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ABSTRACT 

 

A connected Roman dominating function  210 ,, VVVf  on a semitotalblock graph   HGTb   is a function 

   : 0,1,2f V H   satisfying the condition that every vertex u  for which   0f u   is adjacent to at least one vertex 

v  for which   2f v  such that 21 VV   or 2V is connected. The weight of a connected Roman dominating function 

is the value     
 v V H

f V H f v


  . The minimum weight of a connected Roman dominating function on a 

semitotalblock  graph H  is called the connected Roman semitotalblock domination number of G  and is denoted by 

 GRCT .  

In this paper, we study the connected Roman domination number of  semitotalblock graph H  and obtain some results 

on  GRCT in terms of elements of G , but not in terms  of H . Further we develop its relationship with other different 

domination parameters of G . 

 

 Subject Classification Number: 05C69. 
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INTRODUCTION 

 

All graphs considered here are simple (finite, undirected and loop less). For standard graph theory the terminology not 

given here we refer [2] and [3]. Let  ,G V E  be a graph with vertex set V  and edge set E , the open neighborhood 

 N v of the vertex v  consists of vertices adjacent to v  and the closed neighborhood of v  is    N v v N v   . For a 

subset  S V G , we define    
v S

N S N v


   and    
v S

N S N v


  . The subgraph induced by S  is denoted by S . 

For any graph  ,G V E  , the semitotalblock graph   HGTb    is the graph whose set of vertices is the union of the 

set of vertices and set of blocks of G  in which two vertices are adjacent if and only if the corresponding members of 

G  are adjacent or the corresponding members of G  are incident, see[6]. 

A set VD   is a dominating set if every vertex not in D is adjacent to atleast one vertex in D . The minimum 

cardinality of a minimal dominating set D  is called a domination number of  G  and is denoted by  G . 

A  dominating set D  is connected dominating set if an induced subgraph D  is connected. The connected domination 

number  GC  of a graph G is the minimum cardinality of a connected dominating set. See[5]. 
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A dominating set D  is a total dominating set if the induced subgraph D  has no isolated vertices. The total domination 

number  Gt  of a graph G is the minimum cardinality of a total dominating set. See [5] 

A Roman dominating function on a graph  ,G V E   is a function  2,1,0: Vf  Satisfying the condition that every 

vertex u  for which   0f u   is adjacent to at least one vertex v  for which   2f v  . The weight of a Roman 

dominating function is the value    



Vv

vfVf . The minimum weight of Roman dominating function on a graph G  

is called the Roman domination number of G  and is denoted by  GR . See[1] 

A Roman dominating function  0 1 2, ,f V V V  on a semitotal block graph   HGTb  is a  connected Roman dominating 

function (CRDF) on G  if 1 2V V  or 2V  is connected. The connected Roman semitotalblock domination number 

 GRCT  of G  is the minimum weight of a connected Roman semitotalblock dominating function of G . 

 

We need the following theorems to prove our further results. 

Theorem A[8]: For any graph G ,
 

   GG RCR   . 

Theorem B[8]: For any  nontrivial tree T ,    TTRC  2
 
 if and only if  every non end vertex of T  is adjacent to 

atleast one end vertex. 

Theorem C[4]:  If G  is a connected graph with 3p  vertices then   kpGC   or   pkGC   where k  be the 

number of end vertices of T . 

Theorem D[7]:  For any graph G ,
 

   GG RRB   . 

Theorem E[9]: Let G be any  qp,  with 2p  vertices then  Gp RS . 

 

RESULTS 

In this section we illustrate the connected Roman semitotal block domination number by determining the value of 

 GRCT  for several classes of graphs. 

 

Theorem 1: 

1. For any path pP , 3p  vertices, 

a.   pPpRCT   ,          if  5,4p . 

b.   nkP kRCT  22 ,    if  5,4p . where ,.....4,3k ; ,......2,1n  

               c.   1212  nkP kRCT . 

2. For any graph G , if G  is a block or G  has exactly one cut vertex incident with blocks which are complete, 

then   2GRCT . 

 

Upper bounds for  GRCT : 

We establish the upper bounds for the connected Roman semitotalblock domination number. 

 

Theorem 2: For any non trivial graph G ,    GG CRCT  2 . 

Proof: Let G  be any non trivial connected graph with    nvvvGV ,.....,, 21  . Suppose there exists a set 

 ic vvvD ,.....,, 21 , ni 1 such that  GVDc   and   cj DGVv  , nj 1  is adjacent to atleast one vertex of 

cD . Also there exists a unique path between every pair of vertices of cD . Then  GD cc  . Let the graph  GTb  has 

 nibi 1;  number of block vertices corresponding to the blocks niGBi ,....,2,1;  . Then       ib bGVGTV 

. Suppose there exists the sets 1D , 2D  in  GTb  such that cDD 1  and  ibD 2 . If   1Vf , then some 
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ikDv ck  1; ,  im bv  . Hence  mk vv   forms a dominating set in  GTb  in which   2Vvv mk    and if  

mk vv   is connected, then cmk Dvv 2 , which gives    GG CRCT  2 . If   1Vf , for some  GVvl   or 

cl Dv   also belongs to 1V , then there exists kk vv '
 and mm vv '

 such that 2

'' }{ Vvv mk  . If 
''

mkl vvv   is 

connected , then cmkl Dvvv 2''  , which gives    GG CRCT  2 . 

 

Theorem 3:  For any graph G with n  blocks such that each block is complete, then   nGRCT 2 . 

Proof: Let G  be any graph with n  blocks such that each block is complete and  210 ,, VVVf   be a RC -function in 

 GTb . Let  nvvv ,.....,, 21 be the number of vertices incident with n blocks which forms a c -set in G . If every end 

blocks  niBi 1;  of G contains the vertices    ni vv  , then  2Vvi   . Otherwise there exists some non end blocks 

 njB j 1;  contains the vertices    nj vv  , such that       
jlk vvv ,  and   2Vvk  ,   1Vvl  . If    

ji vv   is 

connected. Then           nBBvv jiji 22  . Hence   nGRCT 2 . 

 

Theorem 4: Let G  be any non trivial graph with pPG  , 6p  then   pGRCT  . 

Proof: Let G  be any non trivial graph with pPG  , 6p . Suppose pPG  , 6p . Then by Theorem 1,   pGRCT 

, a contradiction. Hence pPG  , 6p . Suppose pPG   with 51  p . Then by Theorem 1, the result is obvious. 

        Now let G  be any non trivial graph with    nvvvGV ,.....,, 21  and  210 ,, VVVf   be a RC -function in  GTb

. Further  ic vvvD ,.......,, 21  ni 1  be the number of vertices which forms a c -set of G   and    ij vv   be the 

number of vertices of G  such that    
jvv , vV   has atleast two components. Suppose every vertex of  

jvV   is 

adjacent to atleast one vertex of jv . Then  
1Vv j   or 2V  and  

0VvV j  . Otherwise there exists atleast one vertex 

   
jk vVv   which is not adjacent to  jv . Let  nkBk 1;  be the number of  blocks in G  such that  kk Bv  . 

Then there exists the vertices  nkbk 1;  in  GTb  corresponds to the blocks  kB  of G such that   2Vbk    and 

   
1VvbN jk   or 2V  which gives nvVV  21 2 . 

Hence   pGRCT  .  

 

Theorem 5: For any nontrivial graph G ,    GG RSRCT   . 

Proof: By Theorem 4 and Theorem E,    GpG RSRCT   . 

Hence    GG RSRCT   . 

 

Theorem 6: For any nontrivial graph G ,      GGG tcRCT   . 

Proof: Let    nvvvGV ,.....,, 21  be the number of vertices of  G . Let  ic vvvD ,.....,, 21  ni 1  be the number of 

vertices of G such that VDC   and cD  is connected. Further  kt vvvD ,.....,, 21  nk 1  be the number of 

vertices of G  and VDt   such that tD  has no isolated vertices. Then  GD cc   and  GD tt  . Let RC -set 

RCTD  such that  GD RCTRCT  . Since cD  is connected. Therefore the set cD  must contain atleast one vertex from 

each block  niBi 1; . Then the block vertices  nibi 1;  of  GTb  corresponding to the blocks  niBi 1;  are 

adjacent to atleast one vertex of cD . Suppose   1Vf  and  210 ,, VVVf   be a RC -function in  GTb  with    

1Vvk  , nk 1 . Then there exists atleast two vertices    kvNwu ,  such that   2Vwu  . Also if there exist atleast 
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one vertex tcm DDv  , nm 1 . Suppose mv  belongs to only one block B of G . Then there exist a block vertex 

  GTVb b  is adjacent to atleast one vertex of tc DD   such that 2Vb  in which   bwuvk   forms a 

connected component. Then tcRCT DDD  . Suppose   1Vf . Then  tcl DDv  , nl 1 , 2Vvl  , also 

 lv  forms a RC -set of  GTb  such that lv  is connected, which gives tcRCT DDD  . Hence 

     GGG tcRCT   . 

 

Theorem 7: For any tree with n  blocks and 1c  cut vertices,   cnTRCT  . 

Proof: Suppose T  be a tree with n  blocks and  kvvvA ,.....,, 21  be the number of cut vertices of T  such that cA 

. Let  nbbb ,.....,, 21  be the number of block vertices of  TTb  with respect to the blocks  nBBB ,.....,, 21  of T  such that 

nbn  . Since every block is 2K  in T  and each nkAvk  1;   is adjacent to its corresponding block vertex in  TTb  

such that 1Vvk   or 2V , then the    ATTV b   is not connected it follows that   AbN i   forms RC -set in  TTb  

such that   cnTRCT  . Therefore   cnTRCT  . 

Again as the number of  blocks nB  of T  increased by atleast one block of T  then atleast one cut vertex and one block 

vertex are increased in  TTb , which gives   cnTRCT  . 

The connected domination, Roman domination and connected Roman semitotalblock domination are related by the 

following inequality. 

 

Theorem 8: For any graph G ,       1 GGG RcRCT  . 

Proof: Let G  be any graph and  210 ,, VVVf   be a RC -function  with connected Roman dominating set RCTD  in 

 GTb  such that  GD RCTRCT  . Now we consider the following cases. 

Case1: Suppose G  be any tree and k  be the number of end vertices in G . Let  '2'

1

'

0 ,, VVVf   be a R -function in G  

and   '

1Vf . Then    cDVu  '

21  such that 21 Vu  . Suppose there exist a vertex  cDVw  '

0 . Then 1Vw  or 

there exists the vertices cDVww  '

021, . Clearly 11 Vw  , 22 Vw   or 21 Vw  , 12 Vw  . Suppose some  cDVu  '

22

. Then 22 Vu   and 12 Vu   . Also there exists cDVuu  '

0

''

2

'

2 ,  where as 2

''

2

'

2 )( Vuu  . Hence 21 VV   forms a 

connected Roman dominating set in  GTb , which gives 1 RcRCT DDD . 

Thus       1 GGG RcRCT  . 

Case2: Suppose G  is not a tree. Then we consider the following subcases. 

Subcase2.1: Assume G  be a graph with  niBi 1;  blocks and C  be the number of cut vertices in G  such that 

every vertex of iB  are adjacent to atleast one cut vertex c  of G . Then   cDVv  '

2 , 2Vv  and if there exist a 

vertex cDVu  '

0 , then )(vNu  and hence 1Vu . Also if  there exists cDVw  '

1  and   cDVwN  '

0 . Then 

2Vw  and 1)( VwN  , which gives 1 RcRCT DDD . 

 Hence       1 GGG RcRCT  . 
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Subcase2.2: Assume G  be a graph with  njB j 1;  blocks such that atleast one vertex of each block is not adjacent 

to a cut vertex c . Then  jB  in G  there exist the corresponding block vertices jj bv   in  GTb  and hence 2Vv j   

also 1)( VDvN cj   or 2V , which gives 1 RcRCT DDD . Hence       1 GGG RcRCT  . 

In the following theorem, we establish the relation of  GRCT  with  Gc  and blocks of G . 

 

Theorem 9: For any graph G  with n  blocks     nGG cRCT   . 

Proof: Let G  be any graph with  niBi 1;  be the number of blocks of G  and  210 ,, VVVf   be a RC -function in 

 GTb . 

 Further    GVvvvS k  ,.....,, 21  be the set of all vertices with   2deg v . Then there exists a minimal vertex set 

SS '
, which covers all the vertices of G . Clearly 'S  forms a minimal  -set of  G . Suppose the subgraph 

'S  has 

only one component. Then 'S  itself is a connected dominating set of G . Otherwise, if the subgraph 
'S  has more 

than one component, then attach the minimum number of vertices     'SGVwi  , where   2deg iw , which are 

between the vertices of 'S  such that  iwSS  '

1  forms exactly one component in the subgraph 1S . Clearly, 1S  

forms a minimal c -set of  G . Further k be the number of end vertices of G . Then we consider the following cases. 

Case1: Suppose k . Then nk  0 . By Theorem C,   pkGc  . Also by Theorem 4,   pGRCT  . 

 Hence       nGkGpG ccRCT   . Therefore     nGG cRCT   . 

Case2: Suppose k . Then consider the following subcases. 

Subcase2.1: Assume 2KG  . Then     nkKvk  1;  there exist the blocks iBn  such that nk  . By Theorem 

C,     nGkGp cc   . Also by  Theorem 4,   pGRCT  . Hence     nGG cRCT   . 

Subcase2.2: Assume 2KG  . Then by Theorem 1,     nGG cRCT   112 . Therefore     nGG cRCT   . 

Lower bound for   :GRCT  

In the following theorem, we obtain the lower bounds for  TRCT . 

Theorem 10: For any non trivial tree T ,    TcT RCT  , where c be the number of cut vertices of T . 

Proof: Suppose G  be a non trivial tree with  nvvvV ,.....,, 21 . Then there exists a set VV '  such that  TV ' . 

Now for any non trivial tree T  with niBi 1;  be the number of blocks of T . Then in  TTb , let  nbbb ,.....,, 21  be 

the set of block vertices corresponding to iB  in  TTb . We consider a function  210 ,, VVVf   be a RC -function in 

 TTb . Now CC 1  and    1Cvi  . Then   2Vvi  . Otherwise    1Cvi   if   'Vvi  . Then   1Vvi  . It follows that 

the connected induced subgraph 21 VV   or 2V  is  TRCT . Hence    TcT RCT  . 

In the following theorem, we obtain  TRCT  for which the lower bond is attained with connected Roman domination 

number of T . 
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Theorem 11: Let T  be any non trivial tree. Then    TT RCTRC   . 

Proof: Let T  be any non trivial tree and  210 ,, VVVf   be a RC -function in  TTb . Suppose  nvvvn ,.....,, 211   be 

the number of non end vertices of T adjacent to atleast one end vertex and  ivvvn ,.....,, 212   ni 1  be the number 

of end vertices of T  not adjacent to end vertices. Then we consider the following cases. 

Case1: Suppose 2n . Then every non end vertex of T is adjacent to atleast one vertex. By Theorem 14, 

   TTRCT  2 . Also by Theorem B,    TTRC  2 . Hence    TT RCTRC   . 

Case2: Suppose 2n . Then    ninvi ,...2,1;  ,   2Vvi  . Now consider    243 , nnn  . Suppose  3nu , 

2Vu . Then there exists atleast one vertex 4nw  and  uNw  which gives 1Vw . Suppose u . Then there 

exist   4,...,2,1; nnihi   such that   1Vhi  . But   '

2Vvi   and   '

1Vwu  , which gives    TT RCTRC   . Hence 

   TT RCTRC   . 

 

Theorem 12: For any non trivial tree T , then    TT RCTR   . 

Proof: From Theorem A and Theorem 11,      TTT RCTRCR   . Hence    TT RCTR   . 

 

Theorem 13: For any tree T . Then    TT RCTRB   . 

Proof: By Theorem D,     TT RRB    and by Theorem 12,    TT RCTR   . Hence    TT RCTRB   . 

In the following theorem we establish the equality result. 

 

Theorem 14: For any non trivial tree T , if every non end vertex of T is adjacent to atleast one end vertex. Then 

   TTRCT  2 . 

Proof: Let T  be any non trivial tree . Further  210 ,, VVVf   be a RC -function with connected Roman dominating 

set RCTD  in  TTb  such that  TD RCTRCT   and k  be the number of end vertices of T . Suppose  nvvvn ,.....,, 211   

be the number of non end vertices of T adjacent to atleast one end vertex. Then there exists a minimal  -set D  of T

such that   1nTD   . Let  niBi 1;  be the number of blocks of T  corresponding to the block vertices 

 nibi 1;  of  TTb . Since each 1nv  is incident with atleast two blocks and is adjacent to  ibk   in  TTb  with 

the property 0Vbk i  , 21 Vn   and 1V , which gives DnVVDRCT 222 121   . Hence 

   TTRCT  2 . 
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