
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 155

Exploitation of Task Level Parallelism

MAYANK MANGAL1, ANKIT SANGHAVI2, SANDEEP PARODKAR3

1
Assistant Professor, Dept of IT, ARMIET, Thane, Mumbai, India,

2
Assistant Professor, Dept of COMPUTER, ARMIET, Thane, Mumbai, India,

3
Assistant Professor, Dept of EXTC, ARMIET, Thane, Mumbai, India

Abstract: Existing many systems were supporting task level

parallelisms usually involving the process of task creation and

synchronization. The synchronization of task requires the clear

definition about existing dependencies in a program or data-flow

restraints among functions(tasks), or data usable information of the

tasks. This paper describes a method called Symbol-Table method

which will used to exploits and detects the task level parallelism at

inner level of sequential C-programs.

This method is made up of two levels: a normal symbol table and

an extended symbol table. A sequential program of C language is

the input to the normal gcc compiler in which the procedures are

defines as functions(tasks).Than wegenerate a normal symbol table

with specific command by gcc compiler in Linuxas an output.Then

we use the information of that symbol table for generatingthe

extended symbol table with additional information about variable's

extended

scopes and inner level function dependency. This extended symbol

table is generated by the use of previously generated normal symbol

table on the basis ofvariable's scope and L-value/R-value attributes.

By that table we can identify thefunctions and variables those who

are sharing the common variables and those who are accessing the

different functions with extended scopes respectively. Thenwe can

generate the program dependency graph by the using of that

extended

symbol table's information with a specific java program. A simple

program forusing this method has been implemented on a 64-bits

Linux based multiprocessor.Finally we can generate the Function

graph for every variable in the programwith the help of table's info

and dependency graph's states.From that graph wecan get the info

about extended scoping of variables to identify and exploit thetask

level parallelism in the program. Then we can apply the parallelism

withMPI or other parallel platforms to get optimized and error free

parallelism.

Index Terms: Task synchronization; Function dependencies;

Symbol table; Program Dependency graph;

INTRODUCTION

Parallel programming is much more difficult and erroneous than

sequential programming. So, more intension is required to confirm

that the parallel source programs give the correct outcomes. Aerror-

free parallel source program does not always compulsorily resultsin

a good performance.So, to achieve the good performance and good

efficiency,a parallel program must have load balance,low overhead

and the good data locality. In general, parallel programs are much

complex and difficult to maintainbecause they implement complex

type of parallel behaviour algorithms, and hold platform-specific

optimized source code.

The uninvited difficulties of parallel programming have energized

research inthe range of parallelizing and rebuilding compilers. These

parallelizing compilers consequently discover parallelism in

successive projects and rebuild them intoparallel projects.

The lion's share of parallelizing compilers [1] [2] [3] have

concentrated on parallelism inside loops, where this parallelism

gives outcome fromexecuting free cycles of a loop in a parallel way.

That is usually called as loop levelparallelism. In spite of the fact

that these type of parallelizing compilers take outthe requirement for

parallel programming and are for the most part compelling,later

studies [4] [5] have indicated that they have some constraints, and

that this parallelism is not sufficient to use the all resources of the

parallel computers. So we finally came to task-level parallelism

which provides a task(function)as a procedure invocation,a program

block or an arithmetic operation. A fewprovisions are all the more

characteristically communicated as an accumulation ofrelated tasks

[6] [5]. Besides, for extensive provisions, it is important to

exploitthe loop level parallelism and task level parallelisms [5]. On

the other hand,not like as parallel compilers, existing frameworks

that using task level parallelisminterest programming exertion,

which extends from needing to physically make andsynchronize of

tasks to needing to program in diverse dialects and ideal models.So

because of this there is a requirement for frameworks that can

exploit task level

parallelism with the sequential type of programs.

I. METHODDESCRIPTION

 MethodDescription

This method is mainly composed of two levels: a normal symbol

table and an extended symbol table. The input given to the normal

gcc compiler is a sequentialC program in which the procedures

taken as functions(tasks) with declarations.For generate a normal

symbol table we provide a specific command to gcc compiler

inlinux. Then we use the information of that symbol table for

generatingthe extended symbol table with additional information

about variable's extendedscopes, L/R-value attributes and inner

level function dependency. This extendedsymbol table is generated

by the use of previously generated normal symbol table on the

basis of variable's scope, Declared line and referenced line of

variables and functions with-in the program. By that table we can

identify the functionsand variables those who are sharing the

common variables and those who are accessing the different

functions with extended scopes respectively. Then we cangenerate

dependency graph based on that table's information to get the clear

understandings about the dependencies which are exists in the

program. Finallywe can generate the Function graph for every

variable in the program with thehelp of table's info and

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 156

dependency graph's states.From that graph we can getthe info

about extended scoping of variables to identify and exploit the

task levelparallelism in the program. Then we can apply the

parallelism with MPI or otherparallel platforms to get optimized

and error free parallelism.

Types of Data dependence

This part describes about data dependence and its types. That

dataabout dependence is covered in literature [7] [8] [9] and

presented

here.

Data dependencies are occurs when two or more iterations,

statements or operations of a loop cycle can be executed in

parallel.Basically four types of data-dependencies are there:

 1. True dependency: (also known as Flow Dependency) it occurs

betweenthe two statements of a program, if the first statement write

the data andthe second other statement read it later.

For example, in this program

St1: c = a + b

St2: d = c * 2

So from these statements it is clearly shown that here is a true

dependencyexists between these statements St1 and St2, denoted as

St1 St2, becauseSt1 writes var c and St2 reads var c.

2. Anti Dependency

3. Output Dependency

4. Input Dependency

So these types of dependencies can be overcomes by variable

renaming technique[9]. The only actual dependency is true

dependency.

Dependencies can be occur between parts or instances of statements

in a loopcycle, when the same element(variable) of an array can

accessed by two instancesof statements. If these

havingdependencies related to the same loop cycle thenthe

dependency is known as a loop independent dependency , and

without synchronization they can be executed parallel in a

concurrent way .

For example, in the program

for i = 0 to N-1

St1: p[i] = q[i] + r[i]

St2: s[i] = p[i] + 1

endfor

Here it is clearly shown that the dependency that is exist here

among theinstances of St1 and St2 are loop independent

dependency; so, without synchronization they can be executed

parallel in a concurrent way. In such type of cases,that loop is

called as a parallel loop.however, if the instances relate to different-

different loop cycles,then that type of dependency is called as a

loop carrieddependency, and without synchronization they cannot

be executed parallel in a

concurrent way.

For example,

for i = 0 to N-1

St1: p[i] = q[i] + r[i]

St2: s[i] = p[i-1] + 1

endfor

So it is clearly shown that a loop carried true dependency is here

between theSt1 in iteration i and the St2 in iteration i + 1 where i =

0 to N - 1.

Task level Parallelism

It is an another type of parallelism which is a group of co-operating

tasks. A unitof computation as task or procedure which can be as

coarse-grain as a procedureinvocation or as fine-grain as an

arithmetic operation that executes more and morenumber of

instructions. When the independent tasks are executing concurrently

then This type of Parallelism occurs. Tasks which are executing

concurrently arenot in limited range to operating same type of set of

operations in comparison todata-parallelism.

The thought of data dependence could be reached out to tasks. In

frameworkswhere tasks are indicated by the data stream stipulations

around the tasks, whena task P generates some data worth which is

needed by another task Q then itis said that task Q is dependent on

Figure1: An example type of task graph

task P. Subsequently, task Q can't begin itsexecution until task P has

finished its execution about the data. In frameworkswhere the tasks

are well synchronized to concurring a particular order, for example,

the successive order of data-access of the tasks, at that point when

task P goes inexecution before task Q in execution then it is also

said that task Q is dependent ontask P, furthermore the same data is

written by either P or Q. For that situation,task Q can't begin its

execution until the task P has completed its execution of thedata.In

both of the situations, we are referring the task P as the pre-requisite

taskand task Q referred as the dependent type task on P. A graph i.e.

which is used torepresent the dependencies among the tasks is called

task graph. The task graphis a directed type acyclic graph in which

the nodes are representing the tasks andthe edges are showing the

dependencies between the tasks. The source and sinkof a

dependency edge is a pre-requisite task and a dependent task

respectively. Ingeneral, when a pre-requisite task completes its

execution then only a dependenttask can execute.

For example, A task graph is represented in figure of a program. In

this thetask is taken as a procedure invocation. The program

execution would be followslike as. First of all Task 'init' will

execute because of no pre-requisite tasks it has.After the completion

of the task 'init' three 'comp' type tasks will be execute inparallel.

Another task 'sum' will begin its execution when the first two 'comp'

tasks will finish their executions, and the another task 'collect' will

executes whenthe last two 'comp' tasks will finish their execution.

So it is clearly shown inexample that the results of parallelism

occurs from executing the 3 'comp' tasksin parallel, and the tasks

'sum' and 'collect' are executing concurrently.

Nonetheless, the adaptable behaviour of this task-level parallelism

prompts afew drawbacks. As opposed to building parallelizing tools

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 157

concentrating on a particular programming developed loop,

different languages or frameworks have beenmade to help diverse

kinds of task-level parallelism. According to their meaning of the

task the frameworks changes; according to the time on which

tasksare made;according to the systems which is used to help in

task synchronization

and communication between tasks; and additionally according to

the programming languages and standards used to exploit the

parallelism. Hence, to exploitthe task-level parallelism, a developer

should first pick a framework, and either broadly adjust the

sequential type of C-programs or modify them in the standardor

programming languages needed by the framework.

II. Proposed method andimplementation

The proposed method of this research work motivated by the task

level parallelism [16] to exploit the parallelism at inner level of

functional dependencies in asequential c program. The idea of the

proposed method developed here only toidentify the inner level

dependencies of tasks(functions) statically at compile time.For

exploiting the concurrency with Task level parallelism we have

implementeda simple sequential c program with four functions on

the Linux OS with gcc compiler. Here we are targeting the general

workings of the compiler about symboltable creation.From that

symbol table we are generating the Extended symbol table with

additional information about variables and functions of program.

Fromthat table we can identify the inner dependencies of functions

in a program andby the functional graph we can show the relation

between functions about thedependencies. We are using

"NetBeans" tool with java platform for generatingthe dependency

graph of program by using that Extended symbol table data injava

program.

Exploitation of Task level parallelism with Symbol-Table

method:

Our objective is "if 2 functions have common variable then they

can not execute parallel(because they are accessing the same

memory location of common variable). How these functions are

accessing the same memory location?" For provingthis we are using

symbol table analysis. According to our proposal there are three

levels to solve that problem.

1. Generalized Symbol-table.

2. Extended Symbol-table.

3. Dependency and Function graph representation.

First we are taking a simple sequential c program as input to the gcc

compiler withthe Linux OS.Then with the specific commands

(i.e. gccfilename.c -o filename

gcc -c filename.c

readelf -a filename.o)

We can generate internal process of execution and compilation of

program(ExecutableLocate File(ELF)). It has all information about

program like ELF Headers, section headers, section groups,

program headers, key to flags, relocation sections,unwind section

and most important "Symbol-table".

From that we can generatethe generalized Symbol-table with

information like:

1. Name of Variables and Functions

2. Characteristics Class

3. Token id

4. Scope of Variable and Function

5. Declared line

6. Referenced line

7. Other information like parameters used by functions.

Then for getting the Scope information we generate the Symbol-

table for everyfunction which is present in the program.After

generating the generalized Symbol-table with all this information we

can generate the second level of this method which is called

"Extended Symbol-table"with the additional information about

extended scopes of variables and the L-value/R-value attributes of

the variables as output with the help of previouslygenerated

generalized Symbol-table. In that Symbol-table clear information

isprovided about extended scopes of the variables and L-value/R-

value attributesof the variables. For "Extended Symbol-table" the

attributes are:

1. Name of Variables and Functions.

2. Scope of Variables and Functions.

3. Declared Line of Variables and Functions in program.

4. Referenced Line of Variables and Functions.

5. Extended Scope of Variables and Functions.

6. L/R value attributes.

On the basis of Declared line and Referenced line we can draw the

dependencygraph with the help of java based program of NetBeans

tool. And on the basisof Extended scope and L-value attribute we

can represent the function graphsmanually regarding the information

about variables those are changing their scopeswith L-value

attribute. From these graphs we can easily identify the

dependenciesamong functions and which functions can execute

parallel to each other.

Design and implementation of the proposed method:

Our proposed method is based on Symbol-table design and

implementation. HereSymbol-table designing process is divided in

to mainly two parts.

 Generalized Symbol-table.

 Extended Symbol-table.

So for designing and implementing using this Symbol-table analysis

method wehave taken a simple and small sequential C-program. The

source code of thatprogram is given here:

Program source code

#include <stdio.h>

#include<conio.h>

int g = 10;

int I = 15;

Int *h;

int add(int a, int b)

{

a = a + b;

g = a + b;

}

int sub(int a, int b)

{

a = g - b;

g = *h - b;

}

intmul(int *a, int *b)

{

*a = *a * *b;

*b = *h * *a;

}

int div(int *a, int *b)

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 158

{

*a = *a / *b;

*h = *h / *b;

}

int main ()

{

printf(in main1 I m = %d %u, g,&g);

Int x = 10;

int y = 5;

int sum = 0, minus = 0;

int multi = 0, divide = 0;

h = &I;

sum = add(x,y);

minus = sub(x,y);

multi = mul(&x , &y);

divide = div(&x , &y);

printf(in main2 I m = %d %u %d %d %u, g,&g,x,I,&i);

return 0;

}

It is a 40 line simple source program which has mainly four

functions i.e. add(),Sub(), mul(), div(). These functions are sharing

some common variables.Thevariables are used in this program are

g,h,i,a,b,x and y in which g,h and i areglobal variables and rest are

local variables of different functions. Because of thedata

inconsistency these functions can't execute with parallel platform.

So, For finding the inner dependencies among the functions we are

using this Symbol-tablemethod.

So first we generate the Symbol-table by gcc compiler with specific

commandson Linux platform. Than from that table we can generate

the "GeneralizedSymbol-table" using unordered-listed data

structure on the basis of some important attributes like Name, Char

class, Token id, Scope, Declared line, ReferencedLine and other

info about variables and functions in the program.

We can generate a separate Symbol-table for each scope(function)

which isused in the source program.The "Generalized Symbol-

table" for that aboveprogram is shown in table 1, 2, 3, 4, 5:

Table 1: Generalized Symbol-table with Main Function

Table 2: Symbol-table for add() Function

Table 3: Symbol-table for sub() Function

Table 4: Symbol-table for mul() Function

Table 5: Symbol-table for div() Function

This is a Generalized Symbol-table for above program which

contains the information about variables and functions like

name,type,token-id,scope,declared linein program, referenced line in

program etc. Now on the basis of scope,declared lineand referenced

line we can generate the "Extended Symbol-table" with additional

information about variables like extended scopes and L/R-values

attributes.

The Extended Symbol-table over the Generalized Symbol-table is

shown in table6. From this table we can get the additional info about

variables like Extendedscopes and L/R-value on the basis of

reference lines. We can get the commonvariables from this table

those are shared by functions.The variables those haveExtended

scopes with L-value attributes are comes in focus only.

So with the help of this additional information we can go to generate

for innerdependency graph and Function graphs as result.

Table 6: Extended Symbol-table for whole program

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 159

Results:
As we have completed both parts of this Symbol-table analysis

method.Now we cangenerate the inner-Dependency graph with the

help of both tables with Declared line and Reference line. The

figure 2 shows the dependency graph on the basis ofdeclared and

referenced line. This dependency graph is generated by the

NetBeanstool which is a java based platform tool. With the help of

a java program we arecreating a .txt file. Then we are putting the

information about declared line,referenced line and number of lines

from the generated tables into the .txt file.Than we can execute that

java program to get the inner-dependency graph. In thisgraph the

nodes or circles represent the line number at which the variable

declaredor referenced in the program. And the edges represent the

data dependencies fromdeclared line node to referenced line node.

Figure 2: Dependency graph based on Table's info

In this Dependency graph, black color edges representing Data

dependenciesbetween nodes(lines) and blue color edges representing

temporary dependenciesand red color edges representing the

referential dependencies. With the help ofthis dependency graph and

Extended Symbol-table's additional information wecan generate the

"Function graph" finally.

Function graph:

On the basis of Dependency graph and Extended Symbol-table's

information likeL-value attribute(only) and extended scope of

variables through referenced linewe can get the data to draw the

Function graph.

The data is like that:

 g{0,3}[{1,9}{2,14}{5,(28,38)}]

 i{0,4}[{4,24}{5,38}]

 h{0,s} [{4,24}]

 x{5,29} [{3,36,18}{4,37,23}]

 x{5,30} [{3,36,19}{4,37,(23,24)}]

The expressions is written as like: the description of first expression

data is:

Here, the left hand side data of an arrow represents the info about

variable, forwhich we have to generate the Function graph.The info

is, g is a variable which is defined in scope 0 and declared at line 3

in the program.And the right hand sidedata of an arrow represents

the info about variable g that what are the extendedscopes of g with-

in it is used.i.e. in scope 1 on line 9 (which is referenced line ofg)

variable g is used.like that it is all the data about var g.Like that for

variables h,i,x and y that data is given by expressions. on thebasis of

that data we can generate the graph. From these graphs we can

concludesome assumptions about exploit the task level parallelism

that:

 1 to 1 scoping is allowed between scopes.

 self-loop is allowed(local scoping).

 1 to many scoping is not allowed.

Figure 3 shows the Function graph for var g. The Function graph

clearly shows

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 160

Figure 3: Function graph of g var.

Figure 4: Function graph of var i.

Figure 5: Function graph of var h.

Figure 6: Function graph of var x.

Figure 7: Function graph of var y.

From figure 4 which is showing Function graph for var i, we can

evaluatethat var i is used by only scope 4 (div() function) with actual

scoping(Extendedscope + L-value attribute only).

By scope 5 it is used as temporary scoping. So there are no problem

with var i. Likewise figure 5 showing function graph forvar h, in

which it is clearly shown that var h has only one actual scoping in

scope4. According to assumption 1 to 1 scoping is allowed between

scopes so there areno problem with var h.

Figure 6 showing the Function graph for var x, in which because of

referencing dependency which is identified by dependency graph

var x is referencedthrough scope 5 to scope 3.by graph it is clear that

there 1 to many actualscoping is present between scopes for var x.

So these specific scoping-functions aresharing common var x, thats

by they can't execute parallel to each other. Likewise figure 7

showing function graph for var y, in which it is clearly shown that

var y has 1 to 1 actual scoping in scope 3. So there are no problem

with variable y.

After analysis of all these graphs finally we can say that:

 add() function and sub() function can't be execute parallel

because of varg's 1 to many actual scoping.

 mul() function and div() function also can't be execute

parallel because ofvar x's 1 to many referencing actual

scoping.

 add() and mul() or add() and div() may be execute parallel

because thereare no dependency or scoping conict between

these functions.

 Also sub() and mul() or sub() and div() may be execute

parallel becausethere are no dependency or scoping conict

between these functions.

III. CONCLUSION:

The Loop level parallelism had some limitations which are solved by

the task levelparallelism. After all, with the currently existing

frameworks also those supportthis type of TLP, a system

programmer must make the executable updates to thesequential C

source program to achieve the required level of task

parallelism.Inthis thesis this work has been done using a method is

called Symbol-table method

at the time of compilation. This method has basically two different

parts i.e.Generalized Symbol-table generation and Extended Symbol-

table generation.Bythese parts of the method we can get the

additional information like referenceline, declared line, scope,

extended scope and L/R-value attributes about thevariables and

functions which is used in the source program. With the help of this

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 161

information first we can draw the program dependency graph and

after thatwith whole information about variables we can generate the

Function graph foreach variable.From that graph we can clearly

evaluate the inner level dependenciesamong the functions and

extended scoping information about variables. On thebasis of that

information we can detect and exploit the task level parallelism.Then

we can apply the parallelism with MPI or other parallel platforms to

get optimizedand error free parallelism.

LIMITATIONS AND FUTURE SCOPE:

This method has some limitations because of the quality of

available compiler'sanalysis, data dependencies that occurs in the

sequential C-programs and thechoice of only functions as tasks as

units of parallelism.The Symbol table methodwe are using to get

information about variables and functions, is generated manually.

So the correct exploitation of parallelism depends on the correctness

of thesymbol table, which totally depends on the programmer. So

we suggest somefuture work for Symbol-table method to exploit the

Task Level parallelism in general. To generate the generalized and

extended symbol tables with correct and alladditional information

for program we have to improve the quality of compiler'sanalysis.

The next one is that if we want to implement an analysis module

that

provides side-effects of the statements in a program. Then, in place

of providing awide set of features like as side-effect analysis,code

generation and manipulationand dependency analysis, this will

concentrate on the information that would helpsystems to support

task level parallelism. This module should be able to accurately

describe the accesses of Symbol-table to dynamic data structures

such as

linked-lists and trees.To identify the recursive procedure's data

accesses is also achallenge.

REFERENCES

[1] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K.

S. McKinley, J. M. Mellor-Crummey, L. Torczon, and S. K.

Warren, “The parascope parallelprogramming environment,"

Proceedings of the IEEE, vol. 81, no. 2, pp. 244-263, 1993.

[2] S. Hiranandani, K. Kennedy, and C.-W. Tseng,

“Compiler optimizations forfortran d on mimd distributed-

memory machines," in Proceedings of the 1991ACM/IEEE

conference on Supercomputing, pp. 86-100, ACM, 1991.

[3] C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat,

C. L. Lee, B. P. Leung, and D. A. Schouten, “The structure

of parafrase-2: An advancedparallelizing compiler for c and

fortran," in Selected papers of the secondworkshop on

Languages and compilers for parallel computing, pp. 423-

453,Pitman Publishing, 1990.

[4] R. Eigenmann and W. Blume, “An effectiveness study of

parallelizing compiler," in Proceedings 20th International

Conference Parallel Processing 1991,vol. 2, p. 17, CRC

Press, 1991.

[5] J. Subhlok, J. M. Stichnoth, D. R. O'hallaron, and T.

Gross, “Exploitingtask and data parallelism on a

multicomputer," in ACM SIGPLAN Notices,vol. 28, pp.

13{22, ACM, 1993.

[6] H. Printz, H. Kung, T. Mummert, and P. Scherer,

“Automatic mapping oflarge signal processing systems to a

parallel machine," in 33rd Annual Techincal Symposium, pp.

2-16, International Society for Optics and Photonics,1989.

[7] U. K. Banerjee, Dependence analysis for supercomputing.

Kluwer AcademicPublishers, 1988.

[8] G. Goff, K. Kennedy, and C.-W. Tseng, Practical

dependence testing, vol. 26.ACM, 1991.

[9] D. A. Padua and M. J. Wolfe, “Advanced compiler

optimizations for super-computers," Communications of the

ACM, vol. 29, no. 12, pp. 1184-1201,1986.

[10] S. F. Hummel, E. Schonberg, and L. E. Flynn,

“Factoring: A method forscheduling parallel loops,"

Communications of the ACM, vol. 35, no. 8, pp. 90-101,

1992.

[11] M. Chandy, K. Kennedy, C. Koelbel, C.-W. Tseng, et

al., “Integrated supportfor task and data parallelism,"

International Journal of High PerformanceComputing

Applications, vol. 8, no. 2, pp. 80-98, 1994.

[12] J. J. Dongarra and D. C. Sorensen, “A portable

environment for developingparallel fortran programs,"

Parallel Computing, vol. 5, no. 1, pp. 175-186,1987.

[13] P. A. Suhler, J. Biswas, K. M. Korner, and J. C.

Browne, “Tdfl: A task-leveldata flow language," Journal of

Parallel and Distributed Computing, vol. 9,no. 2, pp.

103{115, 1990.

[14] R. G. Babb II and D. C. DiNucci, “Scientific parallel

processing with lgdf2," inProceedings of the third SIAM

Conference on Parallel Processing for ScientificComputing,

pp. 307-311, Society for Industrial and Applied Mathematics,

1987.

[15] R. Chandra, A. Gupta, and J. L. Hennessy, COOL: A

language for parallelprogramming. Computer Systems

Laboratory, Stanford University, 1989.

[16] S. Huynh, Exploiting task-level parallelism

automatically using pTask. University of Toronto, 1996.

[17] D. Scales, M. Rinard, M. Lam, and J. Anderson,

“Hierarchical concurrencyin jade," in Languages and

Compilers for Parallel Computing, pp. 50-64,Springer, 1992.

[18] M. S. Lam and M. C. Rinard, “Coarse-grain parallel

programming in jade,"in ACM SIGPLAN Notices, vol. 26,

pp. 94-105, ACM, 1991.

[19] M.-Y. Wu and D. D. Gajski, “A programming aid for

hypercube architectures," The journal of Supercomputing,

vol. 2, no. 3, pp. 349-372, 1988.

[20] T. Yang and A. Gerasoulis, “Pyrros: static task

scheduling and code generation for message passing

multiprocessors," in Proceedings of the 6th international

conference on Supercomputing, pp. 428{437, ACM, 1992.

[21] T. Gross, D. R. O'Hallaron, and J. Subhlok, “Task

parallelism in a highperformance fortran framework," IEEE

Concurrency, vol. 2, no. 3, pp. 16-26, 1994.

Author's Profile:

Mr. MayankMangal, received the Master OfTechnology

degree in ComputerScience &Engineeringw i t h S o f t w a r e

E n g i n e e r i n g S p e c i a l i z a t i o n f rom the NIT

Rourkela, he received the Bachelor Of Technology degreefrom

RCERT Jaipur. He is currently working as Assistant Professor

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813635 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 162

in Information Technology Department at ARMIET, A. S. Rao

Nagar, Shahapur, Thane, Mumbai.

Mr. AnkitSanghavi, received the Master OfTechnology

degree in Computer Engineeringf rom the Mumbai

University, he received the Bachelor Of Engineering

degreefrom SantGadge Baba Amravati University. He is

currently working as Assistant Professor in Computer

Department at ARMIET, A. S. Rao Nagar, Shahapur, Thane,

Mumbai.

Mr. SandeepParodkar, received the Master OfTechnology

degree in EXTC Engineering f rom the Mumbai University,

he received the Bachelor Of Engineering degreefrom North

Maharashtra University. He is currently working as Assistant

Professor in EXTC Department at ARMIET, A. S. Rao Nagar,

Shahapur, Thane, Mumbai.

http://www.ijcrt.org/

