a species based on 90 % sequence 

identity, and therein obtained the gene profile for each sequence 

type. 

 

Our pipeline identified genes present in the sample from sequence 

reads as they were fathered by the MinION device. It then applied 

this data to infer the posterior probability of each of the sequence 

types, as well as the 95 % confidence intervals in this estimate (see 

Methods). For our K. pneumoniae and K. quasi pneumoniae 

samples, we successfully identified the corresponding sequence 

types from the sequence data with 95 % confidence within 10 min 

of sequencing time and with as few as 200 sequence reads (Fig. 4a, 

b and c). We streamed sequence reads from the mixture sample 

through the strain typing systems for E. coli and S. Countries, and 

in both instances, the correct sequence types of two species in the 

sample were also retrieved. The correct sequence type for E. coli 

strain in the 75 %/ 25 % E. coli, S. Aureus mixture was recovered 

after 25 min of sequencing with about 1000 total reads (or 

approximately 750 E. coli derived reads) (Fig. 4d). The pipeline 

was able to correctly predict the S. Aureus strain (which is known 

to sustain much less gene content variation) in this mixture sample 

after 2 h of sequencing with about 2800 total reads (or 

approximately 700 S. aureus derived reads). 

 

 

Fig. 4 

Real-time strain identification of MinION sequencing data along 

three different K. pneumoniaestrains (a, b and c) and a E. coli strain 

(d) and a S. aureus strain (e) from the mixture sample. The bars 

represent the confidence intervals at the 95 % level. 

 

1.10 Antibiotic resistance detection: 

The antibiotic resistance gene profiles of the samples were also 

characterized with MinION sequencing data. We obtained 

antibiotic drug resistance genes from the ResFinder database17 

(accessed July 2015). This set contained 2132 gene sequences, 

including mutations of the same ingredients. We grouped these 

gene sequences based on 90 % sequence identity into 609 groups. 

In this grouping, we found that sequences in a group were variants 

of the same gene. 

        Our antibiotic resistance profile identification pipeline 

aligned sequence reads to this antibiotic gene database. The 

algorithms retained reads that aligned to these elements, and 

periodically performed multiple alignment of reads that were set to 

the same element. It then became a consensus sequence from these 

raids, and used a probabilistic Finite State Machine18 to re-align the 

consensus sequence to the gene sequence (see Methods). The 

pipeline reported the presence of a resistance gene as soon as the 

alignment score reached a threshold. 

       Table 4 establishes the timeline of antibiotic gene detection 

from MinION sequencing of three K. pneumoniae strains. For the 

NDM-1-producing strain ATCC BAA-2146, we identified the 
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presence of 26 antibiotic resistance genes in the MiSeq assembly 

of the breeze. Our real-time pipeline identified all these 26 genes 

and an additional gene blaSHV from 10 h of MinION sequencing. 

No further genes were detected thereafter. As gene blush was 

reported with high confidence from the real-time analysis, we 

further investigated the alignment of the MiSeq assembly with this 

gene, and establish that the gene was aligned to two counties in the 

assembly suggesting the MiSeq assembly was broken up in the 

midriff of the gene. We sourced a high quality assembly of the 

strain’s genome using PacBio sequencing19 and found that the 

assembly contained the gene. In others words, our pipeline detected 

precisely the antibiotic gene profile for this tenor from 10 h of 

MinION sequencing. We noted that the majority of these genes was 

identified in the early stage of sequencing, i.e., three quarters were 

extended within 1.5 h of sequencing, at fewer than 4000 reads 

(making up only a 3-fold coverage of the genome). We observed 

similar performance for K. Pneumonia strain ATCC 13883 where 

5 out of 6 factors were found after 2 h of sequencing. The last game 

(oqxB) was followed after 9.5 h of sequencing, again recovering 

the full resistance profile without any false positive. For the multi-

drug resistant K. quasi pneumoniae strain ATCC 700603, the 

pipeline only detected 8 out of 11 genes. The reduced sensitivity of 

this sample was most likely due to the low sequence yield (33 MB 

of data in total, or only 7-fold coverage of the genome). 

Table 4: -Time-line of resistance gene detection from the K. 

pneumoniae samples 

Time Genes Division TP/F

P 

Sensibil

ity 

Specific

ity 

Informati

on 

(Min

s) 

      (%) (%) (no. of 

reads) 

K. pneumoniae ATCC BAA-2146 

30           1228 

  mphA macrolide TP       

  blaSH

V 

beta-

lactamase 

FP ∗       

  strA aminoglyco

side 

TP       

  blaTE

M 

beta-

lactamase 

TP       

  strB aminoglyco

side 

TP       

  blaCT

X 

beta-

lactamase 

TP 26.67 87.50   

60           2613 

  blaLE

N 

beta-

lactamase 

TP       

  sul2 sulphonami

de 

TP       

  blaOX

A 

beta-

lactamase 

TP       

  aac3 aminoglyco

side 

TP       

  aac6 aminoglyco

side 

TP       

  blaCM

Y 

beta-

lactamase 

TP       

  blaCF

E 

beta-

lactamase 

TP       

  blaLA

T 

beta-

lactamase 

TP       

  blaBIL beta-

lactamase 

TP 53.33 94.12   

90           3844 

  QnrB quinolone TP       

  aadA aminoglyco

side 

TP       

  oqxA quinolone TP       

  tetA tetracycline TP       

  oqxB quinolone TP 76.67 95.83   

120           5258 

  dfrA trimethopri

m 

TP 80.00 96.00   

240           10 788 

  blaOK

P 

beta-

lactamase 

TP 83.33 96.15   

270           11 931 

  rmtC aminoglyco

side 

TP 86.67 96.43   

300           13 022 

  sul1 sulphonami

de 

TP       

  sul3 sulphonami

de 

TP 93.33 96.55   

540           20 200 

  fosA fosfomycin TP 96.67 96.67   

600           21 546 

  blaND

M 

beta-

lactamase 

TP 100.00 96.77   

K. quasi pneumoniae ATCC 700603 

30           582 

  oqxA quinolone TP       

  blaSH

V 

beta-

lactamase 

TP       

  oqxB quinolone TP 27.27 100.00   

60           1090 

  aadB aminoglyco

side 

TP 36.36 100.00   

390           3704 

  sul1 sulphonami

de 

TP       

  sul3 sulphonami

de 

TP 54.55 100.00   

420           3810 

  blaOX

A 

beta-

lactamase 

TP 63.64 100.00   

540           4156 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1872426 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 152 
 

  blaOK

P 

beta-

lactamase 

TP 72.73 100.00   

K. pneumoniae ATCC 13883 

30           1264 

  fosA fosfomycin TP 16.67 100.00   

60           2186 

  blaSH

V 

beta-

lactamase 

TP       

  blaOK

P 

beta-

lactamase 

TP 50.00 100.00   

90           2952 

  blaLE

N 

beta-

lactamase 

TP 66.67 100.00   

120           3584 

  oqxA quinolone TP 83.33 100.00   

570           8112 

  oqxB quinolone TP 100.00 100.00   

 

TP/FP: true positives/false positives according to the resistance 

gene profiles obtained from MiSeq sequencing. ∗Gene blaSHV was 

detected from MinION sequencing of K. Pneumonia ATCC BAA-

2146 but not from MiSeq sequencing due to the inability to resolve 

a repeat in the factor 

 

1.11 Data sets for comparison with other methods:  

The existing identify species from scan from sequencing   data 

through Metrichore8,20 and METAPORE.9 These methods 

commonly place the sample of inquiry to a phylogeny taxonomy 

based on the number of reads that either are aligned to, or have a 

similar k-more profile to, the Texans reference genome. Our 

species typing method are pretty similar to this approach, although 

it additionally estimates, confidence intervals in the specific 

assignment. While we establish that this approach can successfully 

identify species within 500 reads, the signal-to-noise from 

nanopore sequencing is too low to use a similar approach to 

correctly discriminate at the form point, unless a heavy amount of 

information is used. Our strain typing uses a new plan of attack 

based on the presence and absence of genes and hence is capable 

to create inferences from a smaller number of reads. 

Among the mentioned methods, only Metrichor20 and MetaPORE9 

support genuine real-time analysis. As metaphor only focuses on 

viral species identification, we could only directly compare the 

functioning of our method to Metrichor. We uploaded the first 

1000 records from our single samples and the first 3000 records 

from our mixture sample to the Metrichor What’s In My Pot 

Bacteria k24 for SQK-MAP005 v1. 27 (WIMP) workflow. Along 

with the species/subspecies and strains reported, WIMP provides a 

classification score filter where users can specify the permissions 

of reporting. Table 5presents the bacterial taxa reported by the 

WIMP workflow for our data with the default classification score. 

For sample K. pneumoniae ATCC BAA-2146, WIMP only 

returned the taxon K. pneumoniae at the species level. On the other 

hand, for the second and third samples (K. quasi 

pneumoniae ATCC 700603 and K. pneumoniae ATCC 13883), 

WIMP reported several K. pneumoniae strains, but not the correct 

sequence types of these samples (ST489 and ST3). For the mixture 

sample, two E. coli and three S. aureus strains were reported, but 

these were also the incorrect sequence types (E. coli ST73 and S. 

aureus ST243). While it was unclear whether the sequence types 

of these samples were included in WIMP’s database, ST11 clearly 

was as it was reported in sample K. pneumoniae ATCC 700603. 

However, WIMP was unable to identify sample K. Nominate 

BAA-2146 to the strain level with 1000 scans, while our line could 

do then in less than 400 reads (Fig. 4). 

Table 5: Report of Metrichor What’s in My Pot Bacteria k24 for 

SQK-MAP005 v1. 27 (WIMP) from the first 1000 reads of three 

individual samples and the first 3000 reads of the mixture sample. 

Sample Reported by 

Metrichor 

Sequen

ce type 

Level Accuracy 

        Species/bre

ed 

K. 

pneumoniae (ATCC 

BAA-2146, ST11) 

K. pneumoniae - Speci

es 

✓/✓/ 

K. 

quasipneumoniae (A

TCC 700603, 

ST489) ∗ 

K. 

pneumoniae sub

sp. pneumoniae 

- Sub-

specie

s 

✓/✓/ 

  K. 

pneumoniae 34

2 

ST146 Strain ✓/× 

  K. 

pneumoniae JM

45 

ST11 Strain ✓/× 

  K. 

pneumoniae CG

43 

ST86 Strain ✓/× 

  K. oxytoca - Speci

es 

×/ 

  K. variicola At-

22 

- Strain ✓/× 

K. 

pneumoniae (ATCC 

13883, ST3) 

K. 

pneumoniae sub

sp. pneumoniae 

1084 

ST1084 Strain ✓/× 

  K. 

pneumoniae CG

43 

ST86 Strain ✓/× 

  K. 

pneumoniae sub

ST67 Strain ✓/× 
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sp. 

rhinoscleromati

s SB3432 

  E. coli O103:H2 

str. 12009 

ST17 Strain ×/ × 

Mixture sample E. 

coli UMN026 

ST597 Strain ✓/× 

75 % E. coli (ATCC 

25922, ST73) 

E. coli ETEC 

H10407 

ST48 Strain ✓/× 

  S. aureus subsp. 

aureus HO 5096 

0412 

ST22 Strain ✓/× 

25 % S. 

aureus (ATCC 25923, 

ST243) 

S. aureus subsp. 

aureus 

MRSA252 

ST36 Strain ✓/× 

  S. aureus subsp. 

aureus T0131 

ST239 Strain ✓/× 

  Yersinia pestis - Speci

es 

×/ 

 

The final column shows if the detection is correct (✓✓) or 

incorrect (×) a species/strain levels. The Metrichor was able to 

distinguish the species (with close to false positives) but not the 

lines in our samples 

*K. quasi pneumoniae ATCC 700603 strain was recently re-

classified from K. pneumoniae as K. quasi pneumonia49 but has not 

been updated in most major databases 

Our species typing module has some similarities to the approach 

used by MetaPhlAn21, which was designed for metagenomics 

inference using millions of short-reads. Like MetaPhlAn, we used 

the ratio of reads that map to different taxonomic groupings to 

estimate the proportion of different species in a sample. 

MetaPhlAn optimizes computational speed by aligning to a 

precomputed database of sequences that are pervasive within a 

single taxonomic grouping but not received outside that grouping. 

This leaves it to dash against a database that is 20 times smaller 

than a full bacterial genomic database. Our species typing 

approach, on the other hand, is designed to make a similar 

inference using only hundreds of raids, and moreover, also 

continuously updates confidence intervals so the user knows when 

they can stop sequencing and make a diagnosis. 

Antibiotic resistance gene detection from MinION sequencing was 

also explored in Judge et al.22. Their approach was broadly similar 

to ours in that it initially aligned sequence reads to a resistance gene 

database, and then constructed a consensus sequence from the 

multiple alignment of matched reads. This represent to result close 

perfect resistance gene identified. However, our pipeline uses a 

novel alignment parameter estimation using probabilistic Finite 

State Machines (see Methods). It is thus able to confidently report 

the presence of a resistance gene as soon as sufficient supporting 

data is useable. This is the essence of real-time analysis presented 

here. 

1.12 Computational time: 

        In our analyses, sequence reads were streamed through the 

pipeline in the exact order and timing that they were generated. 

Analysis results were generated periodically (every minute for 

species typing and strain typing and every five minutes for 

resistance gene identification). We examined the scalability of the 

pipeline to higher throughput by running the pipeline on a single 

computer equipped with 16 CPUs and streaming all sequence reads 

from the highest yield run (185 Mb from sample K. 

pneumoniae ATCC BAA-2146) through the pipeline at 120 times 

higher speed than they were generated (e.g., data sequenced in 2 

min were streamed within 1 s). Analysis results were generated 

every 5 s for typing and every one minute for gene resistance 

analysis. With this hypothetical throughput, our pipeline correctly 

identified the species and strain of the sample in less than 20 s; 

thereupon we could make out the typing analyses. The pipeline 

then reported all the resistance genes in five minutes, which 

corresponded to the data generated in the first 10 h of actual 

sequencing. This will show the scalability of our course to higher 

throughput sequencing platforms in the hereafter. 

1.13 Real-time analysis of a clinical isolate: 

With the pipeline in place, we analysed a clinical K. Pneumonia 

isolates collected in Greece that was found to be resistant to a broad 

reach of antibiotics. We sequenced the sample on the MinION with 

Chemistry R7.3 and ran the Metrichor service, which performed 

Basecalling and sample identification during the first three hours 

of the run. We also ran our pipeline in real-time along the base-

called data returned from the Metrichor service. 

    We observed a delay from the base-calling of the data; the first 

read was sequenced on the MinION within one minute of starting 

down the run, but the base-called data were received after 6 

transactions. The delay tended to increase as more data were 

brought forward. We prove the base-called data returned during the 

three-hour run of the Metrichor service was actually sequenced 

within 45 min on the MinION. This highlights the need for a local 

base-calling step to improve real-time analysis. 

Figure 5a and 5b show the timing (from the start of the MinION 

run) of sample identification using our pipeline. The pipeline 
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reported K. pneumoniae as the only species in the sample within 

10 min, and reached a confidence interval of less than 0.1 in 40 min 

when approximately 200 reads were analysed. We noticed that 

these 200 reads were actually sequenced in 7 min by the MinION. 

For strain identification, our pipeline initially reported ST1199 but 

after 2.5 h, reported ST258 as the sequence type for this isolate. It 

is worth noting that the two strains are highly similar; their MLST 

profiles differ by only one SNP in the seven house-keeping genes. 

By sequencing the isolate on the Illumina MiSeq as described 

above, we confirmed that the sequence type for the strain is ST258. 

On the other hand, the sample identification from Metrichor 

initially reported K. pneumoniae 1084 (ST23), but finally reported 

two strains namely K. pneumoniae JM45 (ST11) and K. 

pneumoniae HS11286 (ST11) after 3 h (Additional file 2: Figure 

S2). During the three-hour run with less than 4000 reads (16 Mb of 

data), our pipeline reported two antibiotic resistance genes, 

namely sul2 (sulphonamide) and tetA (tetracycline). Our analysis 

of the Illumina data for this strain confirmed the presence of these 

two factors. Clinical susceptibility testing also showed the 

resistance of this isolate to tetracycline and sulfamethoxazole-

trimethoprim (MIC ≥ 16 μg/mL and ≥ 320 μg/mL, respectively 

analyzed by VITEK®;2 bioMérieux, Inc). Finally, we re-analysed 

the data from this run using the emulation described previously, 

and obtained the same results as from the real-time analysis. 

 

Fig. 5 

Real-time species typing (a) and strain typing (b) of a clinical 

isolate directly from the MinION using our pipeline and the 

Metrichor service. The time includes Basecalling timing. 

 

1.14 Discussion: 

In recent years high-throughput sequencing has become an 

integrative tool for infectious disease research 23-24, predominantly 

using massively parallel short-read sequencing technologies. 

These technologies achieve a very high base calling accuracy, 

making them ideally suited to applications requiring accurate 

calling of SNPs. Nevertheless, these technologies make their high 

yield by sequencing a single base per cycle for one thousand 

thousands of sequence fragments in parallel, where each cycle 

takes at least 5 minute. 

The Oxford Nanopore MinION device, on the other hand, 

generated as many as 500 reads in the first 10 min of sequencing 

in our hands (which is 3 times more depressed than the theoretical 

upper limit). The fault rate of these raids was substantially higher 

than the corresponding Illumina short-scan information. Many 

existing Bioinformatics algorithms rely on accurate base and SNP 

calling, which progresses to their application to MinION data 

challenging. As an instance, most existing strain typing approaches 

often use a MLST system, either on a pre-determined set of 

housekeeping genes25, or on core genes set26. These approaches are 

highly standardised, reproducible and portable, and hence are 

routinely used In labs around the globe. Rapid genomic diagnostic 

tools using MLST from high-throughput sequencing such as 

SRST227 have also been produced. While we read in this article 

that MLST can be accommodated to identify bacterial strains from 

nanopoRe sequencing, this requires high coverage sequencing of 

the gene set to overcome the high fault rates. 

The primary contribution of this clause is to show that despite the 

higher error rate, it is possible to return clinical actionable 

information, including species and line identification from as few 

as 500 records. We accomplished this by developing novel 

approaches that are less sensible to base-calling errors and which 

use whatever subset of genome-wide information is observed up to 

a period in time, rather than a panel of pre-set markers or genes. 

For exemplar, the strain typing presence/absence approach relies 

only on being able to identify homology to genes and also allows 

for a level of incorrect gene annotation. 

Our strain typing module has the vantage of being capable to 

rapidly type a known strain with a minor number of low quality 

(i.e., mostly 1D) reads. Competing approaches using k-Mars 

appear to need substantially higher quality data. The drawback of 

our approach is that if a large number of agents are lost or earned 

in an undivided event, such as the gain or loss of a plasmid, the 

most likely strain may be incorrect. Then it would be ideally suited 

for quickly typing a known melody in an outbreak scenario. 

Our antibiotic resistance module is capable to distinguish the drug 

resistance potential of an isolate within a few hours of sequencing 

http://www.ijcrt.org/
https://gigascience.biomedcentral.com/articles/10.1186/s13742-016-0137-2#MOESM2
http://media.springernature.com/full/springer-static/image/art:10.1186/s13742-016-0137-2/MediaObjects/13742_2016_137_Fig5_HTML.gif


www.ijcrt.org                                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1872426 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 155 
 

with very high specificity. In particular, with the most recent 

chemistry utilized in this paper (R7.3), we were able to identify the 

complete resistance potential of a K. Pneumonia isolates without 

any false positives in 9.5 h, and with approximately 8000 reads, 

(80 % of the resistance genes were located with 3000 registers in 2 

h). In deposit to achieve high specificity we designed a 

probabilistic Finite State Machine for error correction. 

One of the major advantages of a whole-genome sequencing 

approach to drug resistance profiling is that it is not necessary to 

limit the analysis to a limited panel of drug-resistance tests, merely 

it is possible to identify the complete drug resistance profile in a 

sample. With a perfect portrayal of the drug-resistance profile 

within a few hours, a clinician may be able to design an antibiotic 

treatment regimen that is both more probable to follow and less 

likely to induce further antibiotic resistance. Yet, even achieving 

completely accurate identification of resistance genes is only a 

beginning step in accurately predicting the resistance profile, as 

mutations may affect the pace at which these genes are transcribed 

and also their antibiotic resistance activity. Prediction of antibiotic 

resistance from genotype is a field that warrants substantial further 

research. 

In summary, we have found an open-source, flexible pipeline for 

real-time analysis of MinION sequencing data. The course includes 

various streaming algorithms to identify pathogens and their 

antibiotic resistance, but others can be seamlessly integrated into28. 

The only measure in our pipeline at which data are written to, and 

then re-record from disk is the root word-calling step using 

Metrichor. Np Reader immediately identifies new reads as they are 

generated by Metrichor; however, some delay can occur while 

waiting for base-called data to be returned from Metrichor. Oxford 

Nanopore Technologies have recently spread out up the 

Application Programming Interface to extract raw information 

straight from the MinION. This, in concert with the recent 

development of the open source base-calling algorithms29,30 to run 

on the local machine, will allow future development of a 

completely streaming pipeline, in the sense of never saving data to 

disk. We future development of a completely streaming pipeline, 

in the sense of never saving data to disk. Our pipeline can be 

deployed on a single 16 core computer, capable of analysing 

MinION data streaming at up to 120 × the current rate of 

sequencing; or on a high performance computing cluster to scale 

with the potential even higher throughput of forthcoming 

Nanopore sequencing platforms. 

2.  Methods: - 

2.1 DNA extraction and typing: 

Bacterial strains K. pneumoniae ATCC BAA-2146, ATCC 

13883, K. quasi pneumoniae ATCC 700603, E. coli ATCC 25922 

and S. Areas ATCC 25923 was obtained from the American Type 

Culture Collection (ATCC, USA). K. pneumoniae clinical isolate 

was acquired from Hygeia General Hospital, Athens, Greece from 

a patient stool sample in 2014 (Lab ID 100575214, isolate 1). 

Clinical susceptibility profiling by VITEK®;2 (bio Mérieux Inc.) 

identified the isolate as carbapenemase-producing (KPC), giving 

rise to extended spectrum β-lactam resistance. It was also seen as 

resistant to aminoglycoside, pencil, quinolone, sulphonamides, 

tetracycline and trimethoprim antibiotics, making it an extensively 

drug-resistant bacterial isolate. Bacterial cultures were grown 

overnight from a single settlement at 37 °C with shaking (180 

RPM). Whole cell DNA was extracted from the cultures using the 

DNeasy Blood and Tissue Kit (QIAGEN Ⓒ, Cat #69504) 

according to the bacterial DNA extraction protocol with enzymatic 

lysis pre-discussion. 

2.2 MinION sequencing: 

Library preparation was performed using the Genomic DNA 

Sequencing kit (Oxford Nanopore) according to the 

manufacturer’s instruction. Since the R7 MinION Flow Cells 

SQK-MAP-002 sequencing kit was used and for R7.3 MinION 

Flow Cells SQK-MAP-003 or SQK-MAP-006 Genomic 

Sequencing kits were used according to the manufacturer’s 

instruction. 

For the library mixture sample, the DNA concentration of each 

library was measured using Qubit Fluorimeter (Thermo Fisher 

Scientific). Established on the concentration, 75 % of E. 

coli (ATCC 25922) library and 25 % of S. aureus (ATCC 25923) 

library were mixed prior to sequencing. 

A new MinION Flow Cell (R7 or R7.3) was used for sequencing 

each sample. The library mix was loaded onto the MinION Flow 

Cell and the Genomic DNA 48 h sequencing protocol was started 

on the MinKNOW software. 

2.3 Data warehouse analysis and data mining: 

The sequence read data were base-called with Metrichor Agent. 

We used np Reader10 to convert base-called sequence data in fast5 

format to fastQ format. The np Reader program also extracted the 
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time that each rat was sequenced and used this information to sort 

the read sequences in order they were developed. For the real-time 

analyses, we wrote a plan to emulate the sequencing process in that 

it streamlined each read in the exact order it was sequenced. The 

program also allowed us to scale up the sequencing emulation to a 

component of choice. Our pipeline allows for filtering out 1D reads 

at multiple levels (including via np Reader). All subsequent 

analyses in this paper used both 1D and 2D reads. 

2.4 MiSeq sequencing and information analysis: 

Library preparation was done using the Next era XT DNA Sample 

preparation kit (Illumina), as advocated by the maker. Libraries 

were sequenced on the musical instrument (Illumina) with 300 bp 

paired end sequencing, to a coverage of over 100-fold. Read data 

were cut back with traumatic31 (V0.32) and subsequently 

assembled using SPA des32 (V3.5), resulting in assemblies with 

N50 exceeding 200 K. Their sequence types were identified by 

submitting the assembled genomes to the MLST servers33 for K. 

pneumoniae, E. coli (set #1) and S. Aureus. 

We identified the antibiotic resistance profiles of these forms from 

their music assemblies. We used blasting (V2.29) to line up these 

assemblies to the database of resistance genes obtained from 

ResFinder17. Genes that were covered at least greater than 85 % by 

the alignments and with greater than 85 % Sequence identity was 

conceived to be present in the sample. The matching gene profile 

matching benchmark by validation the mining sequence analysis. 

2.5 Species typing: 

We downloaded the bacterial genome database on Gene Bank 

(accessed 19 Nov 2014), which contained high quality complete 

genomes of 2785 bacterial strains from 1487 bacteria species. We 

fleshed out this database to include two K. quasi 

pneumoniae genomes. Our species typing pipeline streamed read 

data from np Reader directly to BWA-MEM11 (V0.7.10-r858), 

which aligned the reads to the database. Output from BWA in SAM 

format was streamed at once into our species typing pipeline, 

which calculated the ratio of reads aligned to each of these species. 

Our species typing method, consider the proportions {p1, p2, p, k} 

of k species in the mix as the parameters of a k-category 

multinomial distribution, and the read counts {c1, c2, c k} for the 

species as an observation from c1+c2+…. +c k independent trials 

drawn from the dispersion. It then uses the Multinomial CI package 

in R34 to calculate the 95 % confidence intervals of these 

dimensions from the expression. 

2.6 Multi-locus sequence typing: 

MinION sequence reads from K. pneumoniae strains were aligned 

to the seven house-keeping genes specified by the MLST system 

using BWA-MEM 11. We then collected reads that were aligned to 

a gene and performed a multiple alignment on them using 

kalign235. The consensus sequence created from the multiple 

alignment was then globally aligned to all alleles of the gene using 

a probabilistic Finite State Machine (see beneath) for global 

alignment. The scotch of a sequence type was defined by the total 

of the loads of seven alleles making up the character. 

2.7 Strain gauge type load cell: 

We built gene profile databases for K. pneumoniae, E. coli and S. 

Fields from the RefSeq annotation. Specifically, we received the 

publicly available assemblies of these species listed on the RefSeq 

(accessed 17 July 2015). We applied the relevant MLST schemes 

obtained from33 to name the sequence type of each forum. For each 

sequence type, we selected the assembly with highest N50 statistic 

and use the RefSeq gAn annotation of the meeting place to limit 

the gene content of the sequence type. 

In parliamentary law to get a simple probabilistic presence/absence 

strain typing model, we studied the genomes of each of the strains 

simply as an accumulation of genes. Denote by Stj=1... J all the 

breeds in our database (for a fixed species). Denote by gig, k the k 

t h gene in the database for strain j, where the genes are listed in no 

special order. Denote by N the total number of genes in St j. 

We aligned each sequence read r i from the MinION device to the 

gene database using BWA-MEM 11. We calculated the number of 

genes of each strain that aligned to read r I, denoted by N j (or I). 

We describe below how to calculate the likelihood, P (or I |St j), of 

each strain generating each read, from which we can compute the 

posterior probability of each strain St conditional on observing the 

reads r1… r m: 

P(Stj|r1..rm)=∏i=1..mP(ri|Stj)∑j′∏i=1..mP(ri|Stj)P(Stj|r1..rm)=∏

i=1..mP(ri|Stj)∑j′∏i=1..mP(ri|Stj) 

1-The Probability P (or I |St j) could be estimated applying a simple 

model as: 

P simple (ri|Stj) = Nj (ri)Nj, P simple (ri|Stj)=Nj(ri)Nj, 
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2- However, this model suffers from the problem that if we observe 

any road that overlaps a gene not in the reference genome for St j, 

then the posterior probability of that strain will become zero. Thus, 

this model is very unstable. In order to make this estimate more 

stable, we used a mixture model that allows the read to have been 

generated by a background model: 

P(ri|Stj)=(1−c)∗Nj(ri)Nj+(c)∗P⎛⎝ri|⋃j′Stj′⎞⎠.P(ri|Stj)=(1−c)∗Nj

(ri)Nj+(c)∗P(ri|⋃j′Stj′). 

3- The background model considers the probability that the read 

was generated from any of the strains: 

P⎛⎝ri|⋃j′Stj′⎞⎠=∑j′Nj′(ri)∑j′Nj′.P(ri|⋃j′Stj′)=∑j′Nj′(ri)∑j′Nj′. 

(4) This makes the posterior probability estimates more stable. It 

also makes the model robust to incorrect annotation of the reads 

from the MinION sequencer and incorrect annotation of the 

reference genome. We have investigated use of c=0.2, c=0.1 

and c=0.05 and found that it has little impact on the results, with 

slightly smaller confidence intervals (data not shown). We 

chose c=0.2 in order to conservatively estimate confidence 

intervals. 

Finally, in order to calculate confidence intervals, we employed a 

bootstrap resampling approach in which we resampled m reads 

from r1... r m with replacement. This is repeated 1000 times, and the 

posterior probabilities are recalculated every iteration. We 

calculated the 95 % confidence intervals from the empirical 

distribution of these posterior probabilities. 

To gain some insight into how this model works in response to 

gene presence, consider a gene g, which is present in a fraction f of 

strains, including St j but not including St k. For simplicity, assume 

that each strain has N genes. The difference in log-

likelihood St j and Stk conditional on g can be approximated by 

log(1/c) + log(1/f), showing that a more specific gene has a 

stronger effect in our model than a common gene in distinguishing 

strains. 

To gain insight into the effect of gene absence in contrast to gene 

presence, assume instead that the only difference 

between St j and St k is the deletion of a single gene (g) in St j, and 

denote by N=N j =N k −1. If we sequence N ln (2) genes 

from St j without seeing gene g, the difference in log-likelihood 

becomes N ln (2) ∗(log(N)− log(N−1)) ≈1bit, corresponding to the 

likelihood that St j is twice as big as the likelihood of St k . For 

instance, if a chain has 1000 genes, then we would need to observe 

693 genes without observing g to be able to reason out that the 

observed data were twice as likely to be engendered from the 

species with a single gene deletion. For comparison, we would 

need to only sequence 100 genes from St k to get an expected log-

likelihood difference of 1 bit versus St j, demonstrating the extra 

information in gene ’presence’ versus ’absence’ typing. 

2.8 Antibiotic resistance gene classes detection: 

We downloaded the resistance gene database from Res Finder17 

(accessed July 2015). We aligned each gene to the collection of 

bacterial genomes in Ref Seq using blastn36, and used the best 

alignment of the gene to extract 100 bp sequences flanking the 

antibiotic resistance genes. We found that the inclusion of these 

flanking sequences improved the sensitivity of mapping MinION 

reads to the gene database. 

We then grouped these genes based on 90 % sequence identity into 

609 groups. We manually checked and found that genes within a 

group were variants of the same gene. We selected the longest gene 

in each group to make up a reduced resistance gene database. To 

create a benchmark of resistance genes for a sample, we used blastn 

to compare the Illumina assembly of the sample against this 

reduced gene database, and reported genes with greater than 85 % 

coverage and identity. 

Our analysis pipeline aligned MinION sequencing data to this 

reduced resistance gene database using BWA-MEM11 in a 

streamlined fashion, and examined genes with reads mapping to 

the whole gene (not including flanking sequences). Because of 

high error rates with MinION sequence data, we noticed a high rate 

of false positive genes. To reduce false positives, we used kalign235 

to perform a multiple alignment of reads that were aligned to the 

same gene. The consensus sequence resulting from the multiple 

alignments was then compared with the gene sequence using a 

probabilistic Finite State Machine (see below). The pipeline then 

reported gene classes based on the genes detected. 

2.9 Sensitive alignment of noisy sequences with probabilistic 

Finite State Machines: 

Our methods for MLST strain typing and antibiotic resistance gene 

identification require the alignment of a consensus sequence to a 

gene or a gene allele. Such an alignment generally assumes a model 

and a set of parameters of the differences between the sequences. 

It is widely recognised that the accuracy of the alignment is 

sensitive to this parameters37-39. However, in the context of real-
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time analysis of MinION sequencing, it is not possible to select in 

advance a sensible set of parameters. On the one hand, the quality 

among sequence reads differs remarkably; as shown in Additional 

file 1: Figure S1 and Table 2 – the majority (95 %) of the reads 

across our four runs have a Ph red score ranging between 3 and 7 

for template and complement reads (corresponding to 50–80 % 

accuracy) and between 6 to 12 for 2D reads (75–95 % accuracy). 

On the other hand, a consensus sequence is computationally 

constructed from a set of reads. Its quality is hence contingent to 

not only the quality of the reads but also the number of reads in the 

set. 

We apply a probabilistic Finite State Machine (pFSM)40 to model 

the differences, and hence the simultaneous error profile of the 

consensus sequence. Briefly, a pFSM is a probabilistic model of 

genomic alignment that takes into account different types of 

variations including SNPs, insertions and deletions. A pFSM is 

equivalent to a hidden Markov Model. The pFSM consists of a lot 

of states and transitions between states. Each transition 

corresponds to an action and is associated with a cost for the 

activity. An action could be one 

of copy (C), substitute (S), delete (D) and insert (I). 

Figure 6 depicts a three-state pFSM, which is equivalent to an 

affine gap penalty alignment model. In club to assess an alignment 

of two sequences A and B, under a hypothesis specified by the 

parameters, the pFSM computes the cost to generate one sequence 

(say A) given the other (B). For instance, while in state Copy, the 

machine eats the next base in B, generates the next theme in A; it 

is said to take action C if the two pedestals are the same, or action 

So otherwise, and to follow either transition to state Copy. Instead, 

the machine can take either action D (consumes the next floor in B 

without generating any base in A and moves to state Delete), or 

action I (generates the next theme in A without consuming a base 

in B and moves to state Insert). These natural processes are 

replicated until the whole sequence B is generated. 
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Fig. 6 Schematic of a triplet-state probabilistic Finite State 

Machine 

We employed an information-theoretic measure whereby the cost 

of a transition is that of encoding the generated base, or in other 

words, the negative logarithm of the probability of the associated 

action (c=−log2 (P (a)). The foundation of this approach goes back 

to the 1960s when it was proposed as a basis for inductive 

inference41-42. It has since been applied in several Bioinformatics 

applications such as for calculating the BLOSUM matrix43 and 

modelling DNA sequences 44-45. More importantly, this 

information-theoretic framework allows one to estimate a sensible 

set of parameters for any related two sequences. This is done via 

an Expectation-Maximisation process. This starts with an initial set 

of probabilities at each state. In the E-step, the best alignment 

(lowest cost) is computed by a dynamic scheduling algorithm. The 

frequencies of natural processes in each state are then utilized to 

re-calculate the probabilities in the M-step. A detailed discourse of 

this process is provided in Allison et al40 and Cao et al.46. The 

process is guaranteed to converge to an optimal, and it does so in 

just a few iterations in our experience. 

2.10Availability, restrictions and stay requirements vary: 

Task name: Streaming algorithms to identify pathogens and 

antibiotic resistance from real-time MinION. Visit the project 

home page on https://github.com/mdcao/npAnalysis. Operating 

system(s): Platform independent, Programming language: Java and 

R. License: FreeBSD. 
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2.11Availability of supporting information 

The source code of the software is publicly available in Japsa 

GitHub repository47. All scripts for the presented analyses are 

provided along the project home page. The sequencing data for the 

experiments presented are available in European Nucleotide 

Archive under accession PRJEB14532. Backing up information 

and snapshots of the code are available in the GigaDB repository 

48. 
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