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I. INTRODUCTION 

 

Software metrics help the researchers or the users to identify the quality of the software. The software costs increases drastically 

when the software is of good quality. Software project managers must assess the cost or effort needed for creating the software at a 

beginning time of its life-cycle [42]. The capacity to precisely evaluate the development cost assumes an imperative part in the 

success of software systems. Software engineers utilize these metrics to investigate whether the quality can be enhanced. Mostly 

all software systems are bigger in size where some classes are large and some classes are small to smaller in size and complexity. 

And small classes may likewise require less time for exploring their quality. Therefore, software engineers need to distribute their 

assets or resources effectively just to those parts of the software’s which require more efforts.  

Various analysis tools and metrics data are available easily. Data mining is a strategy which is utilized to group the modules or 

instances into defective or not defective through metric value [1, 2, 3, 4, 5, 6, 7 and 8]. Software quality assessed by utilizing 

different data mining tools may not generally give great outcome if the quality of the data is low like noise [9] and class imbalance 

[10]. Hence, at times preprocessing is required before predicting the nature or the quality of software. 

In this research, most conspicuous metrics are chosen through data pre-processing. Furthermore, for this, Wrapper subset 

technique has been utilized which came about into various different metric subsets for different projects. Further, faulty instances 

which were less complex were filtered out and removed from each dataset. Three filters were proposed for removal viz. 10, 20 and 

30% of less complex faulty data. The general structure of the paper is: Section 2 talks about the related work for cost estimation in 

software. Section 3 talks about the research methodology utilized for this research. Section 4 speaks

about the outcomes of this research on four classification algorithms and also the correlation with the performance of [40] has also 

been discussed. Finally, Section 6 prompts conclusion and future extent of the research. 

 

II. REALTED WORK 

 

Fault prediction and Cost Estimation models confront numerous troubles like data quality and in addition class imbalance issue 

[11]. Therefore, many researchers have presented diverse techniques for data preprocessing which can enhance the prediction 

procedure.  

 

Boetticher G [12] applied data pre-processing by the removal of replicated instances from NASA datasets.  

Schro¨ter A, Zimmermann T and Zeller A [13] took 52 diverse ECLIPSE modules, led data pre-processing and chose the 

dataset from the defective parts as it were. 

Kim S, Zimmermann T, Whitehead E and Zeller A [14], the authors presumed that lone 10% of modules represent over 73% 

of defects in seven open-source projects. 
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Jiang Y, Cukic B and Ma Y [15] have tried the effect of two procedures, log and discretization change on ten classifier 

algorithms. In any case, the authors couldn't locate any dominant method.  

In another investigation, Gyimothy T, Ferenc R and Siket I [1] has recognized a relationship between the most basic parts of 

the code and cost of testing these parts utilizing various models.  

Liebchen GA and Shepperd M [16] have revealed that exclusively 23 out of 100 fault prediction studies thinks about the quality 

of data while numerous models were built without data cleaning (Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P and 

Witten I [25]). 

Gray D, Bowes D, Davey N, Sun Y and Christianson B [17] have led data pre-processing on NASA datasets and have removed 

6 to 90% of the original data utilizing different cleaning procedures. 

Catal C, Alan O and Balkan K [9] have utilized thresholds system to distinguish two kinds of instances as noisy. A non-

defective instance is noisy if metric values are greater than their relating thresholds. A defective instance is noisy if metric values 

are not as much as their relating thresholds. 

Gao K, Khoshgoftaar TM and Seliya N [18] conducted an empirical analysis by utilizing various sampling methodologies 

thereafter utilized feature selection methodology so as to enhance the effectiveness of the prediction processes.  

Al Dallal J [19] has examined the impact of extraordinary techniques like constructors, destructors, and access methods for 

estimating the cohesion of classes. The outcomes indicated critical contrasts in cohesion measurements yet there were no huge 

impacts on fault prediction process.  

Shepperd M, Song Q, Sun Z and Mair C [20] have completed 18 referential integrity checks for data validity and discovered 

tremendous measure of blunders in data. Data were ordered into problematic data and non problematic yet that does not help in 

fault prediction processes. Problematic data have impossible values and non problematic data have repeated attributes.  

Petric´ J, Bowes D, Hall T, Christianson B and Baddoo N [21] presented another checks for data integrity so as to clean NASA 

datasets. They included two integrity checks along with the work of [20]; however, the authors have not done any fault prediction 

although.  

Erni K and Lewerentz C [22] proposed the usage of mean and standard deviation in order to find out two possible threshold 

values, the minimum threshold viz. Tmin and the maximum threshold viz. Tmax. These threshold values are calculated as follows, 

Tmin = l – s and Tmax = l ? s, being l the average of a metric and s the standard deviation 

Jianglin Huang, Yan-Fu Li and Min Xie [41] contemplated the literature survey of data pre-processing procedures initially. 

Thusly, an experimental analysis led to break down the effectiveness of 4 data pre-processing strategies. ANOVA test is led to 

evaluate the hugeness of each pre-processing procedure and the interactions amongst them and machine learning techniques.  

In this research, filtering was carried out to remove the less complex faulty instances out of the original data and have proved 

to be cost-effective as well. 

 

III. RESEARCH METHODOLOGY 

 

Data quality is very important to enhance the prediction processes. An empirical investigation has been applied so as to watch 

the effect of data pre-processing on the performance of fault prediction and cost estimation models. 

 

3.1 Data Sources 
This research involves different open source projects. They are available at [24] publically: 

 
DATASET MODULES NFP% FP % 

Eclipse JDT Core 

www.eclipse.org/jdt/core 
997 86% 14% 

Equinox framework 

www.eclipse.org/equinox/ 
324 60% 40% 

Mylyn 

www.eclipse.org/mylyn/ 
1862 87% 13% 

Eclipse PDE UI 

www.eclipse.org/pde/pde-ui/ 
1497 79% 21% 

Apache Lucene 

www.lucene.apache.org 
691 91% 9% 

 

3.2 Feature Selection 
Before applying any data preprocessing technique, faeture selection has been done to identify the metrics which are more 

prominent amongst all. For feature selection, Wrapper subset technique has been used with configuration as Naïve Bayes classifier 

at 10 folds and 0.05 thresholds. And for searching, Best First search technique has been used. The resultant metrics were: 

3.2.1 CBO: It is an aggregation of classes that are coupled to a solitary class [36]. 

3.2.2 NOA: It is an aggregation of attributes in a class; and at package level it is an aggregate number of attributes per class [38]. 

3.2.3 NMI: It is an aggregation of methods that are acquired by the child class from the parent class [37]. 

3.2.4 DIT: It is the greatest length from the hub or root of a tree to the node of a tree and it can be estimated as the aggregation 

of ancestral classes [36]. 

3.2.5 NOC: It is an aggregation of quick sub-classes of a class [36]. 

3.2.6 NAI: It is the aggregation of attributes that are acquired by the child class from the parent class [37]. 

3.2.7 NPRIM: It is an aggregation of methods that are declared inside a class [37]. 

3.2.8 NPM: It is the aggregation of methods in a class that are declared as public [36]. 

3.2.9 FAN-IN: It is an aggregation of methods that call some other method [39]. 

3.2.10 FAN-OUT: It is an aggregation of methods that are called by another method [39]. 
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3.3 Data Filtering 
After getting all the features or metrics, we filtered out 10%, 20% and 30% of less complex faulty instances from each metric, 

which resulted into 3 new datasets for each metric correspondingly. 

 

3.4 Classification techniques and performance evaluation 
The research includes four specific classifier algorithms viz. Naïve Bayes (NB), Support Vector Machine (SVM), k- nearest 

neighbors (kNN), and C4.5 decision trees. Weka tool has been used for training and testing these classifiers [25]. 

Naive Bayes (NB) classification algorithm is widely used for prediction processes [26, 27]. It makes use of Bayesian network 

that follows two assumptions. Firstly, all the metrics are independent completely where as the classes may be defective or non-

defective and secondly, hidden attributes can not affect the prediction method [28].  

The SVM classification algorithm is a binary algorithm that keeps the margin at its maximum limit. The separator also called 

hyper-plane. It is parallel and midway between the margin planes. Each margin plane goes through point(s) that have a place with 

a specific class and is nearest to the margin plane of alternate class. The separation between these margin planes is known as margin. 

One thing to make a note here is that numerous sets of margin planes can be possible with various margins. In any case, SVM finds 

the margin which is at its most extreme point of confinement from both the sides of the hyper-plane. The points from each class 

that go through the margin planes and are named as support vectors [35]. 

The k nearest neighbors (kNN) classification algorithm measures the separation or similarity between the modules utilizing 

metric values and allocate modules to be either defective or non defective as indicated by the dominancy of the nearest group of 

nodes [29]. The K value is generally set to be an odd and this research, uses k = 5. The k nearest neighbor’s classifier algorithm has 

been utilized in various previous researches for prediction purposes [2, 30 and 31].  

C4.5 decision tree classification algorithm uses information based approach viz. information gain to build the tree [32]. The 

tree develops by choosing the metric value with the highest information. C4.5 decision tree classifier algorithm has been utilized in 

various researches for prediction processes [33 and 34]. All the classification algorithms makes use of 10 fold cross-validations 

[40]. 

 

3.5 Performance measures chosen for this research is: 

3.5.1 Cost Estimation: False_Positives+True_Negatives 

It can also be calculated from the confusion matrix. 

 

IV. RESULT ANALYSIS 

 

This analysis shows the measures for cost estimation in all the five projects at No filter, 10% filter, 20% filter and 30% filter, 

which removes less complex faulty instances from the original data. The result and performance measure are discussed below. 

 

Table 1: Cost Estimation measure of Eclipse JDT with No Filter 

 

 

 

 

 

 

 

 

 
 

 

Table 2: Cost Estimation measure of Eclipse JDT with 10% filter 

Eclipse JDT for 10% Filtering of faulty data 

  NB SMO kNN C4.5 

CBO 159 160 189 163 

NOA 182 182 186 182 

NMI 178 178 186 178 

LOC [40] 205 207 193 207 

NPM [40] 182 182 194 182 

 

 

ECLIPSE JDT FOR NO FILTER 

    NB SMO kNN C4.5 

CBO 164 171 206 198 

NOA 164 171 206 198 

NMI 164 171 206 198 

LOC [40] 211 213 211 216 

NPM [40] 211 213 211 216 
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Figure 1: Cost Estimation graph of Eclipse JDT with No Filter 

 

In Table 1 and Figure 1 above, it shows that the Cost Estimation for Eclipse JDT with No filtering where CBO, NOA and NMI 

gave much better result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly the graphs for other Eclipse 

JDT filters can also be constructed through the values in the tables below. 
 

Table 3: Cost Estimation measure of Eclipse JDT with 20% filter 
ECLIPSE JDT FOR 20% FILTERING OF FAULTY 

DATA 

  NB SMO kNN C4.5 

CBO 150 145 172 150 

NOA 159 159 165 159 

NMI 161 155 162 155 

LOC [40] 198 200 187 200 

NPM [40] 167 170 181 170 

 

Table 4: Cost Estimation measure of Eclipse JDT with 30% filter 

ECLIPSE JDT FOR 30% FILTERING OF FAULTY 

DATA 

  NB SMO kNN C4.5 

CBO 129 125 154 133 

NOA 138 141 147 141 

NMI 142 140 147 140 

LOC [40] 197 198 185 198 

NPM [40] 150 150 162 150 

 

Table 5: Cost Estimation measure of Equinox with No filter 

EQUINOX FOR NO FILTER 

  NB SMO KNN C4.5 

DIT 95 108 118 119 

NOC 95 108 118 119 

NAI 95 108 118 119 

NPRIM 95 108 118 119 

NPM 95 108 118 119 

LOC [40] 96 107 124 123 

NPM [40] 96 107 124 123 

 

Table 6: Cost Estimation measure of Equinox with 10% filter 

EQUINOX FOR 10% FILTERING OF FAULTY 

DATA 

  NB SMO kNN C4.5 

DIT 108 108 108 108 

NOC 108 110 107 108 

NAI 114 109 121 114 

NPRIM 113 100 118 115 

NPM 114 104 117 113 
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LOC [40] 120 91 126 120 

NPM [40] 113 102 117 113 

 

Table 7: Cost Estimation measure of Equinox with 20% filter 

EQUINOX FOR 20% FILTERING OF FAULTY 

DATA 

  NB SMO kNN C4.5 

DIT 90 90 90 90 

NOC 94 97 94 94 

NAI 98 93 107 98 

NPRIM 104 91 111 105 

NPM 97 83 98 95 

LOC [40] 118 88 125 118 

NPM [40] 113 96 116 113 

 

 

 
Figure 2: Cost Estimation graph of Equinox with 20% filter 

 

In Table 7 and Figure 2 above, it shows that the Cost Estimation for Equinox with 20% filtering out of less complex faulty 

instances where DIT, NOC, NAI, NPRIM and NPM gave much better result than LOC [40] and NPM [40] for all the four 

classification algorithms. Similarly the graphs for other Equinox filters can also be constructed through the values in the tables 

below. 

 

Table 8: Cost Estimation measure of Equinox with 30% filter 

EQUINOX FOR 30% FILTERING OF FAULTY 

DATA 

  NB SMO kNN C4.5 

DIT 77 77 77 77 

NOC 81 83 81 81 

NAI 85 80 94 85 

NPRIM 90 76 96 91 

NPM 89 65 86 83 

LOC [40] 82 82 104 86 

NPM [40] 104 104 105 111 

 

 

 

Table 9: Cost Estimation measure of Lucene with No filter 

LUCENE FOR NO FILTER 

  NB SMO kNN C4.5 

fanOut 62 62 64 62 

LOC [40] 71 72 64 74 

NPM [40] 71 72 64 74 

 

Table 10: Cost Estimation measure of Lucene with 10% filter 

LUCENE FOR 10% FILTERING OF FAULTY DATA 
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  NB SMO kNN C4.5 

fanOut 54 54 58 54 

LOC [40] 61 68 61 68 

NPM [40] 62 62 60 62 

 

 

 
Figure 3: Cost Estimation graph of Lucene with 10% filter 

 

In Table 10 and Figure 3 above, it shows that the Cost Estimation for Lucene with 10% filtering out of less complex faulty 

instances where fanOut gave much better result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly 

the graphs for other Lucene filters can also be constructed through the values in the tables below. 

 

Table 11: Cost Estimation measure of Lucene with 20% filter 

LUCENE FOR 20% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

fanOut 47 47 51 47 

LOC [40] 58 70 58 70 

NPM [40] 59 59 56 59 

 

Table 12: Cost Estimation measure of Lucene with 30% filter 

LUCENE FOR 30% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

fanOut 43 45 45 45 

LOC [40] 56 65 56 65 

NPM [40] 54 54 51 54 

 

Table 13: Cost Estimation measure of Mylyn with No filter 

MYLYN FOR NO FILTER 

  NB SMO kNN C4.5 

fanIn 240 241 240 242 

NAI 240 241 240 242 

LOC [40] 276 272 248 275 

NPM [40] 276 272 248 275 

Table 14: Cost Estimation measure of Mylyn with 10% filter 

MYLYN FOR 10% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

fanIn 221 221 216 221 

NAI 217 217 221 217 

LOC [40] 239 249 232 249 

NPM [40] 228 228 228 228 

 

Table 15: Cost Estimation measure of Mylyn with 20% filter 

MYLYN FOR 20% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

fanIn 194 194 191 194 

0

10

20

30

40

50

60

70

80

fanOut LOC [40] NPM [40]

C
o

st
 E

st
im

a
ti

o
n

Lucene for 10% Filter

NB

SMO

kNN

C4.5

http://www.ijcrt.org/


www.ijcrt.org                                     © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882 

 

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 146 

 

NAI 194 194 196 194 

LOC [40] 216 239 212 239 

NPM [40] 204 204 200 204 

 

Table 16: Cost Estimation measure of Mylyn with 30% filter 

MYLYN FOR 30% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

fanIn 172 172 168 172 

NAI 168 168 172 168 

LOC [40] 201 223 204 223 

NPM [40] 177 179 275 179 

 

 

 
Figure 4: Cost Estimation graph of Mylyn with 30% filter 

 

In Table 16 and Figure 4 above, it shows that the Cost Estimation for Mylyn with 30% filtering out of less complex faulty 

instances where fanIn and NAI gave much better result than LOC [40] and NPM [40] for all the four classification algorithms. 

Similarly the graphs for other Mylyn filters can also be constructed through the values in the tables below. 
 

Table 17: Cost Estimation measure of PDE with No filter 

PDE FOR NO FILTER 

  NB SMO KNN C4.5 

NPRIM 209 209 209 209 

LOC [40] 231 228 212 240 

NPM [40] 231 228 212 240 

 

 

 
Figure 5: Cost Estimation graph of PDE with No filter 

 

In Table 17 and Figure 5 above, it shows that the Cost Estimation for PDE with No filtering where NPRIM gave much better 

result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly the graphs for other PDE filters can also be 

constructed through the values in the tables below. 

 

Table 18: Cost Estimation measure of PDE with 10% filter 

PDE FOR 10% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

NPRIM 187 187 188 187 

LOC [40] 209 218 201 218 
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NPM [40] 186 186 182 186 

 

Table 19: Cost Estimation measure of PDE with 20% filter 

PDE FOR 20% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

NPRIM 166 166 167 166 

LOC [40] 196 211 193 211 

NPM [40] 162 162 158 162 

 

Table 20: Cost Estimation measure of PDE with 30% filter 

PDE FOR 30% FILTERING OF FAULTY DATA 

  NB SMO kNN C4.5 

NPRIM 147 150 149 150 

LOC [40] 188 207 186 207 

NPM [40] 144 144 141 144 

 

In the above result analysis, we have shown the Cost Estimation measures of all the five projects. We have shown the measure 

of Cost Estimation for each project in a tabular form and also have constructed a graph of five tables randomly (one for each kind 

of project). Likewise the graphs for all the measures of all the 16 remaining tables can be constructed through the values in the 

tables above. One can analyze from all the tables itself that the Cost Estimation measure of our study gave the better results in most 

of the cases than the work of [40] and can see it graphically by constructing the graphs for the same. 

 

V. CONCLUSION AND FUTURE SCOPE 
 

Feature selection technique has been applied before data pre-processing. Feature selection has been applied to identify the 

features or metrics which are more prominent amongst all. For this, Wrapper subset technique has been applied with its 

configuration as Naïve Bayes classification algorithm at 10 folds and 0.05 thresholds.  For searching purposes, Best First search 

method has been utilized. Data pre-processing has been done on the resultant metrics of the feature selection method. In this, 

filtering out of 10%, 20% and 30% of less complex faulty instances on each metric, which resulted into the creation of 3 new 

datasets for each metric. Further, this research uses four classification algorithm viz. Naïve Bayes (NB), Support Vector Machine 

(SVM), k- nearest neighbors (kNN), and C4.5 decision trees for carrying out the prediction of cost. On all these classifiers we have 

evaluated the Cost Estimation measures against each metric. And it has been found that the Cost estimation obtained through our 

research is much better than the work of [40].  

And in future, we wish to expand our study to deal with class imbalance issue and then perform the same working on the 

balanced data and analyze that result. 
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