Connected Roman Semi Total Block Domination in Graphs

Sumangaladevi and M. H. Muddebihal
1. Assistant professor
Department of Mathematics
Basaveshwar Science College, Bagalkot
2. M. H. Muddebihal
Professor
Department of Mathematics
Gulbarga university, Kalaburagi

Abstract

A connected Roman dominating function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on a semitotalblock graph $T_{b}(G)=H$ is a function $f: V(H) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$ such that $\left\langle V_{1} \cup V_{2}\right\rangle$ or $\left\langle V_{2}\right\rangle$ is connected. The weight of a connected Roman dominating function is the value $f(V(H))=\sum_{v \in V(H)} f(v)$. The minimum weight of a connected Roman dominating function on a semitotalblock graph H is called the connected Roman semitotalblock domination number of G and is denoted by $\gamma_{R C T}(G)$. In this paper, we study the connected Roman domination number of semitotalblock graph H and obtain some results on $\gamma_{R C T}(G)$ in terms of elements of G, but not in terms of H. Further we develop its relationship with other different domination parameters of G.

Subject Classification Number: 05C69.

Keywords: Semi total block graph, Roman domination and Connected Roman domination.

INTRODUCTION

All graphs considered here are simple (finite, undirected and loop less). For standard graph theory the terminology not given here we refer [2] and [3]. Let $G=(V, E)$ be a graph with vertex set V and edge set E, the open neighborhood $N(v)$ of the vertex v consists of vertices adjacent to v and the closed neighborhood of v is $N[v]=v \cup N(v)$. For a subset $S \subseteq V(G)$, we define $N(S)=\cup_{v \in S} N(v)$ and $N[S]=\cup \cup_{v \in S} N[v]$. The subgraph induced by S is denoted by $\langle S\rangle$.

For any graph $G=(V, E)$, the semitotalblock graph $T_{b}(G)=H$ is the graph whose set of vertices is the union of the set of vertices and set of blocks of G in which two vertices are adjacent if and only if the corresponding members of G are adjacent or the corresponding members of G are incident, see[6].

A set $D \subseteq V$ is a dominating set if every vertex not in D is adjacent to atleast one vertex in D. The minimum cardinality of a minimal dominating set D is called a domination number of G and is denoted by $\gamma(G)$.
A dominating set D is connected dominating set if an induced subgraph $\langle D\rangle$ is connected. The connected domination number $\gamma_{C}(G)$ of a graph G is the minimum cardinality of a connected dominating set. See[5].

A dominating set D is a total dominating set if the induced subgraph $\langle D\rangle$ has no isolated vertices. The total domination number $\gamma_{t}(G)$ of a graph G is the minimum cardinality of a total dominating set. See [5]
A Roman dominating function on a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ Satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function is the value $f(V)=\sum_{v \in V} f(v)$. The minimum weight of Roman dominating function on a graph G is called the Roman domination number of G and is denoted by $\gamma_{R}(G)$. See[1]
A Roman dominating function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on a semitotal block graph $T_{b}(G)=H$ is a connected Roman dominating function (CRDF) on G if $\left\langle V_{1} \cup V_{2}\right\rangle$ or $\left\langle V_{2}\right\rangle$ is connected. The connected Roman semitotalblock domination number $\gamma_{R C T}(G)$ of G is the minimum weight of a connected Roman semitotalblock dominating function of G.

We need the following theorems to prove our further results.
Theorem A[8]: For any graph $G, \gamma_{R}(G) \leq \gamma_{R C}(G)$.
Theorem B[8]: For any nontrivial tree $T, \gamma_{R C}(T)=2 \gamma(T)$ if and only if every non end vertex of T is adjacent to atleast one end vertex.
Theorem C[4]: If G is a connected graph with $p \geq 3$ vertices then $\gamma_{C}(G)=p-k$ or $\gamma_{C}(G)+k=p$ where k be the number of end vertices of T.
Theorem D[7]: For any graph $G, \gamma_{R B}(G) \leq \gamma_{R}(G)$.
Theorem E[9]: Let G be any (p, q) with $p \geq 2$ vertices then $p \leq \gamma_{R S}(G)$.

RESULTS

In this section we illustrate the connected Roman semitotal block domination number by determining the value of $\gamma_{R C T}(G)$ for several classes of graphs.

Theorem 1:

1. For any path $P_{p}, p>3$ vertices,
a. $\gamma_{R C T}\left(P_{p}\right)=p$, if $p=4,5$.
b. $\gamma_{R C T}\left(P_{2 k}\right)=2 k+n, \quad$ if $p \neq 4,5$. where $k=3,4, \ldots \ldots ; n=1,2, \ldots \ldots$.

$$
\text { c. } \gamma_{R C T}\left(P_{2 k+1}\right)=2 k+n+1 \text {. }
$$

2. For any graph G, if G is a block or G has exactly one cut vertex incident with blocks which are complete, then $\gamma_{R C T}(G)=2$.

Upper bounds for $\gamma_{R C T}(G)$:

We establish the upper bounds for the connected Roman semitotalblock domination number.

Theorem 2: For any non trivial graph $G, \gamma_{R C T}(G) \leq 2 \gamma_{C}(G)$.
Proof: Let G be any non trivial connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$. Suppose there exists a set $D_{c}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{i}\right\}, 1 \leq i \leq n$ such that $D_{c} \subset V(G)$ and $\forall v_{j} \in V(G)-D_{c}, 1 \leq j \leq n$ is adjacent to atleast one vertex of D_{c}. Also there exists a unique path between every pair of vertices of D_{c}. Then $\left|D_{c}\right|=\gamma_{c}(G)$. Let the graph $T_{b}(G)$ has $\left\{b_{i} ; 1 \leq i \leq n\right\}$ number of block vertices corresponding to the blocks $B_{i} \in G ; i=1,2, \ldots, n$. Then $V\left[T_{b}(G)\right]=V(G) \cup\left\{b_{i}\right\}$. Suppose there exists the sets D_{1}, D_{2} in $T_{b}(G)$ such that $D_{1} \subseteq D_{c}$ and $D_{2} \subseteq\left\{b_{i}\right\}$. If $f\left(V_{1}\right)=\phi$, then some
$v_{k} \in D_{c} ; 1 \leq k \leq i, v_{m} \in\left\{b_{i}\right\}$. Hence $\left\{v_{k} \cup v_{m}\right\}$ forms a dominating set in $T_{b}(G)$ in which $\left\{v_{k} \cup v_{m}\right\} \in V_{2}$ and if $\left\langle v_{k} \cup v_{m}\right\rangle$ is connected, then $\left|v_{k} \cup v_{m}\right|=2\left|D_{c}\right|$, which gives $\gamma_{R C T}(G)=2 \gamma_{C}(G)$. If $f\left(V_{1}\right) \neq \phi$, for some $v_{l} \in V(G)$ or $v_{l} \in D_{c}$ also belongs to V_{1}, then there exists $v_{k}^{\prime} \subset v_{k}$ and $v_{m}^{\prime} \subset v_{m}$ such that $\left\{v_{k}^{\prime} \cup v_{m}^{\prime}\right\} \in V_{2}$. If $\left\langle v_{l} \cup v_{k}^{\prime} \cup v_{m}^{\prime}\right\rangle$ is connected, then $\left|v_{l} \cup v_{k}^{\prime} \cup v_{m}^{\prime}\right| \leq 2\left|D_{c}\right|$, which gives $\gamma_{R C T}(G) \leq 2 \gamma_{C}(G)$.

Theorem 3: For any graph G with n blocks such that each block is complete, then $\gamma_{R C T}(G) \leq 2 n$.
Proof: Let G be any graph with n blocks such that each block is complete and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(G)$. Let $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ be the number of vertices incident with n blocks which forms a γ_{c}-set in G. If every end blocks $\left\{B_{i} ; 1 \leq i \leq n\right\}$ of G contains the vertices $\left\{v_{i}\right\} \subseteq\left\{v_{n}\right\}$, then $\left\{v_{i}\right\} \in V_{2}$. Otherwise there exists some non end blocks $\left\{B_{j} ; 1 \leq j \leq n\right\}$ contains the vertices $\left\{v_{j}\right\} \subseteq\left\{v_{n}\right\}$, such that $\left\{\left\{v_{k}\right\},\left\{v_{l}\right\}\right\} \subseteq\left\{v_{j}\right\}$ and $\left\{v_{k}\right\} \in V_{2},\left\{v_{l}\right\} \in V_{1}$. If $\left\langle\left\{v_{i}\right\} \cup\left\{v_{j}\right\}\right\rangle$ is connected. Then $\left\{\left\{v_{i}\right\} \cup\left\{v_{j}\right\}\right\} \leq 2\left\{\left\{B_{i}\right\} \cup\left\{B_{j}\right\}\right\}=2 n$. Hence $\gamma_{R C T}(G) \leq 2 n$.

Theorem 4: Let G be any non trivial graph with $G \neq P_{p}, p \geq 6$ then $\gamma_{R C T}(G) \leq p$.
Proof: Let G be any non trivial graph with $G \neq P_{p}, p \geq 6$. Suppose $G=P_{p}, p \geq 6$. Then by Theorem $1, \gamma_{R C T}(G)>p$, a contradiction. Hence $G \neq P_{p}, p \geq 6$. Suppose $G=P_{p}$ with $1 \leq p \leq 5$. Then by Theorem 1 , the result is obvious.

Now let G be any non trivial graph with $V(G)=\left\{v_{1}, v_{2}, \ldots ., v_{n}\right\}$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(G)$. Further $D_{c}=\left\{v_{1}, v_{2}, \ldots \ldots . ., v_{i}\right\} 1 \leq i \leq n$ be the number of vertices which forms a γ_{c}-set of G and $\left\{v_{j}\right\} \subseteq\left\{v_{i}\right\}$ be the number of vertices of G such that $\forall v \in\left\{v_{j}\right\}, V-v$ has atleast two components. Suppose every vertex of $V-\left\{v_{j}\right\}$ is adjacent to atleast one vertex of v_{j}. Then $\left\{v_{j}\right\} \in V_{1}$ or V_{2} and $V-\left\{v_{j}\right\} \in V_{0}$. Otherwise there exists atleast one vertex $\left\{v_{k}\right\} \in V-\left\{v_{j}\right\}$ which is not adjacent to $\left\{v_{j}\right\}$. Let $\left\{B_{k} ; 1 \leq k \leq n\right\}$ be the number of blocks in G such that $v_{k} \in\left\{B_{k}\right\}$. Then there exists the vertices $\left\{b_{k} ; 1 \leq k \leq n\right\}$ in $T_{b}(G)$ corresponds to the blocks $\left\{B_{k}\right\}$ of G such that $\left\{b_{k}\right\} \in V_{2}$ and $N\left(b_{k}\right) \cap\left\{v_{j}\right\} \in V_{1}$ or V_{2} which gives $\left|V_{1}\right|+2\left|V_{2}\right| \leq\left|v_{n}\right|$.
Hence $\gamma_{R C T}(G) \leq p$.
Theorem 5: For any nontrivial graph $G, \gamma_{R C T}(G) \leq \gamma_{R S}(G)$.
Proof: By Theorem 4 and Theorem E, $\gamma_{R C T}(G) \leq p \leq \gamma_{R S}(G)$.
Hence $\gamma_{R C T}(G) \leq \gamma_{R S}(G)$.

Theorem 6: For any nontrivial graph $G, \gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{t}(G)$.
Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ be the number of vertices of G. Let $D_{c}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{i}\right\} 1 \leq i \leq n$ be the number of vertices of G such that $D_{C} \subset V$ and $\left\langle D_{c}\right\rangle$ is connected. Further $D_{t}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\} 1 \leq k \leq n$ be the number of vertices of G and $D_{t} \subset V$ such that $\left\langle D_{t}\right\rangle$ has no isolated vertices. Then $\left|D_{c}\right|=\gamma_{c}(G)$ and $\left|D_{t}\right|=\gamma_{t}(G)$. Let $\gamma_{R C}$-set $D_{R C T}$ such that $\left|D_{R C T}\right|=\gamma_{R C T}(G)$. Since D_{c} is connected. Therefore the set D_{c} must contain atleast one vertex from each block $\left\{B_{i} ; 1 \leq i \leq n\right\}$. Then the block vertices $\left\{b_{i} ; 1 \leq i \leq n\right\}$ of $T_{b}(G)$ corresponding to the blocks $\left\{B_{i} ; 1 \leq i \leq n\right\}$ are adjacent to atleast one vertex of D_{c}. Suppose $f\left(V_{1}\right) \neq \phi$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(G)$ with \forall $v_{k} \in V_{1}, 1 \leq k \leq n$. Then there exists atleast two vertices $(u, w) \in N\left(v_{k}\right)$ such that $(u \cup w) \in V_{2}$. Also if there exist atleast
one vertex $v_{m} \subseteq D_{c} \cup D_{t}, 1 \leq m \leq n$. Suppose v_{m} belongs to only one block B of G. Then there exist a block vertex $b \in V\left[T_{b}(G)\right]$ is adjacent to atleast one vertex of $D_{c} \cup D_{t}$ such that $b \in V_{2}$ in which $\left\{v_{k} \cup\{u \cup w\} \cup b\right\}$ forms a connected component. Then $\left|D_{R C T}\right| \leq\left|D_{c}\right|+\left|D_{t}\right|$. Suppose $f\left(V_{1}\right)=\phi$. Then $\forall v_{l} \in D_{c} \cup D_{t}, 1 \leq l \leq n, v_{l} \in V_{2}$, also $\left\{v_{l}\right\}$ forms a $\gamma_{R C}$-set of $T_{b}(G)$ such that $\left\langle v_{l}\right\rangle$ is connected, which gives $\left|D_{R C T}\right| \leq\left|D_{c}\right|+\left|D_{t}\right|$. Hence $\gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{t}(G)$.

Theorem 7: For any tree with n blocks and $c \geq 1$ cut vertices, $\gamma_{R C T}(T)<n+c$.
Proof: Suppose T be a tree with n blocks and $A=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\}$ be the number of cut vertices of T such that $|A|=c$. Let $\left\{b_{1}, b_{2}, \ldots \ldots, b_{n}\right\}$ be the number of block vertices of $T_{b}(T)$ with respect to the blocks $\left\{B_{1}, B_{2}, \ldots \ldots, B_{n}\right\}$ of T such that $\left|b_{n}\right|=n$. Since every block is K_{2} in T and each $v_{k} \in A ; 1 \leq k \leq n$ is adjacent to its corresponding block vertex in $T_{b}(T)$ such that $v_{k} \in V_{1}$ or V_{2}, then the $\left\langle V\left[T_{b}(T)\right]-A\right\rangle$ is not connected it follows that $\left\{N\left(b_{i}\right) \cap A\right\}$ forms $\gamma_{R C}$-set in $T_{b}(T)$ such that $\gamma_{R C T}(T)<n+c$. Therefore $\gamma_{R C T}(T)<n+c$.

Again as the number of blocks B_{n} of T increased by atleast one block of T then atleast one cut vertex and one block vertex are increased in $T_{b}(T)$, which gives $\gamma_{R C T}(T)<n+c$.

The connected domination, Roman domination and connected Roman semitotalblock domination are related by the following inequality.

Theorem 8: For any graph $G, \gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{R}(G)-1$.
Proof: Let G be any graph and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function with connected Roman dominating set $D_{R C T}$ in $T_{b}(G)$ such that $\left|D_{R C T}\right|=\gamma_{R C T}(G)$. Now we consider the following cases.

Case1: Suppose G be any tree and k be the number of end vertices in G. Let $f=\left(V_{0}^{\prime}, V_{i}^{\prime}, V_{2}^{\prime}\right)$ be a γ_{R}-function in G and $f\left(V_{1}^{\prime}\right)=\phi$. Then $\forall u_{1} \in\left(V_{2}^{\prime} \cap D_{c}\right)$ such that $u_{1} \in V_{2}$. Suppose there exist a vertex $w \in\left(V_{0}^{\prime} \cap D_{c}\right)$. Then $w \in V_{1}$ or there exists the vertices $w_{1}, w_{2} \in V_{0}^{\prime} \cap D_{c}$. Clearly $w_{1} \in V_{1}, w_{2} \in V_{2}$ or $w_{1} \in V_{2}, w_{2} \in V_{1}$. Suppose some $u_{2} \in\left(V_{2}^{\prime} \cap D_{c}\right)$. Then $u_{2} \notin V_{2}$ and $u_{2} \in V_{1}$. Also there exists $u_{2}^{\prime}, u_{2}^{\prime \prime} \in V_{0}^{\prime} \cap D_{c}$ where as $\left(u_{2}^{\prime} \cup u_{2}^{\prime \prime}\right) \in V_{2}$. Hence $\left\langle V_{1} \cup V_{2}\right\rangle$ forms a connected Roman dominating set in $T_{b}(G)$, which gives $\left|D_{R C T}\right| \leq\left|D_{c}\right|+\left|D_{R}\right|-1$.

Thus $\gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{R}(G)-1$.
Case2: Suppose G is not a tree. Then we consider the following subcases.
Subcase2.1: Assume G be a graph with $\left\{B_{i} ; 1 \leq i \leq n\right\}$ blocks and C be the number of cut vertices in G such that every vertex of B_{i} are adjacent to atleast one cut vertex c of G. Then $\forall v \in\left(V_{2}^{\prime} \cap D_{c}\right), v \in V_{2}$ and if there exist a vertex $u \in V_{0}^{\prime} \cap D_{c}$, then $u \in N(v)$ and hence $u \in V_{1}$. Also if there exists $w \in V_{1}^{\prime} \cap D_{c}$ and $N(w) \in V_{0}^{\prime} \cap D_{c}$. Then $w \in V_{2}$ and $N(w) \in V_{1}$, which gives $\left|D_{R C T}\right| \leq\left|D_{c}\right|+\left|D_{R}\right|-1$.

Hence $\gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{R}(G)-1$.

Subcase2.2: Assume G be a graph with $\left\{B_{j} ; 1 \leq j \leq n\right\}$ blocks such that atleast one vertex of each block is not adjacent to a cut vertex c. Then $\forall B_{j}$ in G there exist the corresponding block vertices $v_{j} \in b_{j}$ in $T_{b}(G)$ and hence $v_{j} \in V_{2}$ also $N\left(v_{j}\right) \cap D_{c} \in V_{1}$ or V_{2}, which gives $\left|D_{R C T}\right| \leq\left|D_{c}\right|+\left|D_{R}\right|-1$. Hence $\gamma_{R C T}(G) \leq \gamma_{c}(G)+\gamma_{R}(G)-1$.

In the following theorem, we establish the relation of $\gamma_{R C T}(G)$ with $\gamma_{c}(G)$ and blocks of G.

Theorem 9: For any graph G with n blocks $\gamma_{R C T}(G) \leq \gamma_{c}(G)+n$.
Proof: Let G be any graph with $\left\{B_{i} ; 1 \leq i \leq n\right\}$ be the number of blocks of G and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(G)$.

Further $S=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\} \subseteq V(G)$ be the set of all vertices with $\operatorname{deg}(v) \geq 2$. Then there exists a minimal vertex set $S^{\prime} \subseteq S$, which covers all the vertices of G. Clearly S^{\prime} forms a minimal γ-set of G. Suppose the subgraph $\left\langle S^{\prime}\right\rangle$ has only one component. Then S^{\prime} itself is a connected dominating set of G. Otherwise, if the subgraph $\left\langle S^{\prime}\right\rangle$ has more than one component, then attach the minimum number of vertices $\left\{w_{i}\right\} \in V(G)-S^{\prime}$, where $\operatorname{deg}\left(w_{i}\right) \geq 2$, which are between the vertices of S^{\prime} such that $S_{1}=S^{\prime} \cup\left\{w_{i}\right\}$ forms exactly one component in the subgraph $\left\langle S_{1}\right\rangle$. Clearly, S_{1} forms a minimal γ_{c}-set of G. Further k be the number of vertices of G. Then we consider the following cases.

Case1: Suppose $k=\phi$. Then $k=0<n$. By Theorem C, $\gamma_{c}(G)+k=p$. Also by Theorem 4, $\gamma_{R C T}(G) \leq p$.
Hence $\gamma_{R C T}(G) \leq p=\gamma_{c}(G)+k<\gamma_{c}(G)+n$. Therefore $\gamma_{R C T}(G) \leq \gamma_{c}(G)+n$.
Case2: Suppose $k \neq \phi$. Then consider the following subcases.
Subcase2.1: Assume $G \neq K_{2}$. Then $\forall\left\{v_{k}\right\} \in K ; 1 \leq k \leq n$ there exist the blocks $n \in B_{i}$ such that $k \leq n$. By Theorem C, $p=\gamma_{c}(G)+k \leq \gamma_{c}(G)+n$. Also by Theorem 4, $\gamma_{R C T}(G) \leq p$. Hence $\gamma_{R C T}(G) \leq \gamma_{c}(G)+n$.
Subcase2.2: Assume $G=K_{2}$. Then by Theorem 1, $\gamma_{R C T}(G)=2=1+1=\gamma_{c}(G)+n$. Therefore $\gamma_{R C T}(G) \leq \gamma_{c}(G)+n$.

Lower bound for $\gamma_{R G T}(G)$:

In the following theorem, we obtain the lower bounds for $\gamma_{R C T}(T)$.
Theorem 10: For any non trivial tree $T, \gamma(T)+c \leq \gamma_{R C T}(T)$, where c be the number of cut vertices of T.
Proof: Suppose G be a non trivial tree with $V=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$. Then there exists a set $V^{\prime} \subset V$ such that $V^{\prime}=\gamma(T)$. Now for any non trivial tree T with $B_{i} ; 1 \leq i \leq n$ be the number of blocks of T. Then in $T_{b}(T)$, let $\left\{b_{1}, b_{2}, \ldots . ., b_{n}\right\}$ be the set of block vertices corresponding to B_{i} in $T_{b}(T)$. We consider a function $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(T)$. Now $C_{1} \subseteq C$ and $\forall\left\{v_{i}\right\} \in C_{1}$. Then $\left\{v_{i}\right\} \in V_{2}$. Otherwise $\forall\left\{v_{i}\right\} \in C_{1}$ if $\left\{v_{i}\right\} \notin V^{\prime}$. Then $\left\{v_{i}\right\} \in V_{1}$. It follows that the connected induced subgraph $\left\langle V_{1} \cup V_{2}\right\rangle$ or $\left\langle V_{2}\right\rangle$ is $\gamma_{R C T}(T)$. Hence $\gamma(T)+c \leq \gamma_{R C T}(T)$.

In the following theorem, we obtain $\gamma_{R C T}(T)$ for which the lower bond is attained with connected Roman domination number of T.

Theorem 11: Let T be any non trivial tree. Then $\gamma_{R C}(T) \leq \gamma_{R C T}(T)$.
Proof: Let T be any non trivial tree and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function in $T_{b}(T)$. Suppose $n_{1}=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ be the number of non end vertices of T adjacent to atleast one end vertex and $n_{2}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{i}\right\} 1 \leq i \leq n$ be the number of end vertices of T not adjacent to end vertices. Then we consider the following cases.

Case1: Suppose $n_{2}=\phi$. Then every non end vertex of T is adjacent to atleast one vertex. By Theorem 14, $\gamma_{R C T}(T)=2 \gamma(T)$. Also by Theorem B, $\gamma_{R C}(T)=2 \gamma(T)$. Hence $\gamma_{R C}(T)=\gamma_{R C T}(T)$.

Case2: Suppose $n_{2} \neq \phi$. Then $\forall\left\{v_{i}\right\} \in n ; i=1,2, \ldots n,\left\{v_{i}\right\} \subseteq V_{2}$. Now consider $\left\{n_{3}, n_{4}\right\} \subseteq\left\{n_{2}\right\}$. Suppose $\forall u \in n_{3}$, $u \in V_{2}$. Then there exists atleast one vertex $w \in n_{4}$ and $w \subseteq N(u)$ which gives $w \in V_{1}$. Suppose $u=\phi$. Then there exist $\left\{h_{i} ; i=1,2, \ldots, n\right\} \in n_{4}$ such that $\left\{h_{i}\right\} \in V_{1}$. But $\left\{v_{i}\right\} \in V_{2}^{\prime}$ and $\{u \cup w\} \in V_{1}^{\prime}$, which gives $\gamma_{R C}(T)<\gamma_{R C T}(T)$. Hence $\gamma_{R C}(T) \leq \gamma_{R C T}(T)$.

Theorem 12: For any non trivial tree T, then $\gamma_{R}(T) \leq \gamma_{R C T}(T)$.
Proof: From Theorem A and Theorem 11, $\gamma_{R}(T) \leq \gamma_{R C}(T) \leq \gamma_{R C T}(T)$. Hence $\gamma_{R}(T) \leq \gamma_{R C T}(T)$.

Theorem 13: For any tree T. Then $\gamma_{R B}(T) \leq \gamma_{R C T}(T)$.
Proof: By Theorem D, $\gamma_{R B}(T) \leq \gamma_{R}(T)$ and by Theorem 12, $\gamma_{R}(T) \leq \gamma_{R C T}(T)$. Hence $\gamma_{R B}(T) \leq \gamma_{R C T}(T)$. In the following theorem we establish the equality result.

Theorem 14: For any non trivial tree T, if every non end vertex of T is adjacent to atleast one end vertex. Then $\gamma_{R C T}(T)=2 \gamma(T)$.

Proof: Let T be any non trivial tree. Further $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R C}$-function with connected Roman dominating set $D_{R C T}$ in $T_{b}(T)$ such that $\left|D_{R C T}\right|=\gamma_{R C T}(T)$ and k be the number of end vertices of T. Suppose $n_{1}=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ be the number of non end vertices of T adjacent to atleast one end vertex. Then there exists a minimal γ-set D of T such that $|D|=\gamma(T)=n_{1}$. Let $\left\{B_{i} ; 1 \leq i \leq n\right\}$ be the number of blocks of T corresponding to the block vertices $\left\{b_{i} ; 1 \leq i \leq n\right\}$ of $T_{b}(T)$. Since each $v \in n_{1}$ is incident with atleast two blocks and is adjacent to $\left\{k \cup b_{i}\right\}$ in $T_{b}(T)$ with the property $\left|k \cup b_{i}\right|=\left|V_{0}\right|, \quad\left|n_{1}\right|=\left|V_{2}\right|$ and $\left|V_{1}\right|=\phi$, which gives $\left|D_{R C T}\right|=\left|V_{1}\right|+2\left|V_{2}\right|=\phi+2 n_{1}=2|D|$. Hence $\gamma_{R C T}(T)=2 \gamma(T)$.

REFERENCES

[1] E. J. Cockyane, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in Graphs, Disc. Math. 278 (2004), 11-22.
[2] F. Haray, Graph Theory, Adison Wesley, reading Mass(1972).
[3] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).
[4] S. T. Hedetniemi and R. C. Laskar, connected domination in graphs, In B. Bollobas editor Graph Theory and Combinatorics, Academic Press London (1984),209-218.
[5] V. R. Kulli, Domination in Graphs, Vishwa International Publications(2010).
[6] V. R. Kulli, Semitotal Block Graph and Total Block Graph of a Graph, Indian J. Pure and Appl. Math. 7,(1976),625-630.
[7] M. H. Muddebihal and Sumangaladevi, Roman Block Domination in Graphs, Int. J. for Research in Sci. and Adv. Tech., Issue-2, Vol. 6(2013), 267-275.
[8] M. H. Muddebihal and Sumangaladevi, Connected Roman Domination in Graphs, International Journal of Research in Engg.Tech.Vol. 2 (10), (2013).
[9] M. H. Muddebihal and Sumangaladevi, Roman Subdivision Domination in Graphs, Int. J., Engg, Sciences and Research Tech., Vol. 3(3), (2014), 1441-1447.

