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Abstract—For the purpose of measuring the consumer preferences 

for products or services, the technique used is the conjoint analysis. The 

conjoint analysis is one of the methods of finding the possible reaction of 

the consumer on a particular product or a particular service. One of the 

basic problems in performing conjoint analysis is how to generate 

experimental designs. The purpose of an experimental design is to give 

a rough overall idea as to the shape of the experimental response surface, 

while only requiring a relatively small number of runs. These designs 

are expected to be orthogonal and balanced in an ideal case. In practice, 

though, it is hard to construct optimal designs and thus constructing of 

near optimal and efficient designs is carried out. In this paper, review 

on the basic criteria of the design efficiency and some algorithms will be 

discussed which can be used for its construction. 
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I.  INTRODUCTION  

Lately, the importance of preference analysis techniques and its 

usage has grown rapidly. The importance of preference analysis 

techniques could be understood by its wide spread use for the purpose 

of new product development and manufacturing and also in the 

diverse areas like marketing, financial services etc. In marketing 

research, for example, preference measuring techniques may provide 

an answer to questions as to which product will be successful or which 

attributes of a product drive the purchase decision and may thus serve 

as a valuable aid for managerial decision. One method that has become 

particularly popular in this context is Conjoint analysis. 

Conjoint analysis is decompositional method [1] which assumes 

that product/services can be "break-down" into their attributive 

components and which implies study of join effects of variety 

products' attributes on their preference. 

In Conjoint analysis, respondents have to evaluate a set of 

alternatives that are represented by factorial combinations of the 

levels of certain attributes. In traditional Conjoint approach, the 

alternatives have to be rank ordered or rated on some graded scale. It 

is assumed that these preference judgments are based on the overall 

utility values of the considered profile's levels. These unknown 

parameters are than estimated from the data. If the data consists of 

ranking techniques from linear programming, nonmetric versions of 

ANOVA can be used. Variants of conjoint analysis that use rating 

scales are referred as metric conjoint analysis. Here, the utility values 

are usually estimated by least squares procedures. Because of the 

metric response format and the linear relationship between 

preference judgments and attributes it is especially this last type of 

conjoint analysis to which techniques from optimal design theory can 

be readily applied. 

The quality of statistical analysis heavily depends on the 

alternatives presented in the experimental design. An experimental 

design is a plan for running an experiment. Experiments are 

performed to study the effects of the factor levels on the dependent 

variable. The factors of an experimental design are variables that 

have two or more fixed values or levels of the factors. In Conjoint 

analysis, the factors are the attributes of the hypothetical products or 

services, and the response is preference or choice. 

Using all combinations of attribute levels, i.e. a full factorial design, 

the number of evaluations required from every respondent soon 

becomes prohibitively large when the number of attributes and/or 

levels increases. To deal with this problem, the application of formal 

experimental designs was suggested. Many of the researchers have 

proposed the use of orthogonal arrays, incomplete block designs and 

fractional factorial designs of different resolutions to reduce the 

number of evaluations to be performed. In this reduction process it is 

especially important the goodness of the reduced designs. This 

goodness is named as efficiency. 

There are several ways to quantify the relative efficiency of 

experimental designs. The choice of measure will determine which 

types of experimental designs are favored as well as the algorithms 

for choosing efficient designs. 

The paper is organized as follows. In Section 2 we study some 

of the fundamental concepts in Conjoin experimental design 

including standard factorial designs, as well as fractional factorial 

designs, orthogonal arrays and nonorthogonal designs. Design 

terminology introduces and design efficiency explains. Section 3 

reviews the basic optimality criteria as measure of the design 

efficiency. There are many algorithms for constructing efficient 

experimental designs. Some standard algorithms are studied in 

Section 4. In Section 5 we give conclusions and further research 

directions. 

II. STUDYING EXPERIMENTAL DESIGN IN CONJOINT 

ANALYSIS 

The design of experiments is a fundamental part of Conjoint 
analysis. Experimental designs are used to construct the hypothetical 
products or services. A simple experimental design is the full-factorial 
design, which consists of all possible combinations of the levels of the 
factors. These combinations in Conjoint analysis are referred as 
profiles or concepts. For example, with five factors, two at two levels 
and three at three levels (denoted as 2233), there are 108 possible 
combinations. In a full factorial design, all main effects, two-way 
interactions, and higher-order interactions are estimable and 
uncorrelated. The problem with a full-factorial design is that, for more 
practical situations, it is too cost-prohibitive and tedious to have 
subjects rate all possible combinations. For this reason, researchers 
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often use fractional-factorial designs, which have fewer runs than full-
factorial designs. The basic difficulty is how to construct such 
fractional-factorial design which can provide quality data. In order to 
obtain valuable and reliable data, two basic principles must be taken 
into account: orthogonality and balance. 

A design is orthogonal if all effects can be estimated 
independently of all of the other effects, and it is balanced when each 
level occurs equally often within each factor, which means the 
intercept is orthogonal to each effect. In ideal case experimental 
design is orthogonal and balanced, hence optimal [8]. This is case for 
full-factorial designs. 

A special type of fractional-factorial design is the orthogonal 
array, in which all estimable effects are uncorrelated. Orthogonal 
arrays are categorized by their resolution [8]. The resolution identifies 
which effects, possibly including interactions, are estimable. Higher 
resolutions require larger designs. Orthogonal arrays come in specific 
numbers of runs (e.g., 16, 18, 20, 24, 27, 28) for specific numbers of 
factors with specific numbers of levels. Resolution III orthogonal 
arrays are frequently used in marketing research. The term .orthogonal 
array,. as it is sometimes used in practice, is imprecise. It correctly 
refers to designs that are both orthogonal and balanced, and hence 
optimal. It is also imprecisely used to refer to designs that are 
orthogonal but not balanced, and hence potentially non-optimal. 
Imbalance is a generalized form of non-orthogonality, which increases 
the variances of the parameter estimates. 

Orthogonal designs are available for only a relatively small 
number of very specific problems. They may not be available from 
follow reasons [7]: 

 when there are many attributes in the survey, 

 when the number of attribute levels is different for most of 
factors, 

 when some combinations of factor levels are infeasible, 

 when a nonstandard number of runs (factor level 
combinations or hypothetical products) is desired or when 
the number of runs must be limited, 

 when some factor levels combinations are unrealistic, such 
as of the best product at the lowest price, or 

 when a nonstandard model is being used, such as a model 
with interactions. 

 When an orthogonal design is not available, non-orthogonal 
designs must be used. The measure of experimental design's quality 
refers as "efficiency". In efficient experimental designs variance and 
covariance of parameters which estimates are minimal. Some 
orthogonal designs are not always more efficient than other 
orthogonal or non-orthogonal designs. 

There are a number of techniques for constructing such efficient 
designs. Two basic are manual, which is typically used in surveys with 
small number of attributes and levels, and computerized search which 
is based on approximate algorithms. 

Before a design is used, it must be coded [4]. One standard coding 
is the binary or dummy variable or (1, 0) coding. Another standard 
coding is effects or deviations from means or (1, 0,-1) coding. 
However, for evaluating design efficiency, an orthogonal coding is 
most appropriate. This is because standard non-orthogonal coding 
such as effects or binary is generally correlated, even for orthogonal 
designs. 

III. OPTIMALITY CRITERIA 

Efficiencies are measures of design goodness. An optimality 
criterion is a single number that summarizes how good a design is, and 
it is maximized or minimized by an optimal design. In order to 
generate an efficient design, specifically methodology was developed. 
Efficient designs can be efficient for one criterion and less efficient 
for another one. There are some standard criteria for measuring 
efficiency of experimental design in Conjoint analysis [8]. Two 

general types are: information-based criteria and distance-based 
criteria.  

Consider the linear model where consumers provide utility scores, 
yj, for each profile: 

1 21 2
...

j j mj jmj
y x x x                    (1) 

for j = {1,...,n}, where x ij are independent variables. In matrix notation 

(1) can be written as y X e    . Let X is the orthogonally 

coded design matrix of independent variables. The information-based 
criteria such as D- and A-optimality are both related to the information 
matrix X'X for the design. This matrix is important because it is 
proportional to the inverse of the variance-covariance matrix for the 
least-squares estimates of the linear parameters of the model. 
Roughly, a good design should "minimize" the variance    (X'X)-1, 
which is the same as "maximizing" the information X'X. D- and A-
efficiency are different ways of saying how large (X'X) or (X'X)-1 are.  

 For the distance-based criteria, the candidates are viewed as 
comprising a point cloud in p-dimensional Euclidean space, where p 
is the number of parameters in the model. The goal is to choose a 
subset of this cloud that "covers" the whole cloud as uniformly as 
possible or that is as broadly "spread" as possible. 

D-optimality is based on the determinant of the information matrix 
for the design, which is the same as the reciprocal of the determinant 
of the variance-covariance matrix for the least-squares estimates of the 
linear parameters of the model. 

1(X'X) 1/ | (X'X) |                            (2) 

The determinant is thus a general measure of the size of
1(X'X)

. D-optimality is the most common criterion for computer-generated 
optimal designs. 

The D-optimality criterion has the following characteristics: 

 D-optimality is the most computationally efficient criterion 
to optimize for the low-rank update algorithms, since each 
update depends only on the variance of prediction for the 
current design. 

 (X'X) is inversely proportional to the size of a confidence 

ellipsoid for the least squares estimates of the linear 
parameters of the model. 

 
1/p(X'X)  is equal to the geometric mean of the eigenvalues 

of X'X  where p is a number of parameters in the model 
(number of columns in coded matrix X) 

 The D-optimal design is invariant to non-singular coding of 
the design matrix. A-optimality is based on the sum of the 
variances of the estimated parameters for the model, which 
is the same as the sum of the diagonal elements, or trace, of

1(X'X) . 

For both criteria, if a balanced and orthogonal design exists, then 
it has optimum efficiency; conversely, the more efficient a design is, 
the more it tends toward balance and orthogonality. Assuming an 
orthogonally coded X: 

 A design is balanced and orthogonal when 
1(X'X) is 

diagonal. 

 A design is orthogonal when the sub-matrix of 
1(X'X) , excluding the row and column for the 

intercept, is diagonal; there may be off-diagonal non-
zeros for the intercept.  

 A design is balanced when all off-diagonal elements in 
the intercept row and column are zero. 
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 As efficiency increases, the absolute values of the 
diagonal elements get smaller. 

For appropriate coded matrix X , measures of efficiency can be 
scaled to be in interval 0 to 100. For Helmert’s coded data (matrix) it 
is more appropriate to use A optimality criterion: 

1

1
A eff 100*

. (X'X) /DN tr p
             (3) 

When data are coded by Chakravarty's procedure, it is more 
appropriate to use Doptimality criterion: 

1 1/

1
eff 100*

| X'X) | p

D

D
N 

             (4) 

In the equations (3) and (4), p is number of parameters in model. 
The total number of parameters to be estimated is given by the 
formula: total number of levels - number of attributes + 1. ND is 
number of runs (profiles) in fractional factorial design specified by the 
user. It is suggested, when possible, including between two to three 
times the number of runs as parameters estimated. However, design 
efficiency is not the only reason for including two to three times as 
many runs as parameters to be estimated. All real-world respondents 
answer conjoint questions with some degree of error, so those 
observations beyond the minimum required to permit utility 
estimation are needed to refine and stabilize utility estimates. 

These optimality criteria measure the goodness of the design 
relative to hypothetical orthogonal designs that may be far from 
possible, so they are not useful as absolute measures of design 
efficiency. Instead, they should be used relatively, to compare one 
design to another for the same situation. Efficiencies that are not near 
100 may be perfectly satisfactory. 

IV. STANDARD ALGORITHMS 

As mentioned above, finding exact optimal designs is hard. 

Finding exact optimal designs in general requires solving a large 

nonlinear mixed integer programming problem, as the number of 

feasible designs explodes rapidly as the number of factors and levels 

increases. But we live in the real world, and we don’t.t need the 

absolute best design, only one that’s good enough. This is where 

approximation algorithms come in. 

One of most simple algorithms for generating information-

efficient designs is Dykstra’s sequential search method [7]. The 

method starts with an empty design and adds candidate points so that 

the chosen efficiency criterion is maximized at each step. This 

algorithm is fast, but it is not very reliable in finding a globally 

optimal design. Also, it always finds the same design. 

A typical approximation algorithm seeks to locate a good 

solution by the following sequential process [11]: 

1. Choose initial feasible solution (random/greedy) 

2. Modify solution slightly (random/greedy) 

3. Repeat 2. Until finished, then report best solution seen 

Random methods modify the current solution in some random 

way, and this change is accepted or rejected via some decision 

routine. Event worse solutions may be accepted under certain 

decision routines. Simulated annealing is an example of a random 

approximation algorithm. Greedy methods modify the current 

solution in a way that improves the score; as they.re seeking to 

improve the score for each iteration of the process they’re frequently 

referred to as hill climbing algorithms. 

One large class of pure greedy algorithms for generating efficient 

designs are the exchange algorithms. Exchange algorithms hill climb 

by adding new design points and removing existing design points to 

improve the objective. There are both Rank-1 and Rank-2 exchange 

algorithms, and these classifications are based on how the algorithm 

changes the points in the current candidate design matrix [11]: 

Rank-1: Choose points to add and delete sequentially (Wynn, 

DETMAX) 

Rank-2: Choose points to add and delete simultaneously (Fedorov, 

modified Fedorov, kexchange, kl-exchange) 

The Mitchell and Miller (1970) simple exchange algorithm is a 

slower than Dykstra's but more reliable method. It improves the 

initial design by adding a candidate point and then deleting one of the 

design points, stopping when the chosen criterion ceases to improve. 

The DETMAX algorithm of Mitchell (1974) generalizes the simple 

exchange method. Instead of following each addition of a point by a 

deletion, the algorithm makes excursions in which the size of the 

design may vary. These algorithms add and delete points one at a 

time. 

The next two algorithms add and delete points simultaneously, 

and for this reason, are usually more reliable for finding the truly 

optimal design; but because each step involves a search over all 

possible pairs of candidate and design points, they generally run 

much more slowly. The Fedorov (1972) algorithm simultaneously 

adds one candidate point and deletes one design point. Cook and 

Nachtsheim (1980) define a modified Fedorov algorithm that finds 

the best candidate point to switch with each design point. The 

resulting procedure is generally as efficient as the simple Fedorov 

algorithm in finding the optimal design, but it is up to twice as fast. 

The k-exchange algorithm modifies the current candidate design 

via the process: 

1. Examine k least critical points only. 

2. Least critical: x with smallest v(x) , where v(x)= f '(x) .D.f (x) 

), x is a point in p dimensional design space, where the total 

number of factors is p, f (x) is the corresponding row of our 

design matrix X, and f '(x) is corresponding column. 

3. Among these k, find the best exchange to make. 

Some researchers have proposed nonstandard algorithms and 

criteria for constructing efficient experimental design [7]. Steckel, 

DeSarbo, and Mahajan (SDM) (1991) proposed using computer-

generated experimental designs for conjoint analysis to exclude 

unacceptable combinations from the design. They considered a 

nonstandard measure of design goodness based on the determinant of 

the (m-factor × m-factor) correlation matrix (|R|) instead of the 

customary determinant of the (p-parameter × p-parameter) variance 

matrix (X'X)-1. The SDM approach represents each factor by a single 

column rather than as a set of coded indicator variables. Designs 

generated using nonstandard criteria will not generally be efficient in 

terms of standard criteria like A-efficiency and D-efficiency, so the 

parameter estimates will have larger variances. 

V. CONCUSION 

Conjoint analysis has been widely used method for measuring 

customer preferences since the 1970s. This method is based on idea 

that customers' decisions depend on all tangible and intangible 

product features. One of the fundamental steps in performing 

Conjoint analysis is construction of experimental designs. These 

designs are expected to be orthogonal and balanced in an ideal case. 

In practice, though, it is hard to construct optimal designs and thus 

constructing of near optimal and efficient designs is carried out. 

Efficient designs are typically nonorthogonal; however they are 

efficient in the sense that the variances and covariances of the 

parameter estimates are minimized. There are several ways to 

quantify the relative efficiency of experimental designs. The choice 

of measure will determine which types of experimental designs are 

favoured as well as the algorithms for choosing efficient designs. In 

this paper we have presented some standard optimality criteria for 

measuring design efficiency, as well as some widely used algorithms 

for constructing such efficient designs. These algorithms are typically 

approximate and can be random or greedy, sequential or 

simultaneous. 
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