Confirmation of Phase transitions through Dielectric studies of Liquid Crystals

L Tanuj Kumar^{1*}, B. Rupa Venkateswara Rao², P.Valli Rani¹S. Sreehari Sastry,³ Ha Sie Tiong⁴

¹Department of Physics, Ramachandra College of Engineering, Eluru-534007, India
²Department of Physics, V.R. Siddhartha Engineering College, Vijayawada-52007, India
³Department of Physics, Acharya Nagarjuna University, Nagarjunanagar-522510, India
⁴ Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak., Malaysia².

Abstract—. The phase transition temperatures and phases in ferroelectric series of 2-(4- n alkanoyloxy benzylidenamino) benzothiazoles (where n=12 and 16) are studied using polarizing micro scope (POM) and it reveals the occurrence of SmA phase. Dielectric parameter studied as a function of temperature can be used to determine the phase transitions temperature in LCs. The phase transitions are in good agreement with the dielectric studies data.

Keywords— Phase transition, Ferroelectric, Smectic A, Dielectric, Benzothiazoles liquid crystal..

I.INTRODUCTION

Molecular order in liquid crystal phases depends mainly on the mesogenic core structure, its geometry, polarizability, molecular conformation, length-to-breadth ratio as well as the number and the position of permanent dipole moments in the core [1]. Interest in the study of mesomorphic heterocyclic has dramatically increased in the recent years due to their wider range of structural templates as well as their optical and photochemical properties [2]. The significance of the heterocyclic core in determining and the properties of liquid crystals have been reported in a series of review papers [3]. Heterocyclic liquid crystals can be synthesized into high dielectric biaxiality that it is built into the compact core unit which is essential in technological devices. These materials possess great potential application in spatial light modulation, all-optical signal processing, optical information storage, organic thin-film transistors, fast switching ferroelectric materials, fluorescent probes for the detection and analysis of biomolecules [4-7]. Heterocyclic mesogens are usually incorporated with hetero atoms, such as N, O and S, resulting in a reduced symmetry in the overall molecule as well as the generation of a stronger polar induction. The inclusion of the heteroatom can considerably change the polarity, polarizability and to a certain extent the geometry of a molecule, thus influencing the type of mesophase, the phase transition temperatures, dielectric constants and other properties of the mesogens [8]. Examples of liquid crystals with incorporated heterocyclic rings are pyridine [1], thiophene [9], oxadiazole [10] and benzoxazole [11-12]. Although many compounds containing a heterocyclic core exhibit mesomorphic properties, mesogenic examples which are derived from benzothiazole are relatively rare. Therefore, the benzothiazole ring is chosen as the mesogenic core in this study. Conventionally, liquid crystalline organic compounds have been widely used as materials in liquid crystal displays. Recently, a few series of smectic reactive benzothiazole mesogens having non-conjugated diene end groups have been reported owing to their potential light-emitting and chargetransporting behavior in organic light-emitting devices (OLEDs) [13]. Besides that, assembling in smectic liquid crystalline phase can also induce the overlapping of aromatic cores, hence facilitating the hopping of charge carriers between the molecules. Owing to this phenomenon, Hanna and co-workers also studied carrier transport properties of some smectic benzothiazole liquid crystalline derivatives [14-18]. Thus, based on the above mentioned interesting results, this has prompted us to study benzothiazole-based liquid crystals. The dielectric studies on two new homologous series of liquid crystals consisting of a benzothiazole core and their liquid crystalline properties were also investigated.

II. EXPERIMENTAL

2-(4-n alkanoyloxybenzylidenamino) benzothiazoles (where n=12 and 16) mesogens are synthesized and procured from Universiti Tunku Abdul Rahman,Jalan Universiti, Bandar Barat, 31900 Kampar, Perak., Malaysia[19]. Chemical structure of the compound is given below. The samples are filled in LC1 ITO coated liquid crystal cells, 90° twist aligned (5mm X 5 mm X 6 µm) obtained from M/s Instec. USA. Through capillary action method the compounds in their isotropic state are filled in these cells [20]. The temperature and frequency dependence of Capacitance C, Resistance R, Inductance L are measured by using Newton's 4th Ltd., LCR meter model. In this study the cells filled with pure and nano doped samples are placed in an Instec hot and cold stage (HCS

IJCRT1872148

© 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

302) equipped with microscope (Olympus BX50) having DP10 camera setup. The temperature is monitored and controlled through a computer by a software program to an accuracy of ± 0.1 °C. The sample is heated to isotropic state and held until to attain thermal equilibrium. The data of C, L and R is taken during cooling process. The measuring signal is the square form with amplitude of 2V. The frequency range of measurement is from 100Hz to 1 MHz.

III. RESULTS AND DISCUSSIONS

Textural & Phase Transition Studies:

Textural and phase transition temperature measurements are made by the polarizing optical microscope (POM) (Olympus BX50) with attached DP10 camera setup and computer controlled HCS 302 hot stage of Instec, USA. The phase transition studies are also carried out for confirmation by using Differential Scanning Calorimeter of TA instruments model DSC Q2000 V24.4 at a scan rate of 5°C/min. The textural observations of 2-(4- n alkanoyloxybenzylidenamino) benzothiazoles (where n=12 and 16) made through POM have shown enantiotropic smectic A phase as shown in Plate 1 The transition temperatures and their mesophases were also determined by differential scanning calorimetry techniques. The data of the phase transition temperatures measured from both POM and DSC are in good agreement [19].

Plate1: Smectic behavior exhibiting 16 BABTH

(b)

Figure 1. Variation of capacitance with Temperature (K) for (a) 12BABTH,(b)16BABTH

From the figure 1 it is observed that the value of capacitance remain almost constant up to solid phase and vary slightly when the transition from solid to Smectic A has been reached and the value changes sharply when isotropic state has reached. So, the transition temperatures mentioned in above are confirmed from this data also.

Low frequency Dielectric studies:

Variation of dielectric constant, temperature coefficient dielectric constant, dielectric loss a function of frequency, for 12 BABTH and 16 BABTH mesogens at different phases are is calculated from equations from 2.80 to 2.84 and the outcome results are shown in figure 2 and 3

Figure 2: Dielectric constant ε^{1} versus frequency f, for 12 BABTH and 16 BABTH mesogens (a,b) at different phases.

(a)

(b)

Figure 3 Imaginary part of Complex permittivity ε^{11} *versus frequency f, for 12 BABTH and 16 BABTH) mesogens (a,b) at different phases.* The temperature variation of permittivity is not associated with any abrupt change in the vicinity of any of the phase transitions, as observed in some other LCs [24-26]. From the figure 2 it is clear that, at high frequency both the compounds exhibits almost constant ε' showing lower values generally being associated with the lowest electrical loss characteristics. Due to the high orientation of liquid crystal molecules in isotropic phase shows high value of ε' when it is compared with other phases. From Table.1 it is evident that the decrease in permittivity with frequency can be explained on the basis of Koop's theory [27], which considers the dielectric structure as an inhomogeneous medium of two layers of the Maxwell–Wagner type [28]. In this model, the dielectric structure is assumed to be consisting of well conducting grains which are separated by poorly conducting grain boundaries. At lower frequencies the grain boundaries are more effective for conductivity and permittivity than grains [29]. Therefore, permittivity is high at lower frequencies and decreasing as frequency increases. The decrease in permittivity takes place when the jumping frequency of electric charge carriers cannot follow the alternation of the applied a.c. electric field beyond a certain critical frequency.

	Dielectic constant					2
E S 1		12 BABTH		16 BABTH		
Frequency	Temperature (K)					
(Hz)	360	355	340	370	365	355
1	157.0204	151.3745	13.44807	139.1114	138.9301	10.18129
1.33	155.2878	144.7735	6.06769	136.9332	136.7119	9.99987
1.76	151.2778	141.4489	5.18835	134.964	134.5398	9.8099
2.33	149.7382	136.4609	6.3223	133.2061	132.5361	9.66037
3.09	147.016	132.2388	5.98569	131.7317	130.6714	9.58409
4.09	145.1977	128.2476	7.9677	130.0302	128.6041	9.49367
5.43	142.3765	123.5578	5.37125	128.251	126.1241	9.39809
7.2	139.7375	118.878	8.29761	126.116	123.107	9.3183
9.54	137.1557	112.9338	6.52994	123.2944	119.0223	9.22259
12.6	133.9942	106.1272	7.71829	119.4229	113.359	9.13945
16.8	130.3591	97.03675	6.41539	113.7809	105.2828	9.01277
22.2	124.7164	86.75621	7.6689	105.8885	94.41832	8.87738
29.5	116.7358	74.09162	6.18461	95.05871	80.92697	8.69992
39.1	106.7255	60.62061	5.56893	81.35105	65.30148	8.46781
51.8	96.2119	49.48313	5.5688	65.70174	49.73515	8.17562
68.7	76.9029	35.32217	5.37137	49.85345	35.78318	7.80278
91	60.00774	25.59521	5.39525	35.83196	25.19874	7.37947
121	44.37225	18.67297	5.27948	25.03778	17.62369	6.89365

Table.1. Variation of dielectric constant with frequency at differen temperatures

www.ijcrt.org

© 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

	160	31.72091	14.17457	5.2465	17.33316	12.59328	6.37077	
	212	22.35008	11.26014	5.21773	12.31863	9.41852	5.85701	
	281	16.01025	9.40724	5.17694	9.20593	7.56532	5.42467	
	373	11.95425	8.23199	5.14809	7.36927	6.4918	5.07617	
	494	9.49176	7.50324	5.10748	6.30029	5.8697	4.82104	
	655	8.05118	7.048	5.05978	5.68154	5.50544	4.64763	
	869	7.22073	6.74988	5.00016	5.3284	5.29583	4.52808	
	1150	7.34772	6.94357	5.10994	5.47691	5.42467	4.53336	
	1530	7.04072	6.83141	5.08047	5.34141	5.35185	4.49283	
	2020	6.85901	6.76189	5.04629	5.27188	5.30815	4.46725	
	2680	6.75286	6.71106	5.01144	5.22812	5.28405	4.45053	
	3560	6.68807	6.67608	4.97523	5.20113	5.26906	4.44107	
	4710	6.65097	6.65312	4.93722	5.18371	5.25317	4.43286	
	6250	6.62494	6.63478	4.89674	5.17396	5.24435	4.42619	
	8290	6.60549	6.61225	4.85638	5.16527	5.24087	4.41934	
	11000	6.59368	6.59399	4.81508	5.15869	5.2343	4.41399	
	14600	6.58225	6.57948	4.77199	5.15279	5.22778	4.40686	
	19300	6 <mark>.56722</mark>	6.55493	4.72807	5.14667	5.2232	4.39675	
	25600	6 <mark>.55133</mark>	6.5292	4.68298	5.14	5.21469	4.3827	
	33900	6 <mark>.53181</mark>	6.49002	4.63703	5.13032	5.20408	4.36411	
	45000	6 <mark>.50176</mark>	6.43445	<mark>4.58</mark> 607	5.11348	5.18908	4.33835	
	59600	6 <mark>.45495</mark>	6.3569	<mark>4.528</mark> 51	5.09187	5.16502	4.3023	
	79100	6.3861	6.2428 <mark>8</mark>	<mark>4.46</mark> 12	5.05714	5.12845	4.25343	
	105000	6 <mark>.28271</mark>	6.086 <mark>63</mark>	<mark>4.380</mark> 86	5.00446	5.07023	4.18938	
	139000	6 <mark>.12836</mark>	5.88464	<mark>4.28</mark> 46	4.92972	4.9878	4.10757))
	184000	5. <mark>90898</mark>	5.62407	4.16941	<mark>4.82</mark> 036	4.87169	4.00743	
	244000	5 <mark>.60274</mark>	5.29355	4.02575	4.6638	4.70376	3.87946	
	324000	5 <mark>.20845</mark>	4.90264	<mark>3.858</mark> 28	4.45975	4.48188	3.72827	$\mathbf{<}$
	429000	4.70597	4.43919	3.65116	4.18195	4.18901	3.54144	
60	569000	4 <mark>.07444</mark>	3.87989	3.37 <mark>7</mark> 68	3.79506	3.79014	3.29378	
	754000	3 <mark>.33939</mark>	3.23735	3.01791	3.28868	3.27608	2.96596	
	1000000	2 <mark>.54078</mark>	2.52572	2.55846	2.67525	2.66175	2.53525	

The figure 3 indicates the dielectric loss for 12 BABTH and 16 BABTH mesogens low dielectric loss at high frequencies showing similarity with that of the variation of dielectric constant (figure.2) on owing to smaller angle of rotation. From the Table.2it is clear that the loss factor on frequency dependent is also same in as similar way as the dielectric constant (which is known when the loss experimental data was analyzed). The variation in presence of relaxation peaks is observed for both the compounds within the frequency range covered.

	Dielectic loss						
	12 BABTH			16BABTH			
Frequency	Temperature (K)						
(Hz)	360	355	340	372	362	342	
1	30.81682	39.4497	0.55324	21.47689	23.12908	0.82217	
1.33	26.08525	33.34858	1.0914	18.16914	20.77473	0.87543	
1.76	21.70081	32.6747	1.13298	16.99348	20.05989	0.88021	
2.33	22.591	32.59914	0.74173	16.4028	20.1256	0.92841	
3.09	21.21882	32.72911	0.48214	16.33927	20.99627	0.98214	
4.09	21.69398	32.5736	1.20607	17.19385	22.80022	1.01205	
5.43	22.70479	34.65055	0.0918	18.81061	25.59689	1.05852	

Table.3A.2 Variation of dielectric loss with frequency at different Temperatures

www.ijcrt.org

© 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2909 7411 3874 7793 482 3472 3472 3027 3551
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7411 3874 7793 482 3472 5027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8874 7793 482 472 6027 551
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7793 482 8472 8027 551
22.2 41.13023 52.255 2.7151 41.61866 53.62961 0.6 29.5 47.93054 54.3788 1.00141 48.623 58.28199 0.53 39.1 55.14398 54.84347 0.83205 54.87342 59.82595 0.43 51.8 59.65234 54.49082 0.835 58.67606 57.51373 0.33 68.7 63.15574 46.23671 0.58011 58.77845 51.6244 0.28 91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.14 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.14	482 3472 3027 3551
29.5 47.93054 54.3788 1.00141 48.623 58.28199 0.53 39.1 55.14398 54.84347 0.83205 54.87342 59.82595 0.43 51.8 59.65234 54.49082 0.835 58.67606 57.51373 0.33 68.7 63.15574 46.23671 0.58011 58.77845 51.6244 0.28 91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.14 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.14	3472 3027 3551
39.1 55.14398 54.84347 0.83205 54.87342 59.82595 0.43 51.8 59.65234 54.49082 0.835 58.67606 57.51373 0.33 68.7 63.15574 46.23671 0.58011 58.77845 51.6244 0.28 91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.11 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.11	8027 551
51.8 59.65234 54.49082 0.835 58.67606 57.51373 0.33 68.7 63.15574 46.23671 0.58011 58.77845 51.6244 0.28 91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.14 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.14	\$551
68.7 63.15574 46.23671 0.58011 58.77845 51.6244 0.28 91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.14 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.14	
91 62.20402 39.15811 0.59105 54.69358 43.98943 0.23 121 57.62181 31.99426 0.45872 47.50676 35.84482 0.14 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.14	3087
121 57.62181 31.99426 0.45872 47.50676 35.84482 0.1 160 49.98898 25.54541 0.41624 39.03275 28.23413 0.1	3492
160 49.98898 25.54541 0.41624 39.03275 28.23413 0.1 212 44.20457 10.000 0.25024 10.000 <td>982</td>	982
	733
212 41.39457 19.998 0.37021 30.62229 21.64189 0.15	641
281 33.06437 15.4721 0.34189 23.22866 16.46744 0.15	5012
373 25.72075 11.84007 0.33179 17.25196 12.51554 0.15	5192
494 19.74002 9.04816 0.33631 12.72223 9.50246 0.16	5113
655 15.00256 6.93918 0.34412 9.36084 7.18459 0.17	'516
869 11.39864 5.24857 0.35559 6.89526 5.4457 0.19)166
1150 8.68134 3.88388 0.18478 5.27405 4.07848 0.08	3856
1530 6.56955 2.9634 0.19083 3.96925 3.08952 0.09	9378
2020 4.97594 2.23413 0.19744 2.9782 2.33383 0.10)159
2680 3.77991 1.7291 0.20 559 2.24897 1.75732 0.10)733
3560 2.87507 1.3441 <mark>6 0.21</mark> 607 1.71147 1.33797 0.11	311
4710 2 <mark>.19602</mark> 1.04314 0.22622 1.3057 1.03556 0.12	2014
6250 1.694 0.82842 0.23613 0.99822 0.80579 0.12	2783
8290 1.32189 0.68265 0.24927 0.77227 0.6332 0.13	614
11000 1.05301 0.58524 0.26402 0.60939 0.51403 0.14	548
14600 0.86846 0.52739 0.28179 0.49417 0.43404 0.15	5778
19300 0.75208 0.51338 0.3054 0.41734 0.38665 0.17	'365
25600 0.69044 0.53289 0.33538 0.37267 0.36925 0.19	9317
33900 0.6812 0.591 0.37234 0.35452 0.37642 0.21	.853
45000 0.72098 0.68527 0.42156 0.36361 0.41284 0.25	5018
59600 0.80906 0.81737 0.48392 0.39757 0.47751 0.29)199
79100 0.94642 0.98269 0.56091 0.45626 0.57151 0.34	396
105000 1.13227 1.17861 0.65284 0.53917 0.69503 0.40)681
139000 1.36264 1.3969 0.75915 0.64635 0.84907 0.48	3067
184000 1.63271 1.63413 0.88125 0.77838 1.03421 0.56	5701
244000 1.92841 1.87545 1.01896 0.92894 1.24734 0.66	5774
324000 2.22885 2.10907 1.17515 1.09549 1.48162 0.78	3581
429000 2.52151 2.33648 1.35779 1.2763 1.74284 0.9	931
569000 2.75762 2.52588 1.56221 1.43822 2.00461 1.10)559
754000 2.87411 2.63391 1.76315 1.52085 2.21744 1.29	909
1000000 2.83958 2.63155 1.90999 1.44258 2.31503 1.47	

Data of Dielectric loss clearly shows that low frequency data are affected due to ionic conductance, where as high frequency data are affected due to ITO resistance [21]. As usual relaxation frequencies are seen to shift towards lower side with decrease in temperature.

CONCLUSIONS

The phase transition temperatures and phases in ferroelectric series of 2-(4- n alkanoyloxy benzylidenamino) benzothiazoles (where n=12 and 16) are studied using polarizing micro scope (POM) Thermal microscopic studies could reveal the occurrence of SmA phase in the materials were studied. Dielectric

© 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

parameter studied as a function of temperature can be used to determine the phase transitions temperature in LCs. Although, a phase transition is not accompanied with an abrupt change in dielectric parameter, the anomaly associated with its temperature derivative could be a tool to identify the phase transitions involving LC phases the relaxations peaks and activation energies were observed at different temperatures as a function of frequency for both the samples.

References

- [1] P. J. Collings, M. Hird, Introduction to Liquid Crystals, Taylor & Francis Ltd., London, UK, 2007
- [2] D Srividhya, S. Manjunathan, S. Thirumaran, E.J.of Chem., 6,928, (2009).
- [3] V F Petrov, Mol. Cryst. Liq. Cryst., 457, 121, (2006).
- [4] A. Seed, Chem. Soc. Rev., 36, 2046, (2007).
- [5] D. Srividhya, S. Manjunathan, S. Thirumaran, E.J.of. Chem., 6,928,(2009)
- [6] R.T. Huang, W.C. Wang, R.Y. Yang, J.T. Lu, I.J. Lin, Dalton Trans., 35, 7121, (2009)
- [7] V.N Kozhevnikov, S.J. Cowling, P.B. Karadakov, D. W. Bruce, J. Mater. Chem., 18, 1703(2008)
- [8] B. Y. Zhang, Y.G. Jia, D.S. Yao, X.W. Dong, Liq. Cryst., 31,339, (2004)
- [9] K. C. Majumdar, S. Mondal, T. Ghosh, Mol. Cryst. Liq. Cryst., 524, 17,(2010).
- [10] A. K. Prajapati, V. Modi, Liq. Cryst., 37, 407, (2010).
- [11] G. Shanker, M. Prehm, M. Nagaraj, K. Jagdish, V.Marvin Weyland, A. Eremin, C.Tschierske, ChemPhysChem., 15, 1323, (2014)
- [12] C.C.Liao,C.S. Wang,H.S. Sheu, C.K. Lai, *Liq. Cryst.*, 64, 7977, (2008).
- [13] M. P. Aldred, P. Vlachos, D. Dong, S.P. Kitney, W.C. Tsoi, M.O'Neill, S. M.Kelly, *Liq. Cryst.*, **32**, 951. (2005).
- [14] M. Funahashi, J. Hanna, *Phys. Rev. Lett.*, 78, 2184, (1997).
- [15] K. Tokunaga, Y. Takayashiki, H. Iino, J. Hanna, Phys. Rev. B, 033201, 1,(2009).
- [16] K. Tokunaga, H. Iino, J. Hanna, *Mol. Cryst. Liq. Cryst.*, **510**, 241, (2009).
- [17] K. Tokunaga, Y. Takayashiki, H. Iino, J. Hanna, Mol. Cryst. Liq. Cryst., (2009).
- [18] K. GORNIK, M. ČEPIČ, AND N. VAUPOTIČ, PHYS. Rev. E., 89, 012501, (2014)
- [19] HA .SIE.TIONG, *LIQ CRYST.*, 36, 917, (2009)
- [20] G.W.Gray, Molecular Structure and the Properties of Liquid Crystals; AcademicPress: New York, 1962.
- [21] S. Sreehari Sastry, S. Salma Begum, T. Vindhya Kumari, V.R.K. Murthy, and Sie Tiong Ha, E. J. of .Chem., 9, 2462, (2012).
- [22] V.S. Chandel, S. Manohar, S.P. Singh, A.K. Singh, and R. Manohar Akademeia, 3, 1, (2013).
- [23] J.C Slater, Rev. Mod. Phys. 18, 441, (1946).
- [24] J.Van Bladel, *Electromagnetic fields* (McGraw Hill, New York, (1964)
- [25] D. M. Potukuchi, A. K. George, C. Carboni, S. H. Al-Harthi and J. Naciri, Ferroelectrics, 300, 79, (2004).
- [26] A. K. George, M. Al-Hinai, D. M. Potukuchi, S. H. Al-Harthi and C. Carboni, Pha Trans, 76, 1037, (2003).
- [27] C.G. Koops , Phys. Rev. 83, 121, (1951),
- [28] K.W. Wagner , *Trans A I E E*, **XLI**, 288, (1922).
- [29] A.K. Shaikh ,S.S. Bellad, B.K. Chougule, J. Magn. Mater., 195, 384 , (1999)
- [30] C. J. F. Bottcher, P.Bordwijk: Theory of electric polarization II Elsevier scientific Publishing Co., Amsterdam . 1978.