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Abstract: Frequent Itemset Mining is the problems in most of the data mining applications. There are different frequent patterns mining 

algorithms available for parallel execution of items, such as FP-Growth, Apriori, RARM algorithms. However, as these parallel mining 

algorithms which have lack of features like automated parallelization, proper load balancing, and distribution of data on large clusters. We 

have done different analysis of frequently used algorithms for finding frequent patterns with the intension of finding how different algorithms 

can be implemented and used to get frequently used patterns in bigger transactional databases. This has been represented done a comparative 

survey on few of the following algorithms: Frequent Pattern Growth algorithm, Apriori algorithm, Rapid Association Rule Mining (RARM), 

Associated Sensor Pattern Mining of Data Stream (ASPMS) and ECLAT algorithm frequent pattern mining algorithms. This study finds each 

algorithm’s performance, advantages, and disadvantages for large scale of item sets in database systems. 

 

Index Terms - Frequent Pattern Growth, Apriori, Rapid Association Rule Mining (RARM), ECLAT, Data Mining, Frequent Patterns, 

MapReduce. 
_________________________________________________________________________________________________________________ 

I. INTRODUCTION 

The main subject matter in data mining is mining the frequent patterns. There are a lot of researches have been made and lots of efficient 

algorithms have been designed to search frequent pattern in the large transactional database. Agrawal et al. (1993) for the first time proposed a 

concept of pattern mining in the form of market-based analysis for finding the relation between items that are fetched in a market. This concept 

used transactional databases and other data repositories in order to extract association’s casual structures, interesting correlations or frequent 

patterns among the set [1]. Frequent patterns are the items or itemsets which repeatedly occur in database transactions with a user-specified 

frequency. An itemset whose occurrence frequency is greater than the minimum threshold will be considered as the frequent pattern. For example 

in market based analysis if the minimum threshold is 30% and bread appears with eggs and milk more than three times or at least three times 

then it will be a frequent itemset [2]. 

In mining pattern stage different techniques are applied to find candidates for frequent patterns and then frequent patterns are generated. 

There are two main problems with frequent pattern mining techniques. The first problem is that the database is repeatedly scanned for each 

search, and the second is complex candidate datasets are generated for each scan and process to scan the amount is huge. These two are the main 

problems in frequent pattern mining. Studies demonstrate that a lot of efforts have been performed for devising best techniques and worth 

mentioning approaches are Apriori, RARM, ECLAT, FP Growth, and ASPMS algorithms [3]. 

II. PROBLEM STUDY 

Various studies have been acknowledged on Frequent Pattern itemsets in the field of Data mining as it has a broad range of applications in 

sequential pattern searching, correlations, association rules in mining, frequent pattern based graph constraints, and various data mining tasks. It 

is most crucial to find an efficient mining algorithm for frequent itemsets and numerous result patterns. As the frequency of the items are higher 

and amount of data generated, it results in generating a huge number of result sets are generated. For this reason pruning methodologies are used 

to eliminate unwanted patterns and efficiency and speed are increased in mining process. As a result of this, the main aim for us to optimize the 

process of data mining for frequent patterns and also yields in scalable, efficient and can find the important patterns which is suitable in different 

areas and methods. 

III. RELATED WORK 

Frequent pattern mining techniques have become an obvious need in many real world applications e.g. in market basket analysis, 

advertisement, medical field, monitoring of patients routines etc [9]. To make a comparison among these algorithms, we use the same 

transactional database for all algorithms, this transactional database is based on data of a smart home where sensors are installed on daily usage 

objects and patients while performing their daily tasks, touch these objects and these sensor items are maintained in database. Studies of Frequent 

pattern mining is acknowledged in the data mining field because of its applicability in mining sequential patterns, structural patterns, mining 

association rules, constraint based frequent patterns mining, correlations and many other data mining tasks [10]. Efficient algorithms for mining 

frequent Itemsets are crucial for mining association rules as well as for some other information mining assignments [13]. The Problem of mining 

frequent itemset ascended first as sub-problem of mining association rules [5]. 

A database consists of transactions and a transaction is denoted by T. Let there is an itemset I= {I1, I2,…In} consist of n items. A Transaction 

T contains a subset of items from itemset I [4]. Association rule is in the form of inference stating such that if x then y(x→y) where x and y both 

are subset of items in the itemset I. As transactional database is large and we are interested in those items that are used frequently, there is an 

important parameter "support" that helps in identifying those items that are of interest. Support for an association rule (x→y) is defined as no of 

transactions or percentage which contains xUy over total number of transactions in database. Minimum lower bound of support for association 

rule is set by user and this support value is set as a minimum threshold and itemset whose number of transactions is above than defined threshold 

is considered as frequent itemset. As this threshold is a large value, more valuable knowledge is obtained and if this threshold is a minimum 

value, a large number of Itemsets are generated. Therefore irrelevant information should be pruned, that is the main goal of frequent pattern 
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mining. In order to analyze different frequent pattern mining algorithms in coming paragraphs comparative analysis of these algorithms have 

discussed with the purpose to investigate their strengths and weaknesses in order to utilize their effectiveness in respective field. 

Frequent item set mining used in wide range of application areas such as decision support, web usage mining, bioinformatics, etc. There are 

varieties of algorithms proposed by different researchers for Frequent Itemset Mining. Each of it has its own advantages and disadvantages. 

Following is the review of some of the research papers from various conferences and publications. 

The proposed research work [1] presents the problem related with extraction of frequent items from huge datasets. It gives the rules that have 

the minimum confidence and least transactional support. The proposed algorithm calculates the itemsets for the very first pass and automatically 

has to adjust among the number of passes that are for itemsets and data. The calculation here their use is to shortening technique to avoid certain 

itemsets. So, it gives proper related itemsets/datasets from considerably greater size databases. Advantage of this algorithm is, buffer 

management techniques is the items which could not in the memory in current pass will be shifted to next pass, also it improves the execution 

due to enhances parallelization technique, but it has inability of automatic parallelization. Parallel Frequent Pattern Growth algorithm using 

balanced partitioning (BPFP) [8] is another great system proposed for pattern mining. It works in two stages, in the first stage of BPFP, load is 

computed based on the conditional pattern. In the other stages, the load is divided into many groups. For this reason, MapReduce operation is 

used on frequent itemset mining algorithm. 

IV. ASSOCIATION RULE MINING ALGORITHM 

4.1 Problem Statement of ARM 

 Association Rule mining is one of the important data mining algorithm used in many applications. 

 

4.1.1 Generation of Frequent Itemsets 
 Frequent itemsets from different data sources will be collected into a global database. As there are a lot of data are combined and 

moved the frequent data to global database will leads to increases in, the number of messages that need to be processed to find frequent n 

itemset. The major drawback with the frequentset mining methods is the explosion of the numerous results and therefore it is difficult to find 

the most suitable frequent itemsets. Therefore the concepts of finding frequent itemsets from a database are the major challenges.  

 

4.1.2 Mining associations Rules 

From the formal statement of association rule mining, rule can be defined as: Let I = {i1, i2, ..., in} be a set of n number of binary 

attributes called items. Let a set of transactions D can be defined as D = {t1, t2, ..,tn} which are called the database. For each transaction in D 

has given a unique transaction ID and contains a subset of the items in I. A association rule is defined as an implication of the form X->Y 

where X, Y ⊆I and X ∩ Y_ = ∅. The sets of items (for short itemsets) X and Y are set of items in I and consequent of the rule another side 

respectively. The association rule would be defined like associating one item likely by the characteristic of another or nearest item. The problem 

is to generate all association rules that have support and confidence greater than the user-specified minimum support and minimum confidence. 

In the first pass, the support of each individual item is counted, and the large ones are determined. In each subsequent pass, the large itemsets 

determined in the previous pass is used to generate new itemsets called candidate itemsets. The support of each candidate itemset is counted, 

and the large ones are determined. This process continues until no new large itemsets are found. 

In short we can say that ARM is a two steps process - (i) Generation of frequent itemsets whose support is greater than or equal to the minimum 

support threshold set by user from database D and (ii) Strong association rules that have confidence greater than or equal to the minimum 

confidence threshold set by user are generated from these frequent itemsets [2], [3]. 

 

4.2 Parallel Apriori Algorithm 

 Apriori is the basic and most popular algorithm proposed by R. Agrawal and R. Srikant [3] which generates Candidate datasets and 

key to find frequent itemsets. Candidate datasets are itemsets having all the frequent itemsets. The algorithm is based on the properties of 

Apriori which denotes that all non-empty subsets of a frequent itemset should be frequent [2]. The core step of the algorithm is generation of 

candidate k-itemsets Cj from frequent (j-1)-itemsets Lj-1 and it consists of join and prune actions. In join step, the conditional join of Lj-1. Lj-

1 is assigned to a candidate dataset Cj and the size of Cj is reduced by pruning some steps using Apriori property [2]. 

The disadvantages of serial algorithms become high due to continuous and repeatedly scanning of database and large memory consumption 

and cost of I/O operations will be high. To improve the performance of Apriori algorithm, there are many parallel and sequential algorithms 

have been introduced. Few among the popular sequential approaches are Partitioning, Transaction reduction, Hash-based technique, Dynamic 

itemset counting (DIC) and Sampling [15], [16], [17], [18], [19]. According to R. Agrawal and J. Shafer's [7] proposal, there are three parallel 

version of Apriori algorithm, Data Distribution (DD), Candidate Distribution, and Count Distribution (CD). 

Count Distribution and Data Distribution algorithms are placed under task parallelism and data parallelism where as the Candidate Distribution 

algorithm is the combination of and task and data parallelism [11]. 

 

V. APACHE HADOOP MAPREDUCE FRAMEWORK 

 

The large-scale distributed batch processing infrastructure for parallel processing of big data on a huge cluster of valuable computers is 

called as Hadoop. [13]. Hadoop is an open source project of Apache [13]. This has implemented Google's File system [14] as Hadoop 

Distributed File System (HDFS) and Google's MapReduce [17] as Hadoop MapReduce programming. 

 

5.1 Hadoop Distributed File System 

 A distributed file system that holds a large quantity of data in terabytes or petabytes scale, also provides fast and scalable access to 

such huge data, this is called as Hadoop Distributed File System (HDFS) [13]. This can store the files in a replicated manner across different 

machines. This also helps in providing fault tolerance and high availability during the execution of parallel applications [13]. 

HDFS file system is in a block-structured manner, this breaks a single file into fixed size blocks (default block size is 64MB) to store 

across several machines. Hadoop makes use of 2 types of machine working in a master-worker fashion. Those are, (i)NameNode as master 

machine (ii) number of DataNodes as worker machines. The work of NameNode is to assign block ids to the blocks of a file and stores metadata 

(file name, permission, replica, location of each block) of the file system in its main memory. This helps in providing quick access to the 

information stored. DataNodes are used to store and retrieve the replicated blocks of multiple files, these are individual machines in a cluster 

[13]. 
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5.2 Hadoop MapReduce 
 In a large number of machines, a program that can be used for parallel processing of large volumes of data by breaking the work into 

independent tasks is called as MapReduce. The list processing languages e.g. LISP are the inspiration for MapReduce. MapReduce makes use 

of two list processing phrases: map and reduce. Based on the processing phrases, MapReduce program consists of two functions called as 

Mapper and Reducer. These runs on all machines in a cluster of Hadoop. The input and output of Mapper/Reducer functions must be in form 

of (key, value) pairs [13]. 

The input (k1, v1) for the function mapper is taken from HDFS and which helps in producing a list of intermediate (k2, v2) pairs. To 

reduce the communication cost of relocating intermediate outputs of mappers to reducers are applied from optional Combiner function. 

Mapper's output pairs are locally organized and gathered on same key and which feeds to the combiner to make local amount. The combiner's 

intermediate output pairs are hobbled and swapped between the machines to group all the pairs with the same key to a single reducer. This 

would be the single communication step that takes place and which is handled by the Hadoop MapReduce platform. There is no other 

communication that will be taking place between the mappers and the reducers. The new pairs (k3, v3) are produced when the reducer takes 

(k2, list (v2)) values as input and make sum of the values in list (v2). [13], [15].  

All the parallelization, intermachine communication and fault tolerance are handled by run-time system. Hence the MapReduce is 

recognized as a simplified programming model. [17]. 

 

VI. APRIORI ALGORITHM ON HADOOP MAPREDUCE 

 

There are 2 main tasks to implement an algorithm on MapReduce framework. Firstly we need to design two independent map and reduce 

functions for the algorithm and we would need to convert the datasets in the form of (key, value) pairs. All the mapper and reducer on different 

machines are executed in parallel fashion in the MapReduce programming but the final result will be obtained after the completion of reducer. 

If the algorithm is recursive, then we need to execute multiple segment of map-reduce to get the final result [20]. 

 

6.1 Traditional Apriori to MapReduce Based Apriori  

Apriori algorithm is an iterative process. There are 2 main components of Apriori algorithm, candidate itemsets generation and 

frequent itemsets generation. In each scan of database, mapper creates local candidates and the reducer calculates the local count, results in 

frequent itemsets. On Hadoop, the count distribution parallel version of Apriori is best suited, whereas to instrument data distribution algorithm 

we need to control the distribution of data and this is automatically controlled by Hadoop. [6]. 

The first step of the algorithm where it needs to generate frequent 1-itemsets L1. Transactional database is broken into blocks using 

the HDFS and distribute it to all mappers running on the machines. Each transaction is transformed to (key, value) pairs, where key is the TID 

and value is the list of items i.e. transaction. Mapper does read one transaction at a time and output (key’, value’) pairs, where key’ stands for 

each item in transaction and value’ represents 1. The combiner job is to combine the pairs with the same key’ and makes the local totality of 

the values for each key’. The combiner's output pairs are shuffled and swapped to create a list of values associated with same key, as (key’, 

list (value’’)) pairs. Reducers will take these pairs and calculates the values of respective keys. Reducers output (key’, value’’’) pairs where 

key’ is item and value’’’ is the support count >= minimum support, of that item [17], [14], [13]. Final frequent 1-itemsets L1 is obtained by 

merging the output of all reducers. 

 

6.2 Analysis of Various Proposed Implementations of Apriori on MapReduce 

 In MapReduce framework, the various implementation of Apriori have been proposed since the beginning of MapReduce, introduced 

by Google. These algorithms are classified into two categories: 1-phase of map-reduce and k-phase of MapReduce [19]. Also, few algorithms 

will makes use of all the three functions mapper, reducer and combiner while some used only mapper and reducer function. 

 

6.3 Using Functionality of Combiner inside Mapper 

 In traditional algorithms mapper outputs a (itemset, 1) pair each time of execution, if the itemset is found in the transaction that is 

assigned to that mapper. F. Kovacs and J. Illes [13] proposed a different way to achieve this. In his algorithm, mapper finally outputs only 

(itemset, itemset.counter) pairs for one time for each itemset where the itemset.counter is local support of itemset to count. Inside mapper, the 

itemset.counter is incremented every time the execution loop, if it finds itemset in transaction assigned to mapper. In this way, mapper produces 

output (itemset, local support) and this is passed to the reducer as (itemset, list (local support)).  

Table 1. Comparative Analysis with other Pattern Algorithms 

Comparative Analysis with other Pattern Algorithms 

Sl. 

No. 
Techniques Abstract Pros 

Cons 

1 Apriori 

Apriori property for Pruning and 

Breadth first search approach. 

Database is scanned for each 

time when a candidate itemset is 

generated. Execution time is 

considerable as time consumed 

in scanning the database for each 

candidate itemset generation. 

Data Format: Horizontal 

Storage Structure: Array. 

It uses large 

itemset property.  

It is easy to 

Implement. 

Many Candidate 

Itemsets. Too 

many passes 

over database 

and requires 

large memory 

space. 

2 RARM 

Depth first search on SOTrieIT 

to generate 1-Itemset & 2-

Itemset. The database is scanned 

No candidate 

itemsets are  

generated. 

Speeds up the 

Difficult in 

interactive 

system mining. 

It is difficult to 
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Comparative Analysis with other Pattern Algorithms 

Sl. 

No. 
Techniques Abstract Pros 

Cons 

only few times to construct a 

SOTrieIT Tree structure.  

Takes less execution time as 

compared to Apriori Algorithm 

and FP Growth algorithm. 

Data Format: Horizontal.  

Storage Structure: Tree. 

process for 

generating 

candidate 1-

itemset & 2-

Itemset. 

use in 

incremental 

Mining. 

 ECLAT 

Intersection of transaction ids to 

generate candidate itemset and it 

is a Depth first Search approach. 

Database is scanned few times 

(Best case=2). Execution time is 

less compared to  Apriori 

algorithm 

Data Format: Vertical.  

Storage Structure: Array 

This does not 

need to scan the 

whole database 

each time as a 

candidate 

Itemset is 

generated as 

supports the 

count 

information will 

be obtained from 

previous 

Itemset. 

It requires the 

virtual memory 

to perform the 

transformation. 

 FP-Growth 

Divide and conquer method. 

Database is scanned only two 

times. Takes less time as 

compared to Apriori algorithm. 

Data Format: Horizontal. 

Storage Structure: Tree (FP 

Tree). 

Database is 

scanned only 

two times.  

No candidate 

generation. 

FP-Tree is 

expensive to 

build and 

Consumes more 

memory. 

 ASPMS 

This is a BSM (Branch Sort 

Method) using merge sort. 

Database is scanned only One 

time and takes less execution 

time as compared to FP growth 

algorithm. 

Data Format: Horizontal. 

Storage Structure: Tree(ASP 

Tree) 

Highly suitable 

for interactive 

mining and it 

requires less 

memory because 

of its 

Compression 

feature in ASPs 

tree. 

 

 

 

VII. ADVANTAGES AND LIMITATIONS OF MAPREDUCE 

 

MapReduce operation is a flexible, efficient, and simple model that is used for large scale of data for computing different problems in 

datasets. As other techniques, MapReduce also has advantages and limitations and also its purely depends on, for solving which type of 

problems using it. 

 

7.1 Advantages  

Some of the major advantages of MapReduce are as follows and are not only considered for data mining problems or pattern matching 

problems but are general for most of the type of data processing problems. 

 

7.1.1 Automatic Parallelization, Fault Tolerance, Data Distribution, and Workload Balance 

 The MapReduce runtime system makes the execution of mapper and reducer function on a number of machines parallaly. It splits 

the datasets into a specific number of fixed sized units and replicates with some factor of replication to provide the highest availability and no 

loss of the data. It shares the tasks between the busy nodes or from the slower nodes to the idle nodes, so that workload balancing can be 

achieved and throughput also can be increased. MapReduce method provides higher fault-tolerating capacity by re-executing a damaged task 

without re-executing the other tasks in the dataset. It re-assigns the tasks from unsuccessful nodes to active or idle nodes [15]. The developer 

or the programmer can give more concentration into algorithm without worrying about such operations. 

 

7.1.2 Reduced Network Bandwidth Consumption 
 Hadoop replicates datasets across multiple nodes, allowing data to be read from local disks and write single-copy staged data to local 

disks to save network bandwidth [17]. 

 

7.1.3 Combining Computing Power and Distributed Storage 
Hadoop provides a combined platform for the distributed storage system and high computing power. 

 

7.1.4 Extremely Scalable 

MapReduce enables applications to run parallelly on a large Hadoop cluster having thousand different nodes and process a large scale 

of data say in terms of petabytes [12]. 
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7.2 Limitations  

Even though MapReduce has many advantages, but it also has some limitations which cannot be eliminated. We listed some of the 

major limitations which are also specific to some other algorithms like Apriori. 

 

7.2.1 It is working on (key, value) Pairs 

 MapReduce model only works on data structures of the type (key, value) pairs. All input datasets must be converted into such type 

of structure. 

 

7.2.2 Blocking Operation 

The result of a map-reduce phase cannot be said complete without completion of reducer operation. In n-phase of map-reduce 

operation, transition to the next phase from the previous phase cannot be possible until all reducers operations have finished. Therefore, it 

cannot work on pipeline parallelism operation [15]. 

 

7.2.3 Implicit Data Distribution 

The data distribution version of Apriori cannot be implemented on Hadoop because the distribution of data is automatically controlled 

by Hadoop [20]. As the count distribution version of Apriori does not exchange data and only exchange the count between nodes, therefore 

only this is suitable for Hadoop [21] 

 

VIII. CONCLUSION 

 

There are different frequent itemsets extraction algorithms available each with their own advantages and limitations. Basically, Apriori and 

FP Growth are the algorithms used for mining patterns most of the time. But each has their own drawbacks. In Apriori algorithm, database 

needed to be scanned frequently and this results in generating many candidate keys which intern increases the I/O and synchronization problems 

in datasets. These problems are prevailed over by FP Growth algorithm, but this algorithm again has the drawback of constriction of trees in 

in-memory.  

The drawbacks of both Apriori and FP-Growth are taken under control by the approach of FIUT algorithm. FIUT scans the database only 

two times and reduces the search space. In FIUT, we do not need to traverse the entire tree to check leaves to find frequent items or patterns. 

Hadoop MapReduce paradigm system uses the hash-based algorithm by introducing some enhancement in Apriori algorithm. It trims out 

the itemsets and datasets by pruning rare itemsets. So the efficiency can be achieved. The applications of frequent itemset mining can be range 

from sentiment analysis, web mining, medical data extraction, knowledge-driven business decisions, to find accident patterns, web link 

analysis, market basket analysis etc. 

Compared to other algorithms and methodologies for mining frequent itemsets in a large scale of data, Hadoop MapReduce paradigm has 

more advantages and most suitable for mining along with new approaches like FIUT algorithm. 
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