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Abstract: What has category theory to offer to Banach spacers? In this survey-like paper we will focus on some of the five 

baselements of category theory –namely, i) The definition of category, functor and natural transformation; ii) Limits and co limits; 

iii) Adjoin functors; iv) The principles of categorical Banach space theory v) Banach space constructions as Banach functors. 
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 Introduction: 

 
 Functional analysis is important branch of mathematics research which is part of vector space and linear equations defined on 

spaces. In this properties of transformation of functional , fourier transformation, continuous functions, unitary …etc. in this study 

operations between the differential and integral. 

  In this general concept have been introduced by Italian mathematician and physicist vito volterra in 1887. The basic and 

historically first class of space studies in functional analysis is complex normed vector space over the real and complex numbers. 

In more important study of functional analysis is topological vector space and continuous linear vector space defined on banach 

space and Hilbert space.  

The principles of categorical Banach space theory 

      A functor F : A → C between two categories is a correspondence assigning objects to objects and arrows to arrows which respects 

composition and identities. the functor is called covariant if whenever 

f : A → C then F(f) : F(A) → F(C). 

  Thus, what EM means, translated to the Banach space world is: I Banach space constructions must be understood and formulated 

as functions. 

As it is formulated by Mityagin and Svarc [22]: ˇ “The essence of the matter is that nearly every natural construction of a new 

Banach space from a given Banach space generates a certain (covariant o contravariant) functor”. 

This is the foundational work. So let us start labelling Ban the category of Banach spaces, whose objects are Banach spaces and 

whose arrows are the linear continuous operators. It will be often necessary to work with the related category Ban1 whose objects 

are Banach spaces but whose arrows are only the linear continuous contractions. 

• The identity covariant functor ı : B → B which is defined in any subcategory B of Ban. 

 
• The contravariant duality functor D defined by D(X) = X∗ for a Banach space X and D(T) = T ∗ for an operator T. 

 
• More generally, given a Banach space Y the contravariant L Y functor defined by L Y (X) = L(X, Y ) and L Y (T) = T ◦  with he 

meaning T ◦ (S) = ST. The choice Y = R gives the duality functor. 

• Given a Banach space X the covariant LX functor defined by LX(Y ) = L(X, Y ) and LX(T) = T∗ with he meaning T∗(S) = T S. 

The choice X = R gives the identity. 

• Given a Banach space X the covariant ⊗X functor defined by ⊗X(Y ) = X⊗bπY and ⊗X(T) = 1X ⊗ T.  

• The covariant functors (see [17, 18]) assigning to a Banach space X the space ℓp(X) of p-summable sequences with the natural 

induced operators. 

 

 

functional analysis further developed by Riesz and the group of Polish mathematicians around Stefan Banach.  
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• One can equally define the Grothendieck-Pietsch functors that assign to a Banach space X the space ℓ w p (X) of weakly p- 

summmable sequences on X. 

Banach space constructions as Banach functors: 

 
   In this case, (a part of) what the EM says is that a correspondence lies on a categorical level only when it is a functor. When τ is 

a norm one operator then C(τ ) can be defined as C(τ )(f) = fτ ∗ . Thus, the correspondence establishes a functor when acting Ban1 

→ Ban1 –although Banach space tricks yield that to every operator τ : X → Y corresponds an “extension operator” T : C(BX∗ ) → 

C(BY ∗ ) given by ∥τ∥C ( τ ∥τ∥ ) . Of course, additivity has been lost.   

On the covariant side, apart of the example previously considered, probably the simplest construction is that associating to a 

Banach space X the injective space l∞(BX∗ ). It was Semadeni [28] the first one to recognize a functor here. • X can be embedded 

into a separable L∞ Banach space L∞(X) in such a way that L∞(X)/X has the Radon-Nikodym and Schur properties.  

Banach envelopes 

 
Read in purely Banach space terms, the general situation is that every Banach space X can be naturally embedded into a space of 

continuous functions C(BX∗ ) in such a way that the embedding δX : X → C(BX∗ ) has the universal property that every C(K)- 

valued operator defined on X can be extended through δX to the whole C(BX∗ ). 

  The following subclasses of L∞-spaces have appeared in the literature: 

1. Lindenstrauss spaces (denoted L); i.e., spaces that are L1+ε-spaces for all ε > 0. 

 
2. Separably injective (Θ) and universally separably injective (Θu ) spaces.  

 

3. Lindenstrauss-Pe lczy´nski spaces (LP). Recall from [85, 86] that a Banach space E is said to be a Lindenstrauss-Pe lczy´nski 

space if all operators from subspaces of c0 into E can be extended to c0. If some extension exists verifying ∥Tb∥ ≤ λ∥T∥ we shall 

say that E is an LPλ space. 

4. L∞-spaces (L∞) 

 
Banach spaces as functors 

 
But there is more. The EM program considers that, even when a ”single” construction is studied, it must be understood as a functor 

are made out of something, and thus the comprehension of the space is not “right”, in the Eilenberg-MacLane sense, until the 

correspondence between the constituents and the final space has been clearly established as an understandable functor. 

Operators as natural transformations 

 
“A continuous functions” understanding spaces themselves as functors. Still to explain is the “embedding” part. To start with, the 

abstract point of view clearly demands that if one wants to construct a category with functors as objects, then a definition for arrows 

is required. 

Definition of natural transformation 
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Natural transformation is arguably the most important notion in mathematics.Operators have to be understood as natural 

transformations. Banach spaces of natural transformations; The definition of Banach natural transformation is due to Mityagin and 

Svarc [22, 17, 18]. 

∥τ∥ = sup X ∥τX∥ 

 
is finite; here the supremum is taken over all the Banach spaces of the category B. Addition and multiplication by scalars can be 

defined in an obvious way for Banach natural transformations, and it is clear that the quantity above is a complete norm. So the 

space [F, G] of all Banach natural transformations between the Banach functors F and G is a Banach space. 

Universal constructions: limits and colimits 

 
If Banach functor is the categorical way of saying “a correspondence that assigns to certain Banach spaces another Banach 

spaces”, Universal construction is the categorical form of saying: limits and colimits. The prefix co- is the heart of categorical 

duality, to be considered later: whenever a statement (definition, theorem, . . . ) can be formulated in categorical terms, namely, in 

terms of points (objects) and arrows (i.e., diagrams) then there is a correspondent “dual” statement obtained reversing the arrows. 

To give an example, if given the situation. 

 • 

 




there is a universal (i.e., well and uniquely defined) construction of an object ▽. 

 
• • 

 

• ▽ 

 

then the dual construction is the universal construction that allows one to pass from 

 
• 

 
• 

 
 

 
 • 

 

▽ • 

It is a matter of choice which construction ▽ or △ will be called limit and which co-limit. But the natural choice should be 

that all constructions of one type will be called say limits and all belonging to the other will then be colimits. 

Products,pull-backs, limits . . . are all of the same type; as well as co-products, push-outs, quotients, inductive limits. It would 

therefore be natural to call limits to the first and co-limits to the second. But Banach space tradition is illogical: indeed, 

tradition gave the names “inductive limit” to a construction of type ▽, and “product” to a construction of type △. The 

definition goes back to Grothendieck [11]. ;Let D defined a diagram  with points and arrows. There is no difficulty in 

considering D as a category. A functor F : D → Ban means just drawing D with Banach spaces in the place of points and 

operators in the place of arrows. So, given a Banach functor F : D → Ban, a Banach space L(F) will be called the direct limit 

of F through D if there is a family of operators αd : F(d) → L(F), d ∈ D, making commutative the whole diagram in Ban in 
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such a way that for every other Banach space X and family of morphisms βd with the same property, there is a unique operator 

α : L(F) → X making the whole diagram (i.e., ααd = βd) commutative. Inverse limit. Let D and F be as before. A Banach space 

L(F) will be called the inverse limit of F through D if there is a family of operators αd : L(F) → F(i), d ∈ D, making 

commutative the whole diagram in Ban in such a way that for every other Banach space X and family of morphisms βd with 

the same property. 

 
Classification of Banach 

 
There are much deeper results on the classification of Banach spaces which may be of use for applications. For example, 

pace is homeomorphic to the Hilbert space l2 . This theorem shows that questions of a purely topological nature 

Which arise in nonlinear analysis may often be reduced to questions in Hilbert space, a space in which it is much easier to 

perform certain kinds of constructions. 

It should, however, be pointed out that to a large extent the theory of Banach spaces is at present carried out without having in mind 

specific applications to other areas of analysis. It is my feeling that Banach spaces (like finite groups for example) form an interesting 

and important object for an independent study. The fact that some simple looking and natural questions concerning Banach spaces 

turn out to be very difficult, a fact which in the past led some mathematicians away from Banach space theory, is to me one of the 

reasons to believe that the study of Banach spaces is important. The main problems in Banach space theory lead to some interesting 

questions in other areas of mathematics like topology, measure theory, probability, and in particular Fourier analysis and geometry 

(integral, combinatorial, and even differential) in finite-dimensional Euclidean spaces. Though Banach space theory contains some 

surprising (and perhaps at first glance discouraging) counterexamples, it contains also many interesting and difficult results which 

are more than just isolated results and certainly justify the use of the word theory. It is quite natural to assume that some of these 

theorems, once they are more widely known, will find applications outside the theory of Banach spaces. 

In what follows the main emphasis will be on the study of the structure of Banach spaces. If we take the categorial standpoint 

such a study must be incomplete if we do not study at the same time the structure and classification problem of the relevant 

morphisms, i.e., of operators (usually linear) between Banach spaces. There is of course a vast literature on operator theory and in 

particular spectral theory. It seems, however, that the theory of operators on general Banach spaces is at present in a much less 

satisfactory form than the theory of Banach spaces themselves. Only in the case of Hilbert spaces is there at present a really deep 

and detailed theory of operators available. Thus, though Hilbert spaces form a special kind of Banach space the Hilbert space 

theory is “almost disjoint” from Banach space theory. The former deals with questions concerning operators which quite often 

look hopeless in the Banach space case, while the latter considers questions which are often trivial in the special case of Hilbert 

spaces. 

We return to the main aim of this section, the study of classification of Banach spaces in terms of all or only a part of the structure 

which is endowed on such a space by its definition. It is of course trivial to study only the linear structure of a Banach space X. 

We single out now four nontrivial and different ways for looking at a Banach space. 

1. As a metric space; 

 
2. As a uniform space; 

 
3. As a linear topological space; 

 
4. As a Banach space, i.e., taking into account all the structure contained in the definition. 

 
By looking at a Banach space as a metric space the natural morphisms we consider are of course the continuous functions, and two 

Banach spaces are identified if they are homeomorphic. When E is considered as a uniform space the natural morphisms are the 
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uniformly continuous maps. In linear topological spaces the natural maps are the continuous linear operators and we look for 

invariants under isomorphism: bicontinuous one-to-one linear operators. Finally, in Case 4 the natural maps are linear norm 

decreasing operators and we look for invariants under isometries, i.e., norm preserving linear operators. There are also other natural 

ways to look at Banach spaces, for instance, for questions related to differential calculus on Banach spaces, but we will consider 

here only the four ways listed above. 

A basic result in point set topology is that the dimension is a topological invariant of finite-dimensional Banach spaces. It is 

obviously the only topological (and even linear topological) invariant of these spaces. For infinite-dimensional separable Banach 

spaces Kadec’s theorem gives a complete answer to the classification problem. For the nonseparable case the situation is not entirely 

clear. The following is conjectured. 

By density character of a Banach space we mean the smallest cardinal for a dense subset of the space. The conjecture has been 

verified in some special classes of nonseparable spaces. For example, it is true if we restrict ourselves to reflexive Banach spaces 

(Bessaga [l]). Turning to the uniform classification, here, in contrast to the topological classification, the main open problem is 

whether uniformly homeomorphic Banach spaces are already isomorphic. That is, does the uniform structure of a Banach space 

already determine its linear (and thus linear topological) structure ? 

1. If p >, max(2, q), an infinite-dimensional LJp) space is not uniformly homeomorphic to an infinite-dimensional L*(Y) 

space. This is probably always the case if p # q (i.e., also if p # q and both are smaller than two). 

2. For infinite compact Hausdorff K, a C(K) space is not uniformly homeomorphic to a reflexive Banach space or to an 

Li(p) space. 

3. 3. It is not known whether L,(O, 1) and Zr, are uniformly homeomorphic for somep, 1 < p < co, p # 2. Our guess is that 

they are not. 

We come to the main subject of Banach space theory: The classification under isomorphisms and isometries. The isomorphic 

questions are usually the harder ones since we know much more isometric invariants. For example, the extremal structure of the 

unit ball of the space, or its dual form is a very useful isometric invariant which is usually useless for study of isomorphic questions. 

As an example of the difference between isomorphic and isometric classifications, let K be a compact metric space and consider 

C(K), the continuous functions on K with the supremum norm. Banach, in his monograph, proved thefollowing. 

For compact metric H and K, H is homeomorphic to K if and only if C(H) is isometric to C(K). 

 
The theorem follows immediately from the fact that the extreme points of the unit ball of C(K) * in its weak* topology (i.e.,  the 

topology induced by C(K)) can be (in the real case) identified as a disjoint union of two copies of K. What analog do we have for 

isomorphism ? Very simple examples show that C(K) may be isomorphic to C(H) without K being homeomorphic to H. It is 

however surprising (and not easy to prove) that even the dimension of H is not an isomorphic invariant of C(H). Milutin [9] proved 

the following 

THEOREM. 

 
If H and K are two uncountable compact metric spaces then C(H) is isomorphic to C(K). 

 
The isomorphic classification of C(K) spaces with K countable compact metric spaces was done by Bessaga and Pelczynski [2]. 

There are uncountably many isomorphism classes of such spaces. The isomorphism invariant is obtained as follows: Let K’, K”,..., 

KcW),..., be the transfinite set of the derived sets of K. Since K is countable it does not have a nonempty perfect subset and thus 

K(O) = ,D for some countable 01. Let /3 be the smallest ordinal such that K(B) = O. The ordinal number /3~ (w the ordinal  of the 

set of positive integers) is a linear topological invariant of C(K) which completely determines the isomorphism class of the C(K) s 

p ace (K compact metric countable). 

Classification of C(K) spaces is far from being solved. (For some recent results concerning this question.We have already seen two 
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examples of questions which have been solved in the separable case and are still open for non separable Banach spaces (viz., the 

questions of topological classification of Banach spaces and the linear topological classification of C(K) spaces). In general the 

study of non separable Banach spaces (though certainly not important from the point of view of applications) poses very interesting 

and hard questions. This study, which became only recently an area of systematic research, already produced some nontrivial results. 

One aspect of nonseparable Banach space theory will be discussed in the next lecture. 

We make next some remarks on the problem of a structure theory for Banach spaces. At present there is no such theory available; 

we shall discuss here only a plausible candidate. It is quite clear that in any structure theory for Banach spaces the classical spaces, 

i.e., Lp(p) and C(K) spaces, must play a dominant role. This is true in particular for the classical sequence spaces c,, and II, , 1 < p 

< co. 
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