Connected Roman Semi Total Block Domination in Graphs

Sumangaladevi and M. H. Muddebihal 1. Assistant professor Department of Mathematics Basaveshwar Science College, Bagalkot 2. M. H. Muddebihal Professor Department of Mathematics Gulbarga university, Kalaburagi

ABSTRACT

A connected Roman dominating function $f = (V_0, V_1, V_2)$ on a semitotalblock graph $T_b(G) = H$ is a function $f : V(H) \rightarrow \{0,1,2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 such that $\langle V_1 \cup V_2 \rangle$ or $\langle V_2 \rangle$ is connected. The weight of a connected Roman dominating function is the value $f(V(H)) = \sum_{v \in V(H)} f(v)$. The minimum weight of a connected Roman dominating function on a semitotalblock graph H is called the connected Roman semitotalblock domination number of G and is denoted by $\gamma_{RCT}(G)$.

In this paper, we study the connected Roman domination number of semitotalblock graph H and obtain some results on $\gamma_{RCT}(G)$ in terms of elements of G, but not in terms of H. Further we develop its relationship with other different domination parameters of G.

Subject Classification Number: 05C69.

Keywords: Semi total block graph, Roman domination and Connected Roman domination.

INTRODUCTION

All graphs considered here are simple (finite, undirected and loop less). For standard graph theory the terminology not given here we refer [2] and [3]. Let G = (V, E) be a graph with vertex set V and edge set E, the open neighborhood N(v) of the vertex v consists of vertices adjacent to v and the closed neighborhood of v is $N[v] = v \cup N(v)$. For a subset $S \subseteq V(G)$, we define $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. The subgraph induced by S is denoted by $\langle S \rangle$.

For any graph G = (V, E), the semitotalblock graph $T_b(G) = H$ is the graph whose set of vertices is the union of the set of vertices and set of blocks of G in which two vertices are adjacent if and only if the corresponding members of G are adjacent or the corresponding members of G are incident, see[6].

A set $D \subseteq V$ is a dominating set if every vertex not in *D* is adjacent to at least one vertex in *D*. The minimum cardinality of a minimal dominating set *D* is called a domination number of *G* and is denoted by $\gamma(G)$.

A dominating set D is connected dominating set if an induced subgraph $\langle D \rangle$ is connected. The connected domination number $\gamma_c(G)$ of a graph G is the minimum cardinality of a connected dominating set. See[5].

A dominating set D is a total dominating set if the induced subgraph $\langle D \rangle$ has no isolated vertices. The total domination number $\gamma_t(G)$ of a graph G is the minimum cardinality of a total dominating set. See [5] A Roman dominating function on a graph G = (V, E) is a function $f: V \to \{0,1,2\}$ Satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{v=1}^{\infty} f(v)$. The minimum weight of Roman dominating function on a graph G is called the Roman domination number of G and is denoted by $\gamma_R(G)$. See[1] A Roman dominating function $f = (V_0, V_1, V_2)$ on a semitotal block graph $T_b(G) = H$ is a connected Roman dominating

function (CRDF) on G if $\langle V_1 \cup V_2 \rangle$ or $\langle V_2 \rangle$ is connected. The connected Roman semitotalblock domination number $\gamma_{RCT}(G)$ of G is the minimum weight of a connected Roman semitotalblock dominating function of G.

We need the following theorems to prove our further results.

Theorem A[8]: For any graph G, $\gamma_R(G) \le \gamma_{RC}(G)$.

Theorem B[8]: For any nontrivial tree T, $\gamma_{RC}(T) = 2\gamma(T)$ if and only if every non end vertex of T is adjacent to atleast one end vertex.

Theorem C[4]: If G is a connected graph with $p \ge 3$ vertices then $\gamma_C(G) = p - k$ or $\gamma_C(G) + k = p$ where k be the number of end vertices of T.

Theorem D[7]: For any graph G, $\gamma_{RB}(G) \leq \gamma_R(G)$.

Theorem E[9]: Let G be any (p,q) with $p \ge 2$ vertices then $p \le \gamma_{RS}(G)$.

RESULTS

In this section we illustrate the connected Roman semitotal block domination number by determining the value of JUCR $\gamma_{RCT}(G)$ for several classes of graphs.

Theorem 1:

For any path P_p , p > 3 vertices, 1.

a. $\gamma_{RCT}(P_p) = p$, if p = 4,5.

b. $\gamma_{RCT}(P_{2k}) = 2k + n$, if $p \neq 4,5$. where k = 3,4,...; n = 1,2,...c. $\gamma_{RCT}(P_{2k+1}) = 2k + n + 1$.

For any graph G, if G is a block or G has exactly one cut vertex incident with blocks which are complete, 2. then $\gamma_{RCT}(G) = 2$.

Upper bounds for $\gamma_{RCT}(G)$:

We establish the upper bounds for the connected Roman semitotalblock domination number.

Theorem 2: For any non trivial graph G, $\gamma_{RCT}(G) \le 2\gamma_C(G)$.

Proof: Let G be any non trivial connected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$. Suppose there exists a set $D_c = \{v_1, v_2, \dots, v_i\}, 1 \le i \le n \text{ such that } D_c \subset V(G) \text{ and } \forall v_j \in V(G) - D_c, 1 \le j \le n \text{ is adjacent to at least one vertex of } is adjacent to at least one vertex of } is adjacent to at least one vertex of its original to a state of the state of t$ D_c . Also there exists a unique path between every pair of vertices of D_c . Then $|D_c| = \gamma_c(G)$. Let the graph $T_b(G)$ has $\{b_i : 1 \le i \le n\}$ number of block vertices corresponding to the blocks $B_i \in G; i = 1, 2, ..., n$. Then $V[T_b(G)] = V(G) \cup \{b_i\}$. Suppose there exists the sets D_1 , D_2 in $T_b(G)$ such that $D_1 \subseteq D_c$ and $D_2 \subseteq \{b_i\}$. If $f(V_1) = \phi$, then some

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 $v_k \in D_c; 1 \le k \le i, v_m \in \{b_i\}$. Hence $\{v_k \cup v_m\}$ forms a dominating set in $T_b(G)$ in which $\{v_k \cup v_m\} \in V_2$ and if $\langle v_k \cup v_m \rangle$ is connected, then $|v_k \cup v_m| = 2|D_c|$, which gives $\gamma_{RCT}(G) = 2\gamma_C(G)$. If $f(V_1) \neq \phi$, for some $v_l \in V(G)$ or $v_l \in D_c$ also belongs to V_1 , then there exists $v_k \subset v_k$ and $v_m \subset v_m$ such that $\{v_k \cup v_m\} \in V_2$. If $\langle v_l \cup v_k \cup v_m \rangle$ is connected, then $|v_l \cup v_k \cup v_m| \le 2|D_c|$, which gives $\gamma_{RCT}(G) \le 2\gamma_C(G)$.

Theorem 3: For any graph G with n blocks such that each block is complete, then $\gamma_{RCT}(G) \le 2n$.

Proof: Let G be any graph with n blocks such that each block is complete and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(G)$. Let $\{v_1, v_2, \dots, v_n\}$ be the number of vertices incident with *n* blocks which forms a γ_c -set in G. If every end blocks $\{B_i; 1 \le i \le n\}$ of *G* contains the vertices $\{v_i\} \subseteq \{v_n\}$, then $\{v_i\} \in V_2$. Otherwise there exists some non end blocks $\{B_j; 1 \le j \le n\}$ contains the vertices $\{v_i\} \subseteq \{v_n\}$, such that $\{\{v_k\}, \{v_i\}\} \subseteq \{v_j\}$ and $\{v_k\} \in V_2$, $\{v_i\} \in V_1$. If $\{\{v_i\} \cup \{v_j\}\}$ is connected. Then $\{\{v_i\} \cup \{v_j\}\} \le 2\{\{B_i\} \cup \{B_j\}\} = 2n$. Hence $\gamma_{RCT}(G) \le 2n$.

Theorem 4: Let G be any non trivial graph with $G \neq P_p$, $p \ge 6$ then $\gamma_{RCT}(G) \le p$.

Proof: Let G be any non trivial graph with $G \neq P_p$, $p \ge 6$. Suppose $G = P_p$, $p \ge 6$. Then by Theorem 1, $\gamma_{RCT}(G) > p$, a contradiction. Hence $G \neq P_p$, $p \ge 6$. Suppose $G = P_p$ with $1 \le p \le 5$. Then by Theorem 1, the result is obvious.

Now let G be any non trivial graph with $V(G) = \{v_1, v_2, ..., v_n\}$ and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(G)$. Further $D_c = \{v_1, v_2, \dots, v_i\}$ $1 \le i \le n$ be the number of vertices which forms a γ_c -set of G and $\{v_j\} \subseteq \{v_i\}$ be the number of vertices of G such that $\forall v \in \{v_j\}, V - v$ has atleast two components. Suppose every vertex of $V - \{v_j\}$ is adjacent to atleast one vertex of v_j . Then $\{v_j\} \in V_1$ or V_2 and $V - \{v_j\} \in V_0$. Otherwise there exists atleast one vertex $\{v_k\} \in V - \{v_j\}$ which is not adjacent to $\{v_j\}$. Let $\{B_k; 1 \le k \le n\}$ be the number of blocks in G such that $v_k \in \{B_k\}$. Then there exists the vertices $\{b_k; 1 \le k \le n\}$ in $T_b(G)$ corresponds to the blocks $\{B_k\}$ of G such that $\{b_k\} \in V_2$ and $N(b_k) \cap \{v_i\} \in V_1 \text{ or } V_2 \text{ which gives } |V_1| + 2|V_2| \le |v_n|.$ Hence $\gamma_{RCT}(G) \leq p$.

Theorem 5: For any nontrivial graph G, $\gamma_{RCT}(G) \leq \gamma_{RS}(G)$. **Proof:** By Theorem 4 and Theorem E, $\gamma_{RCT}(G) \le p \le \gamma_{RS}(G)$. Hence $\gamma_{RCT}(G) \leq \gamma_{RS}(G)$.

Theorem 6: For any nontrivial graph G, $\gamma_{RCT}(G) \leq \gamma_c(G) + \gamma_t(G)$.

Proof: Let $V(G) = \{v_1, v_2, \dots, v_n\}$ be the number of vertices of G. Let $D_c = \{v_1, v_2, \dots, v_i\}$ $1 \le i \le n$ be the number of vertices of G such that $D_C \subset V$ and $\langle D_c \rangle$ is connected. Further $D_t = \{v_1, v_2, ..., v_k\}$ $1 \le k \le n$ be the number of vertices of G and $D_t \subset V$ such that $\langle D_t \rangle$ has no isolated vertices. Then $|D_c| = \gamma_c(G)$ and $|D_t| = \gamma_t(G)$. Let γ_{RC} -set D_{RCT} such that $|D_{RCT}| = \gamma_{RCT}(G)$. Since D_c is connected. Therefore the set D_c must contain at least one vertex from each block $\{B_i; 1 \le i \le n\}$. Then the block vertices $\{b_i; 1 \le i \le n\}$ of $T_b(G)$ corresponding to the blocks $\{B_i; 1 \le i \le n\}$ are adjacent to atleast one vertex of D_c . Suppose $f(V_1) \neq \phi$ and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(G)$ with \forall $v_k \in V_1$, $1 \le k \le n$. Then there exists at least two vertices $(u, w) \in N(v_k)$ such that $(u \cup w) \in V_2$. Also if there exist at least

© 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

one vertex $v_m \subseteq D_c \cup D_t$, $1 \le m \le n$. Suppose v_m belongs to only one block B of G. Then there exist a block vertex $b \in V[T_b(G)]$ is adjacent to atleast one vertex of $D_c \cup D_t$ such that $b \in V_2$ in which $\{v_k \cup \{u \cup w\} \cup b\}$ forms a connected component. Then $|D_{RCT}| \le |D_c| + |D_t|$. Suppose $f(V_1) = \phi$. Then $\forall v_l \in D_c \cup D_t$, $1 \le l \le n$, $v_l \in V_2$, also $\{v_l\}$ forms a γ_{RC} -set of $T_b(G)$ such that $\langle v_l \rangle$ is connected, which gives $|D_{RCT}| \le |D_c| + |D_t|$. Hence $\gamma_{RCT}(G) \le \gamma_c(G) + \gamma_t(G)$.

Theorem 7: For any tree with *n* blocks and $c \ge 1$ cut vertices, $\gamma_{RCT}(T) < n + c$.

Proof: Suppose *T* be a tree with *n* blocks and $A = \{v_1, v_2, ..., v_k\}$ be the number of cut vertices of *T* such that |A| = c. Let $\{b_1, b_2, ..., b_n\}$ be the number of block vertices of $T_b(T)$ with respect to the blocks $\{B_1, B_2, ..., B_n\}$ of *T* such that $|b_n| = n$. Since every block is K_2 in *T* and each $v_k \in A$; $1 \le k \le n$ is adjacent to its corresponding block vertex in $T_b(T)$ such that $v_k \in V_1$ or V_2 , then the $\langle V[T_b(T)] - A \rangle$ is not connected it follows that $\{N(b_i) \cap A\}$ forms γ_{RC} -set in $T_b(T)$ such that $\gamma_{RCT}(T) < n + c$. Therefore $\gamma_{RCT}(T) < n + c$.

Again as the number of blocks B_n of T increased by at least one block of T then at least one cut vertex and one block vertex are increased in $T_b(T)$, which gives $\gamma_{RCT}(T) < n + c$.

The connected domination, Roman domination and connected Roman semitotalblock domination are related by the following inequality.

Theorem 8: For any graph G, $\gamma_{RCT}(G) \le \gamma_c(G) + \gamma_R(G) - 1$.

Proof: Let *G* be any graph and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function with connected Roman dominating set D_{RCT} in $T_b(G)$ such that $|D_{RCT}| = \gamma_{RCT}(G)$. Now we consider the following cases.

Case1: Suppose *G* be any tree and *k* be the number of end vertices in *G*. Let $f = (V_0, V_1, V_2)$ be a γ_R -function in *G* and $f(V_1) = \phi$. Then $\forall u_1 \in (V_2 \cap D_c)$ such that $u_1 \in V_2$. Suppose there exist a vertex $w \in (V_0 \cap D_c)$. Then $w \in V_1$ or there exists the vertices $w_1, w_2 \in V_0 \cap D_c$. Clearly $w_1 \in V_1$, $w_2 \in V_2$ or $w_1 \in V_2$, $w_2 \in V_1$. Suppose some $u_2 \in (V_2 \cap D_c)$. Then $u_2 \notin V_2$ and $u_2 \in V_1$. Also there exists $u_2, u_2 \in V_0 \cap D_c$ where as $(u_2 \cup u_2) \in V_2$. Hence $\langle V_1 \cup V_2 \rangle$ forms a connected Roman dominating set in $T_b(G)$, which gives $|D_{RCT}| \leq |D_c| + |D_R| - 1$.

Thus $\gamma_{RCT}(G) \leq \gamma_c(G) + \gamma_R(G) - 1$.

Case2: Suppose G is not a tree. Then we consider the following subcases.

Subcase2.1: Assume *G* be a graph with $\{B_i; 1 \le i \le n\}$ blocks and *C* be the number of cut vertices in *G* such that every vertex of B_i are adjacent to atleast one cut vertex *c* of *G*. Then $\forall v \in (V_2 \cap D_c)$, $v \in V_2$ and if there exist a vertex $u \in V_0 \cap D_c$, then $u \in N(v)$ and hence $u \in V_1$. Also if there exists $w \in V_1 \cap D_c$ and $N(w) \in V_0 \cap D_c$. Then $w \in V_2$ and $N(w) \in V_1$, which gives $|D_{RCT}| \le |D_c| + |D_R| - 1$.

Hence $\gamma_{RCT}(G) \leq \gamma_c(G) + \gamma_R(G) - 1$.

Subcase2.2: Assume *G* be a graph with $\{B_j; 1 \le j \le n\}$ blocks such that atleast one vertex of each block is not adjacent to a cut vertex *c*. Then $\forall B_j$ in *G* there exist the corresponding block vertices $v_j \in b_j$ in $T_b(G)$ and hence $v_j \in V_2$ also $N(v_j) \cap D_c \in V_1$ or V_2 , which gives $|D_{RCT}| \le |D_c| + |D_R| - 1$. Hence $\gamma_{RCT}(G) \le \gamma_c(G) + \gamma_R(G) - 1$.

In the following theorem, we establish the relation of $\gamma_{RCT}(G)$ with $\gamma_{c}(G)$ and blocks of G.

Theorem 9: For any graph G with n blocks $\gamma_{RCT}(G) \leq \gamma_c(G) + n$.

Proof: Let *G* be any graph with $\{B_i; 1 \le i \le n\}$ be the number of blocks of *G* and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(G)$.

Further $S = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be the set of all vertices with $\deg(v) \ge 2$. Then there exists a minimal vertex set $S' \subseteq S$, which covers all the vertices of G. Clearly S' forms a minimal γ -set of G. Suppose the subgraph $\langle S' \rangle$ has only one component. Then S' itself is a connected dominating set of G. Otherwise, if the subgraph $\langle S' \rangle$ has more than one component, then attach the minimum number of vertices $\{w_i\} \in V(G) - S'$, where $\deg(w_i) \ge 2$, which are between the vertices of S' such that $S_1 = S' \cup \{w_i\}$ forms exactly one component in the subgraph $\langle S_1 \rangle$. Clearly, S_1 forms a minimal γ_c -set of G. Further k be the number of end vertices of G. Then we consider the following cases.

Case1: Suppose $k = \phi$. Then k = 0 < n. By Theorem C, $\gamma_c(G) + k = p$. Also by Theorem 4, $\gamma_{RCT}(G) \le p$.

Hence $\gamma_{RCT}(G) \le p = \gamma_c(G) + k < \gamma_c(G) + n$. Therefore $\gamma_{RCT}(G) \le \gamma_c(G) + n$.

Case2: Suppose $k \neq \phi$. Then consider the following subcases.

Subcase2.1: Assume $G \neq K_2$. Then $\forall \{v_k\} \in K; 1 \le k \le n$ there exist the blocks $n \in B_i$ such that $k \le n$. By Theorem C, $p = \gamma_c(G) + k \le \gamma_c(G) + n$. Also by Theorem 4, $\gamma_{RCT}(G) \le p$. Hence $\gamma_{RCT}(G) \le \gamma_c(G) + n$.

Subcase2.2: Assume $G = K_2$. Then by Theorem 1, $\gamma_{RCT}(G) = 2 = 1 + 1 = \gamma_c(G) + n$. Therefore $\gamma_{RCT}(G) \le \gamma_c(G) + n$. Lower bound for $\gamma_{RCT}(G)$:

In the following theorem, we obtain the lower bounds for $\gamma_{RCT}(T)$.

Theorem 10: For any non trivial tree T, $\gamma(T) + c \leq \gamma_{RCT}(T)$, where c be the number of cut vertices of T.

Proof: Suppose *G* be a non trivial tree with $V = \{v_1, v_2, ..., v_n\}$. Then there exists a set $V \subset V$ such that $V = \gamma(T)$. Now for any non trivial tree *T* with B_i ; $1 \le i \le n$ be the number of blocks of *T*. Then in $T_b(T)$, let $\{b_1, b_2, ..., b_n\}$ be the set of block vertices corresponding to B_i in $T_b(T)$. We consider a function $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(T)$. Now $C_1 \subseteq C$ and $\forall \{v_i\} \in C_1$. Then $\{v_i\} \in V_2$. Otherwise $\forall \{v_i\} \in C_1$ if $\{v_i\} \notin V'$. Then $\{v_i\} \in V_1$. It follows that the connected induced subgraph $\langle V_1 \cup V_2 \rangle$ or $\langle V_2 \rangle$ is $\gamma_{RCT}(T)$. Hence $\gamma(T) + c \le \gamma_{RCT}(T)$.

In the following theorem, we obtain $\gamma_{RCT}(T)$ for which the lower bond is attained with connected Roman domination number of T.

Theorem 11: Let *T* be any non trivial tree. Then $\gamma_{RC}(T) \leq \gamma_{RCT}(T)$.

Proof: Let *T* be any non trivial tree and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in $T_b(T)$. Suppose $n_1 = \{v_1, v_2, ..., v_n\}$ be the number of non end vertices of *T* adjacent to atleast one end vertex and $n_2 = \{v_1, v_2, ..., v_i\}$ $1 \le i \le n$ be the number of end vertices of *T* not adjacent to end vertices. Then we consider the following cases.

Case1: Suppose $n_2 = \phi$. Then every non end vertex of *T* is adjacent to atleast one vertex. By Theorem 14, $\gamma_{RCT}(T) = 2\gamma(T)$. Also by Theorem B, $\gamma_{RC}(T) = 2\gamma(T)$. Hence $\gamma_{RC}(T) = \gamma_{RCT}(T)$.

Case2: Suppose $n_2 \neq \phi$. Then $\forall \{v_i\} \in n; i = 1, 2, ..., v_i\} \subseteq V_2$. Now consider $\{n_3, n_4\} \subseteq \{n_2\}$. Suppose $\forall u \in n_3$, $u \in V_2$. Then there exists at least one vertex $w \in n_4$ and $w \subseteq N(u)$ which gives $w \in V_1$. Suppose $u = \phi$. Then there exist $\{h_i; i = 1, 2, ..., n\} \in n_4$ such that $\{h_i\} \in V_1$. But $\{v_i\} \in V_2$ and $\{u \cup w\} \in V_1$, which gives $\gamma_{RC}(T) < \gamma_{RCT}(T)$. Hence $\gamma_{RC}(T) \leq \gamma_{RCT}(T)$.

Theorem 12: For any non trivial tree *T*, then $\gamma_R(T) \le \gamma_{RCT}(T)$.

Proof: From Theorem A and Theorem 11, $\gamma_R(T) \le \gamma_{RC}(T) \le \gamma_{RCT}(T)$. Hence $\gamma_R(T) \le \gamma_{RCT}(T)$.

Theorem 13: For any tree *T*. Then $\gamma_{RB}(T) \leq \gamma_{RCT}(T)$. **Proof:** By Theorem D, $\gamma_{RB}(T) \leq \gamma_R(T)$ and by Theorem 12, $\gamma_R(T) \leq \gamma_{RCT}(T)$. Hence $\gamma_{RB}(T) \leq \gamma_{RCT}(T)$. In the following theorem we establish the equality result.

Theorem 14: For any non trivial tree T, if every non end vertex of T is adjacent to atleast one end vertex. Then $\gamma_{RCT}(T) = 2\gamma(T)$.

Proof: Let *T* be any non trivial tree. Further $f = (V_0, V_1, V_2)$ be a γ_{RC} -function with connected Roman dominating set D_{RCT} in $T_b(T)$ such that $|D_{RCT}| = \gamma_{RCT}(T)$ and *k* be the number of end vertices of *T*. Suppose $n_1 = \{v_1, v_2, ..., v_n\}$ be the number of non end vertices of *T* adjacent to atleast one end vertex. Then there exists a minimal γ -set *D* of *T* such that $|D| = \gamma(T) = n_1$. Let $\{B_i; 1 \le i \le n\}$ be the number of blocks of *T* corresponding to the block vertices $\{b_i; 1 \le i \le n\}$ of $T_b(T)$. Since each $v \in n_1$ is incident with atleast two blocks and is adjacent to $\{k \cup b_i\}$ in $T_b(T)$ with the property $|k \cup b_i| = |V_0|$, $|n_1| = |V_2|$ and $|V_1| = \phi$, which gives $|D_{RCT}| = |V_1| + 2|V_2| = \phi + 2n_1 = 2|D|$. Hence $\gamma_{RCT}(T) = 2\gamma(T)$.

REFERENCES

- E. J. Cockyane, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in Graphs, Disc. Math.278 (2004), 11-22.
- [2] F. Haray, Graph Theory, Adison Wesley, reading Mass(1972).
- [3] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).
- [4] S. T. Hedetniemi and R. C. Laskar, connected domination in graphs, In B. Bollobas editor Graph Theory and Combinatorics, Academic Press London (1984),209-218.
- [5] V. R. Kulli, Domination in Graphs, Vishwa International Publications(2010).

- [6] V. R. Kulli, Semitotal Block Graph and Total Block Graph of a Graph, Indian J. Pure and Appl. Math. 7,(1976),625-630.
- [7] M. H. Muddebihal and Sumangaladevi, Roman Block Domination in Graphs, Int. J. for Research in Sci. and Adv. Tech., Issue-2, Vol. 6(2013), 267-275.
- [8] M. H. Muddebihal and Sumangaladevi, Connected Roman Domination in Graphs, International Journal of Research in Engg.Tech.Vol.2 (10), (2013).
- [9] M. H. Muddebihal and Sumangaladevi, Roman Subdivision Domination in Graphs, Int. J., Engg, Sciences and Research Tech., Vol. 3(3), (2014), 1441-1447.

