
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 392

SQL Injection Attacks and Prevention: An Overview

Anupama Chowdhary

Principal, Keen College

Bikaner (Rajasthan)

India

Abstract – Now-a-days, our Internet users interact almost daily with web applications which use databases

at the backend. The web applications are publically accessible, so are exposed to various forms of security

attacks. One of the most common attacks on database system is SQL injection. This paper provides a

critical study regarding, various types of SQL Injection attacks, vulnerabilities and their detection and

prevention techniques.

Index terms – SQL injection, Cross Site Scripting Attack (XSS), Denial of Service (DoS), spoofing,

splicing.

I. INTRODUCTION

Today, almost all the services are online such as payment of bills, various photo identity cards (Aadhar,

Driving license, passport, PAN card etc.), students’ records of universities and boards, different other

government web applications, and over the top very sensitive banking data. Great volumes of data are stored

in Web application databases to serve this massive number of users. The users need to interact with the

backend databases through the user interfaces for extracting data, updating data, making queries, etc. Design

interface plays a vital role for all these operations. The quality and security measures opted for these

interfaces has an excessive impact on the security of the stored data in the database.

Database faces several threats such as Cross Site Scripting Attack (XSS), Denial of Service (DoS),

phishing and SQL injection attack due to poor design, configuration mistakes, or poor written code of the

web application. A threat can be harmful for database, control of web application, and other components of

web application, that are needed to be protected from all types of threat. SQL injection attack is the most

effective method for stealing the sensitive information or data from the backend database.

In 1998, the concept of SQL injection was put forward by Rain Forest Puppy for the first time [1]. This

attack is so common that almost all websites have encountered it and is also so flexible that it's hard to

discover and avoid it.

The major cause of SQL injection vulnerabilities is invalidated input received from a Web form, cookie,

input parameter, and so forth. The Web application developer must ensure that values received are

validated before passing them to SQL queries that will be executed on a database server. The attacker may

be able to execute the code on the back-end database if somehow an attacker can control the input sent to an

SQL query and manipulate that input so that the data is interpreted as a code instead of as data.

For providing a better service to their customers some organizations use web applications with dynamic

database to build a shared environment. Dynamic string building is a programming technique that enables

developers to build SQL statements dynamically at runtime. A dynamic SQL statement is constructed at

execution time, for which different conditions generate different SQL statements. Developers can achieve

the same result in a much more secure fashion if they use parameterized queries. Parameters can be passed

to these queries at runtime; parameters containing embedded user input would not be interpreted as

commands to execute, and there would be no opportunity for code to be injected.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 393

II. DATABASE SECURITY

Database security is the system processes that protect data in the database from unintended activity. The

system process uses a wide range of data security controls to protect databases against any internal or

external attacks so that database confidentiality, integrity and availability do not compromises. Protecting

the confidential/sensitive data stored in a repository is actually the database security [2]. There are various

security layers in a database. These layers are: database administrator system administrator, security officer,

developers and employee [2] and security can be breached at any of these layers by an attacker [3].

Database security problems can be summarized in four categories namely: Inference, Active attacks,

Passive attacks and SQL Injections attack [4].

Inference

Hackers derive the useful information from non-sensitive data in this method. At the core of the inference

attack is a simple question. If the answer to this question is A then do Y; if the answer is B then do Z [5]. By

this way, hackers do not need to steal the sensitive data directly; they only need to derive the useful

information from non-sensitive data [6]. Suppose C=A+B, where A and C are public then B could be

inferred from A and C. Hackers use mathematical methods such as indirect attack, linear system or tracker

attack to get sensitive data.

Figure 1 Passive Attack

Passive Attacks

In passive attacks hackers are only interested in the data which have already presented in the database he

does not attempt to alter the system or change data. In general, there are three ways to do this attack: Static

leakage, linkage leakage and dynamic leakage [7].

Static leakage: Information can be obtained from a database by observing snapshot of it.

Linkage leakage: Information about plain text values can be obtained by linking table values to position of

those values in index.

Dynamic leakage: Changes performed in database over a period of time can be observed and information

about plain text values can be obtained.

Active Attacks

Active attacks are more dangerous as hackers not only get the information from the database but also

modify the actual data inadequately. The active attack can be performed by:

Spoofing: Using some algorithms and techniques, a value is generated and then the cipher text is replaced

by that value.

Splicing: In this attack one cipher text value is replaced by another cipher text value.

Replay: In replay attack cipher text value is replaced with old version previously updated or deleted value

[7].

 B A
Secret message from user A to User B

 C Message intercepted by C

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 394

Figure 2 Database and Web Application Model

SQL Injection Attack

On April 2018 statista.com [8] states that over 4 billion people were active internet users. With the

continuous development of Internet, more and more database server as a backend for web application.

These databases are attractive targets for attackers as they contain important assets such as usernames,

passwords, personal data, financial information etc. One of the major attacks on these up-to-date databases

is SQL injection attack.

SQL injection attack is performed intentionally by an attacker either to gain unauthorized access to a

database or to retrieve information directly or indirectly from the database. The attacker inserts a portion of

SQL statement via not sanitized user input parameters into the original query and passes them to database

server [9]. The input is accepted from users by web applications and then it is incorporated into dynamically

generated code [10].

III. SQL INJECTION ATTACK (SQLIA)

SQL Injection attacks are aimed at database under web environment. Typically, database management

system run on the top of an operating system and thus provides the security associated with a database.

However, with web environment the situation changes and database is accessible via web API so hackers

can access the database. SQL injection is the most common method hacker’s use. SQLIA is a three phase

process [11]:

1. An attacker sends the malicious HTTP request from a client to the web application as input.

2. Web API generates a SQL statement

3. Submits this SQL statement to the back end database server.

Figure 3 SQL Injection Attack Process

Clients

 …

Internet

Web Server

Scripts

Scripting

Engine

API

Database

DBMS

API Se
cu

ri
ty

 M
an

ag
em

en
t S

ys
te

m

Session DB

User DB

API

Middleware

Attacker

HTTP

Request

Web

API

SQL

Statements

Database

DB

Server

User_id = ‘1’ OR ‘1=1 --'

Password = ‘1’ OR ‘1=1’--

SELECT user info FROM users

WHERE id=’1’ OR ‘1=1-

-’ AND password =’1’ OR ‘1=1

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 395

The given input shown in figure 3 makes the WHERE clause in the SQL statement a tautology which

always returns a true condition. The database will return all the user information in the table. Thus, the

malicious user has been authenticated as a DBA without a valid login id and password [13].

Some syntax errors lead to weakness in the web programming language. The poor programming or

coding practice is the major cause to vulnerabilities such as improper sanitizations of inputs, type checking,

over privilege accounts and detailed error messages [12]. According to the specific kind of weakness present

in the application the attacker can plan a specific attack.

IV. SQL INJECTION MECHANISMS AND GOALS OF ATTACKER

The major goals or intents of an attacker is to

 Get valuable data such as SSN, Bank Account, credit card password and other private information.

 Modify data such as delete some record or rewrite the original data.

 Change the schema of database.

 Cutting down the connection between server and database (DoS).

 Controlling system remotely to gain control of the whole system [14].

Various input mechanisms are used to inject malicious SQL statements into a vulnerable application.

Injection through cookies

Cookies are text files that contain state information generated by web applications and are attached to the

browser and are stored on the client machine. Whenever a client connects to the same web server cookies

can be used to restore the client’s state information. The client has control over the storage of the cookie so

a malicious client could tamper with the cookie’s contents. If a Web application uses the cookie’s contents

to build SQL queries, an attacker could easily submit an attack by embedding it in the cookie [16].

Query based Injections

Attacks are generally not performed in segregation; many of them are used together or sequentially,

depending on the specific goals of the attacker. Moreover, there are countless variations of each attack type.

In these types of attacks data provided by the user is included in an SQL query in such a way that part of the

user’s input is treated as SQL code. Query based injection are summarized in table 1.

Table 1

SQLIA Type Goal Description
Tautologies Bypassing

authentication,

identifying injectable

parameters,

extracting data.

The code injected in the condition (OR 1=1) transforms

the entire WHERE clause into a tautology. (Figure 3)

Illegal/

Logically

Incorrect

Queries

Identifying injectable

parameters,

performing database

finger-printing,

extracting data.

The attack is considered a preliminary, information

gathering step for other attacks. An attacker tries to

inject statements that cause a syntax, type conversion, or

logical error into the database. Syntax errors can be used

to identify injectable parameters. Type errors can be

used to deduce the data types of certain columns or to

extract data. Logical errors often reveal the names of the

tables and columns that caused the error

Union Query Bypassing

Authentication,

extracting data

Using the statement of type UNION SELECT <rest

of injected query>, an attacker can trick the

application for returning data from a table different from

the one that was intended by the developer.

Piggy-Backed

Queries

Extracting data,

adding or modifying

The attacker tries to include new and distinct queries that

“piggy-back” on the original query. As a result, the

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 396

data, performing

denial of service,

executing remote

commands

database receives multiple SQL queries. Normally, in

the value of any field query delimiter (“;”) is used for

injecting second query.

Stored

Procedures

Performing privilege

escalation,

performing denial of

service, executing

remote commands

SQLIAs can be crafted to execute stored procedures

once an attacker knows which back end database is in

use. He can also execute procedures that interact with

the operating system. Stored procedures are often

written in special scripting languages, they can contain

other types of vulnerabilities, such as buffer overflows,

that allow attackers to run arbitrary code on the server or

escalate their privileges [18]

Inference Identifying injectable

parameters,

extracting data,

determining database

schema

Attackers derive the useful information from non-

sensitive data in this method. At the core of the inference

attack is a simple question. If the answer to this question

is A then do Y; if the answer is B then do Z [5].

Alternate

Encodings

Evading detection In this technique, attackers use different encoding

method to inject database, such as ASCII, Unicode. For

example [19] “legalUser’; exec

(0x73687574646f776e) - -” could be injected

in the login field. The stream of numbers in the second

part of the injection is the ASCII hexadecimal encoding

of the string “SHUTDOWN”.

Injection through server variables

Server variables contain network headers, HTTP and environmental variables. Web applications use

these server variables for logging usage statistics and identifying browsing trends. Attackers can forge the

values that are placed in HTTP and network headers. If these variables are logged to a database without

sanitization, this could create an SQL injection vulnerability [30].

Second-order injection

Let us consider an example given by Anely [17] to understand this concept.

 A user registers on a website using a seeded user name, such as “admin’ --”.

 The application properly escapes the single quote in the input before storing it in the database, preventing

its potentially malicious effect.

 The user modifies his or her password for this web API checks that the user knows the current password

and changes the password if the check is successful. For this, the Web application might construct an

SQL command as:

queryString="UPDATE users SET password=’" + newPassword + "’ WHERE userName=’" + userName

+ "’ AND password=’" + oldPassword + "’"

As “--” is the SQL comment operator, everything after it is ignored by the database. Thus, the result of

this query is that the database changes the password of the administrator (“admin”) to an attacker-specified

value. In second-order injections attacker are not trying to cause the attack to occur when the malicious

input initially reaches the database. Instead their input is subsequently used to craft their attack.

V. PREVENTION TECHNIQUES

A wide range of techniques have been proposed by the researchers to resolve the problem of SQL

injection. These techniques focus on development best practices to fully automated frameworks for

detecting and preventing SQLIAs. Detecting and preventing injection attack primarily is pretty important for

ensuring the safety of valuable information.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 397

Defensive Coding

While coding an application the programmer should take these safety measures.

Input type checking: Simple check should be performed on inputs can prevent many attacks.

Identification of all input sources: There can be many possible sources of input to an application used to

construct a query; so all input sources must be checked.

Positive pattern matching: Specify all the forms of legal inputs, as it is difficult to specify injection attack

forms. Positive validation is a safer way to check inputs.

Encoding of inputs: Prohibit any usage of meta-characters in input string values or encode input string in

such a way so that database interprets meta-characters as normal characters.

There are various methods developed to measure the effectiveness of the validity checking by the web

programmer and the effectiveness of the tools applied to detect code that causes SQLIA [20].

Detection Approaches

For analysis of dynamic or runtime SQL query, detection approaches are useful. A web Application

executes SQLIA detection method on user input data before posting a query to the database [20]. These

approaches are based on the initialization of trusted or untrusted strings, which depends upon the developer.

Context Sensitive String Evaluation: The tool will first regard user input as non-trusted data. In a step-by-

step procedure this input is analysed from the application which is regarded as trusted and the unsafe

characters will be removed [21].

Positive tainting and Syntax aware evaluation: Positive tainting can address problems caused by

incompleteness which may lead to false positives [22].

Parse tree evaluation based on grammar: When hackers inject SQL into a database query, the parse tree

of the intended SQL query and the resulting SQL query do not match [23].

Although, many other methods were developed for detection of SQL injection but most of the techniques

such as mutation testing, tokenization, multi-layer defence mechanism, service based approach and syntactic

and semantic analysis are anomaly base or signature base. These techniques compare input with saved

patterns but the hackers are constantly looking for new vulnerabilities to attack, even the previous validation

functions are also misused [24].

Hash algorithm

This method contains three models [25]:

Web crawler: It is an interface to interact with the web application. The system can get the information

from website including status-code, cookies and message-body and HTML content.

Injector: It send invalid payload to the affected parameter in the HTTP request.

Analyser: The system can use the hash value to detect if web has vulnerability.

Support Vector Machine

This Approach detects SQL injection by modelling SQL queries as graph of tokens and using the

centrality measure of nodes to train a Support Vector Machine (SVM) [26, 27]. The system has following

steps:

 Transform the SQL query to a sequence of tokens preserving its structural composition.

 Generate a graph consisting of tokens as the nodes and connection between them as weighted edges.

 Use the degree centrality measure of nodes to train the SVM classifier.

 Use the SVM model to address the malicious queries at runtime.

The system is designed to work at the database firewall layer.

Fast Flux Networks and SQLIA

For detecting fast flux networks and SQL Injection attacks the Expert Systems Machine learning

methods were used by Holz et al. and Stalmans et al. [27, 28]. The emphasis was on C5.0 Classifier and

Naive Bayesian Classifier.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 398

DNS Hijacking and SQLIA

To prevent the DNS Hijacking lightweight session shield could be used that is a client side protection

mechanism [29]. Stampar [30] discusses about the usage of SQLMap in protection of the SQLI + DNS

Attack.

DDoS and SQLIA

The cluster analysis methodology was used to detect DDoS Attacks by Lee et al [31].

VI. CONCLUSION

Attacker use SQL injection statements to retrieve and manipulate information from back end database. If

there is some loopholes in the security policy while developing web application, it is an extra advantage to

attackers. Some attackers have made it a profitable business as a black economy such as trades of credit

card numbers, personal information and bank accounts. In this paper, we have analysed how security of

database is compromised by various types of attacks. Further, mechanism of SQL injection attacks into a

web application and the goals of attacker are discussed. Various techniques for detecting and preventing

SQLIAs are disused in the last section. To control these types of attacks the web application developer

should have the good knowledge of these attacks.

REFERENCES

[1] Rain Forest Puppy, “NT Web Technology Vulnerabilities”, Phrack Magazine Volume 8, Issue

54 Dec 25th, 1998, article 08 of 12.

[2] Sohail IMRAN, Dr Irfan Hyder, “Security Issues in Database”, Second International

 Conference on Future Information Technology and Management Engineering, 2009.

[3] Shelly Rohilla, Pradeep Kumar Mittal, “Database Security: Threats and Challenges”,

 International Journal of Advanced Research in Computer Science and Software Engineering,

Volume 3, Issue 5, May 2013.

[4] Mr. Saurabh Kulkarni, Dr. Siddhaling Urolagin, “Review of Attacks on Databases and

Database Security Techniques, Facility” International Journal of Engineering Technology and Database

Security Techniques Research, Volume 2, Issue 11, November-2012.

[5] Halfond, William G., Jeremy Viegas, and Alessandro Orso. "A classification of SQL injection

attacks and countermeasures." Proceedings of the IEEE International Symposium on Secure Software

Engineering. Vol. 1. IEEE, 2006.

[6] Pfleeger C P, Pfleeger S L. Security in Computing[M]. China Machine Press, 2004.

[7] Shmueli E, Vaisenberg R, Elovici Y, et al. Database encryption: an overview of contemporary

challenges and design considerations[J]. Acm Sigmod Record, 2010, 38(3):29-34.

[8] https://www.statista.com/statistics/617136/digital-population-worldwide/

[9] Antunes, N. & Vieira, M., 2012. “Defending against Web Application Vulnerabilities”. 45(2),

pp.66-72.

[10] Son, S., Mckinley, K.S. & Shmatikov, V., 2013. Diglossia: “Detecting Code injection attacks

with precision and Efficiency”. ACM, pp.1181-91.

[11] Nithya, V., regan, R. & Vijayaraghavan, J., 2013. A survey on SQL injection attacks, their

Detection and Prevention techniques. International Journal of Engineering and Computer Science, 2(4),

pp.886-905.

[12] Sharma, C. & S.C.Jain, D., 2014. Analysis and Classification of SQL injection vulnerabilities and

Attacks on Web Applications. In IEEE International Conference on Advances in Engineering and

Technology Research (ICAETR). Kota, 2014.

[13] MeiJunjin, 2009. Anon vulnerability detection approach for SQL inject. IEEE, pp.1411-14.

[14] William G.J. Halfond, Jeremy Viegas and Alessandro Orso, “A Classification of SQL Injection

Attacks and Countermeasures,” College of Computing Georgia Institute of Technology IEEE, 2006.

[15] M. Dornseif. Common Failures in Internet Applications, May 2005.

 http://md.hudora.de/presentations/

http://www.ijcrt.org/
https://www.statista.com/statistics/617136/digital-population-worldwide/
http://md.hudora.de/presentations/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813680 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 399

[16] T. M. D. Network. Request.servervariables collection. Technical report, Microsoft

 Corporation, 2005. http://msdn.microsoft.com/library/default.asp?url=/library/en

 us/iissdk/html/9768ecfe-8280-4407-b9c0-844f75508752.asp

[17] C. Anley. Advanced SQL Injection In SQL Server Applications. White paper, Next Generation

Security Software Ltd., 2002.

[18] E. M. Fayo. Advanced SQL Injection in Oracle Databases. Technical report, Argeniss

 Information Security, Black Hat Briefings, Black Hat USA, 2005.

[19] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, Redmond, Washington,

second edition, 2003.

[20] Das D, Sharma U, K. Bhattacharyya D. Rule based Detection of SQL Injection Attack[J].

International Journal of Computer Applications, 2012, 43(19):15-24.

[21] Pietraszek T, Berghe C V. Defending Against Injection Attacks Through Context Sensitive String

Evaluation[C]// International Conference on Recent Advances in Intrusion Detection. Springer-Verlag,

2005:124-145.

[22] Halfond W G J, Orso A, Manolios P. Using positive tainting and syntax-aware evaluation to

counter SQL injection attacks[C]// ACM Sigsoft International Symposium on Foundations of Software

Engineering, FSE 2006, Portland, Oregon, Usa, November. DBLP, 2006:175-185.

[23] Buehrer G, Weide B W, Sivilotti P A G. Using parse tree validation to prevent SQL injection

attacks[C]// International Workshop on Software Engineering and Middleware, Sem 2005, Lisbon,

Portugal, September. DBLP, 2005:106-113.

[24] Yeole, A.S. & Meshram, B.B., 2011. Analysis of Different Technique for Detection of SQL

Injection. International Conference and workshop on Emerging Trends in Technology(ICWET 2011).

Mumbai, 25-26 February 2011.

[25] M Mahdi, AH Mohammad. Using hash algorithm to detect SQL injection vulnerability[J].

international journal of research in computer applications and robotics, 2016, 4(1):26-32.

[26] Solomon Ogbomon Uwagbole, William J. Buchanan, Lu Fan, “Applied Machine Learning

Predictive Analytics to SQL Injection Attack Detection and Prevention”, IFIP/IEEE IM 2017 Workshop:

3rd International Workshop on Security for Emerging Distributed Network Technologies, pg. 1087-

1090.

[27] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux service

networks.” in NDSS, 2008.

[28] E. Stalmans and B. Irwin, “A framework for dns based detection and mitigation of malware

infections on a network,” in Information Security South Africa (ISSA), 2011. IEEE, 2011, pp. 1–8.

[29] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen, “Sessionshield: Lightweight

protection against session hijacking,” in Engineering Secure Software and Systems. Springer, 2011, pp.

87–100.

[30] M. Stampar, “Data retrieval over dns in sql injection attacks,” arXiv preprint arXiv:1303.3047,

2013.

[31] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “Ddos attack detection method using cluster

analysis,” Expert Systems with Applications, vol. 34, no. 3, pp. 1659– 1665, 2008.

http://www.ijcrt.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en

