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Abstract :  This article describes how genetic algorithm (GA) can be efficiently used to fuzzy goal programming (FGP) 

formulation for optimal power flow in operational and planning phases of power system. In the proposed approach, the objectives 

of the problem for optimal power flow computation are fuzzily described. In the model formulation of the problem, the 

membership functions of the defined fuzzy goals are characterized first to measuring the degree of achievement of the specified 

aspiration levels of the objective goals in the decision making context. Then,  the goal achievement function under the minsum 

FGP to minimize the regret arises due to under-deviations from the highest membership value (unity) of the defined membership 

goals to the extent possible is constructed for making optimal power flow decision in the decision making environment. In the 

solution process, the proposed GA method is used in an iterative manner to reach a satisfactory decision on the basis of needs and 

desires of the decision maker (DM). To illustrate the potential use of the approach, the problem tested on IEEE 6-Generator 30-

Bus System is considered and the model solution is compared with the solutions obtained in the previous study.  

 

IndexTerms - Fuzzy goal programming, Goal programming, Genetic algorithm, Membership function, Optimal power flow.  

 

I. INTRODUCTION 

The Optimal Load Flow problem in power system was first studied by Carpentier [1] in the early 1960s. Thereafter, the 

developed model has been widely used as a powerful tool for power system operation and planning, and has appeared as a special 

field of study named ‘Optimal Power Flow (OPF)’ [2]. Now-a-days, most of the problems which involve the determination of the 

instantaneous optimal steady state of an electric power system are considered the OPF problems [3], [4], [5]. The study on the 

uses of nonlinear optimization techniques to OPF problems has been well documented in [6].  

Now, it may be noted that the conventional mathematical programming techniques are useful only to computation of specific 

aspects of OPF problems for power system operations in crisp decision environment. But, computational errors frequently arise 

there to solving many practical OPF problems involving uncertain values of model parameters. Here, in most of the cased of 

modeling the real-world decision problems, it may be mentioned that the necessary information to specify the exact model 

coefficients is imprecise in nature, because data sources are not always exact in nature as well as vagueness in human judgments 

are frequently created to provide exact data. As a matter of fact, power system models are subject to changes with the changes of 

decision environment to ensure the steady power flow. Again, in the conventional approaches to OPF problems, the limits of 

system constraints, physical limits and operating limits,  are given fixed values that would have to be controlled exactly in all 

times. But, relaxations on such limits are frequently needed to enhance the security of power systems. Now, in a practical decision 

situation, two types of inequality constraints, hard constraints and soft constraints can be taken into account. Here, it is to be 

followed that the limits on generating unit outputs are in the nature of hard constraints because there are physical limitations on 

the capacity of the generating units to produce active power. On the other hand, the limits of transmission line flow can be taken 

as soft, because small violations of these limits are acceptable if consideration of such a situation arises there, particularly during 

stressed situations (e.g., emergency or peak loaded situations) of the systems. Further, in the decision situation, operators 

normally desire to operate the system economically within the normal limits of power flow through a transmission line, and a 

small violation of it is acceptable if physically possible there. However, the emergency limits are always considered hard to take 

safety measures.  

In the above circumstances, to take the necessary measures to ensure the steady operation of power system, the fuzzy set 

theory, introduced by Zadeh [7] in 1965,in the area soft computing might be considered an efficient tool to resolve the OPF 

problems. The use of  fuzzy set-theoretic approaches to various practical decision systems, viz., traffic controlling, scheduling and 

robot manufacturing , have already been well documented in the literature. In the field of power engineering, although fuzzy 

programming (FP) [8]   methods have been applied to some areas of OPF problems [9], [10], [11], [12], the extensive study in this 

field is yet to be widely documented in the literature.  

In this article, the FGP [13], [14], [15] approach as an extension of conventional goal programming ( GP) [16], [17] for 

multiobjective decision making (MODM) in the field of FP is considered for modeling and solving OPF problems having the 

characteristics of nonlinear programming in an uncertain decision environment. Now, it may be noted that the conventional 

approximation method is generally used to nonlinear FGP problems [14], but computational load is inherently involved there and 

local optimal solutions are often achieved there in actual practice. 

To overcome the computational complexity due to nonlinearity in practical decision problems, GAs [18] appear as a robust 

tool to searching satisfactory decisions for MODM problems. GAs to real-world multiobjective decision problems have been 

studied in [15] in the past. But,, the study on the use of using GAs to FGP problems are at an early stage. Again, the GA based 

FGP technique to Load Flow problems is yet to appear in the literature. In the process of solving the present FGP formulation of 
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the problem of optimal planning of electric power generation and dispatch with the various objectives and constraint functions, an 

GA scheme is introduced to reach a satisfactory decision in the decision making environment. 

The simulation result of IEEE 6-generator 30-bus System is considered to expound the potential use of the proposed approach.

  

II. FGP PROBLEM FORMULATION   

In a fuzzy decision making environment, instead of crisp description of the objectives and constraints, the fuzzy version of 

them is taken into consideration and that depends on the needs and desires of the DM in the decision making situation. 

In the present FGP formulation of the problem, fuzzy version of achieving the aspired levels of the objective goals is 

considered in the decision making horizon. 

Now, the fuzzy goal description is presented in the following Section A. 

A. Definition of Fuzzy Goal 

Let bk be the imprecise aspiration level of the k-th objective Fk (X), (k = 1,2,...., K). Then the fuzzy goals may appear in one of 

the forms: 

Fk (X) & bk and Fk(X) . bk , 

where X is the vector of decision variables, and where & and  . indicate the fuzziness of the aspiration levels, and is to be 

understood as ‘essentially greater than’ and  ‘essentially less than’, respectively, in the sense of Zimmermann[8]. 

Now, in the field of FP, the fuzzy goals are characterized by their respective membership functions. 

B. Characterization of Membership Function 

Let kt  and tuk be the lower- and upper-tolerance ranges, respectively, for achievement of the aspired level bk of the 

 k-th fuzzy goal. Then, the membership function, say kμ (X), for the fuzzy goal Fk(X) can be characterized as [8]. 

For & type of restriction, kμ (X) takes the form: 
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where (bk - kt ) represents the lower-tolerance limit for achievement of the stated fuzzy goal.  

Again, for . type of restriction, kμ (X)  becomes: 
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where (bk + tuk) represents the upper-tolerance limit for achievement of the stated fuzzy goal.  

Then, the FGP model formulation for the defined membership functions is presented in Section C. 

C. FGP Model Formulation 

In FGP model formulation, the membership functions are transformed into membership goals by assigning the highest degree 

(unity) as the aspiration level and introducing under- and over-deviational variables to each of them. Then, in the goal 

achievement function, the under-deviational variables are minimized on the basis of importance of achieving the aspired goal 

levels in the decision making context. 

Now, since multiple goals are involved with the proposed problem, and they often conflict each other for achievement of their 

aspired goal levels, a minsum FGP [19] model for goal achievement is considered in the decision making situation. 
 

The generic form of the minsum FGP formulation of a problem appears as: 

Find X (x1, x2,…, xi)  so as to: 
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(3)                                                                                                                               

where Z represents the fuzzy achievement function consisting of the weighted under- deviational variables 

kd , and where 


kk d,d  represent the under- and over-deviational variables associated with the k-th membership goal. )0(W

k
 represents the 

relative weight of importance [19] of achieving the objectives  goal to their  aspired levels 
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Now, the GA scheme used in the process of solving the FGP model in (3) is presented in the following Section III. 

 

III. DESIGN OF GA SCHEME  

In the literature of GAs, there is a variety of schemes [18] for generating new populations with the use of different operators: 

selection, crossover and mutation. Here, the basic steps of the GA procedure with the core functions adopted in the solution 

search process are presented in the following steps. 

 

Step 1. Representation and Initialization 

Let E denote the binary coded representation of a chromosome in a population as  E = {x1, x2, …,xn}. The population size is 

defined by pop_size, and pop_size chromosomes are randomly initialized in its search domain. 

 

Step 2. Fitness function  

The fitness value of each chromosome is judged by the value of an objective function. The fitness function is defined as     

     eval (Ev) = (Z)v = ,}dw{
K

1k
vikik



                                          (4) 

where the subscript ‘v’ refers to the fitness value of the selected v-th chromosome, v=1,2,…,pop_size. The best chromosome with 

largest fitness value at each generation is determined as 

E* =  min{eval (Ev) | v = 1, 2, ..., pop_size}                             (5) 

in searching out the best value of the objective. 

 

Step 3. Selection 

The simple roulette-wheel scheme [18] is used for selecting two parents for mating purposes in the genetic search process. 

 

Step 4. Crossover 

The parameter Pc is defined as the probability of crossover. The arithmetic crossover operator (single-point crossover) of a genetic 

system is applied here in the sense that the resulting offspring always satisfy the given linear constraints set, say 

 S (≠). Here a chromosome is selected as a parent, if for a defined random number r  [0, 1], r < Pc is satisfied. 

Here single-point crossover for two parents E1 and E2  S is defined as:  

X1 = 1E1 + 2E2,    X2 = 2E1 + 1E2, 

for producing two offspring X1 and X2, where, 1,  2  0 with 1 + 2 = 1 always belong to S, and where S is a convex set. 

 

Step 5.  Mutation 

As in the conventional GA scheme, a parameter Pm of the genetic system is defined as the probability of mutation. The mutation 

operation is performed on a bit-by-bit basis, where for a random number r  [0, 1], a chromosome is selected for mutation 

provided that r < Pm. 

 

Step 6.  Termination 

The execution of the whole process terminates when the fittest chromosome is reported at a certain generation number in the 

solution search process.  

Now, the proposed optimal planning of electric power generation and dispatch problem is described in Section IV.  

 

IV. PROBLEM DESCRIPTION   

In the environment of optimal power flow operational planning with transmission constraints and load characteristics in an 

economic way, two competing objective functions, pool purchase cost and environment emission, for minimizing them subject to 

certain equality and inequality constraints are generally raised.  

The variables and parameters and notations involved with the problem are defined in the Table 4.1. 

 

 

Table 4.1: List of Variables, Parameters and notations  
 

PGi : Active output of generator i 

QGi : Reactive output of generator i 

Pi : Active power at the bus i 

Qi : Reactive power at the bus i 

Pi
s : Active power specified value at the bus i 

Qi
s : Reactive power specified value at the bus i 

│Vi│ : Voltage magnitude of bus i 

│Vi│s : Voltage specified value of bus i 

N : Number of generators 

PD : Total load capacity 
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hr 

p.u 

: Hour 

: per unit 

 

Now, the objectives and system constraints are described as follows: 
 

A. Definitions of Objective Functions 

  1) Fuel Cost Function: 

The fuel cost of a generator usually takes the quadratic functional form for real power output. 

The cost function for the i-th  generator appears as: 

,PPC
iGii

2

Giii


                                                                                                                 (6)                           

where 

Ci: fuel cost (in $/hr) of generator i, 

αi, βi, γi : fuel cost coefficients of generator i, 

PGi: power generated (in  p.u.) by generator i. 
  

Then the objective function of fuel cost minimization can be presented as: 

     
,)PP(C iGii

2

Gii

N

1i


        

       (7)                                         
 

where C indicates total fuel cost of all the generators, N is the total number of generators in the power system. 

  2) Emission-discharge function:  

The atmospheric pollutants such as sulphur Oxides ( Sox ) and nitrogen oxides ( NOx ) caused by fossil-fueled thermal units 

are considered separately. Here, emission-discharge function associated with i-th generator can be expressed as:  

      
,)Peexp(d)cPbPa(E GiiiiGii

2

Giii 
                                                                        (8)   

where  

Ei : Emission (in ton/ hr) of generator i. 

ai, bi, ci, di, ei: emission characteristic Coefficients of generator i.  

Then, the objective function for emission-discharge quantity can be presented as: 

,)Peexp(d)cPbPa(E GiiiiGii
2
Gii

N

1i




                                                                                   (9) 

where E is the total emission of all the generators, N represents the total number of generators in the power system. 

 
 

B. Definitions of System Constraints 
 

In the context of optimizing a power system in a static state with given objectives, certain equality constraints inherently 

involved there are defined as follows: 

i) For a load bus, the constraints appear as: 

Pi – Pi
s = 0  ,                                                                                              (10) 

Qi – Qi
s = 0,                                                                                  (11)            

           i= 1,2, …, BL             

where BL=Total Number of load buses. 

ii) For the case of a generator bus,  

,0VV
s

ii 
       i= 1,2, …, BG                                                                               (12)                                              

 

where BG= Total number of Generator buses. 

iii) Power balance constraint: the total power generation must cover the total demand PD, if transmission losses are neglected. 

So, to make a balance of the active power, the constraint takes the form: 

,0PP
N

1i
DGi




                                                                                          (13)    

where N is the total number of generators in the power system and PD is total load demand (in p.u.).  
 

Following the conventional power generation and dispatch, the constraints on the generator outputs and bus voltage 

magnitudes can be considered as: 

,PPP maxGiGiminGi 
                                                             (14) 

,QQQ maxGiGiminGi 
                                                                           (15)

 

,VVV maxiimini 
                                                                           (16) 

where min and max stand for minimum and maximum . 
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Now, the FGP model formulation of the problem is presented in the following Section V.  

V. FGP MODEL OF THE PROBLEM   

In the decision situation, the fuzzy goals of the objectives (7) and (9) can be defined by assigning the imprecise aspiration 

levels to each of them.   

Here, the fuzzy goal for cost-minimization objective-function takes the form: 

)PP(C iGii

2

Gii

N

1i




.Cg                                                                                                 (17) 

The fuzzy goal for emission-discharge minimization objective function takes the form: 

)Peexp(d)cPbPa(E GiiiiGii

2

Gii

N

1i




.Eg                                                                                                     (18) 

 In the above two expressions, Cg and Eg are the fuel-cost and emission-discharge limits, respectively. 

  Considering TCg and TEg as the upper-tolerance limits of achieving the respective fuzzy goals, the associated membership goals 

can easily be constructed by following the expression in (2). 

The efficient use of the proposed approach is illustrated by a demonstrative case example in the Section VI. 

VI.  DEMONSTRATIVE CASE EXAMPLE      

The standard IEEE 30-bus 6-generator test system is considered to illustrate the potential use of the approach.  

The pictorial representation of a single-line diagram of IEEE 30-bus test system is displayed in the Fig. 1.  
 

 
FIG. 1. IEEE 6-generator and 30-bus system  

 

The system shown in Fig. 1 has 6 generators and 41 lines and the total system demand for the 21 load buses is 2.834 p.u.  The 

data for the aspiration levels and tolerance limits of the fuzzy goals and also the parameter values associated with the problem are 

presented in Table 6.1 – Table 6.5. 
 

Table 6.1: Data Description of Fuzzy Goals and Their Tolerance Limit 
 

Goal Aspiration Level 
Tolerance Limit 

Upper 

Fuel-cost Goal  

( $/h) 
600 620 

Emission-discharge Goal 

(ton/h) 
0.21 0.24 

 

Table 6.2: Generators Cost Coefficients Data  
 

GENERATOR NO. 
(i) 

iGii

2

Gii
PP   

α β γ 

1 100 200 10 

2 120 150 10 

3 40 180 20 

4 60 100 10 

5 40 180 20 

6 100 150 10 

 

Table 6.3: Generators Emission Coefficients Data 
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GENERATOR NO. (i) 
)Peexp(d)cPbPa GiiiiGii

2

Gii   

a b c d e 

1 
4.091 

×10-2 

-5.554 

×10-2 

6.490 

×10-2 
2.0×10-4 2.857 

2 
2.543 

×10-2 

-6.047 

×10-2 

5.638 

×10-2 
5.0×10-4 3.333 

3 
4.258 

×10-2 

-5.094 

×10-2 

4.586 

×10-2 
1.0×10-6 8.000 

4 
5.326 

×10-2 

-3.550 

×10-2 

3.380 

×10-2 
2.0×10-3 2.000 

5 
4.258 

×10-2 

-5.094 

×10-2 

4.586 

×10-2 
1.0×10-6 8,000 

6 
6.131 

×10-2 

-5.555 

×10-2 

5.151 

×10-2 

1.0×10-5 

 
6.667 

 

Table 6.4: Data Description of Generator Limit (in p.u) 
 

GENERATOR NO. 
(i) 

PGi min 

 
PGi max 

 
QGi min 

 
QGi max 

 

Vi min 

 
Vi max 

 

1 0.05 0.50 -0.15 0.45 1.000 1.071 

2 0.05 0.60 -0.10 0.40 1.000 1.082 

3 0.05 1.00 -0.15 0.50 1.000 1.010 

4 0.05 1.20 -0.15 0.625 1.000 1.010 

5 0.05 1.00 -0.2 0.6 1.000 1.045 

6 0.05 0.60 - - 1.000 1.060 

 

Table 6.5: Specified Bus Data Description  
 

Bus Type Active Power(Pi
S) Reactive Power (Qi

S) Bus Voltage (|Vi|
S) 

1 P-Q -0.106 -0.019 - 

2 P-Q -0.024 -0.009 - 

3 P-Q 0.0 0.0 - 

4 P-Q 0.0 0.0 - 

5 P-Q -0.035 -0.023 - 

6 P-Q 0.0 0.0 - 

7 P-Q -0.087 -0.067 - 

8 P-Q -0.032 -0.016 - 

9 P-Q 0.0 0.0 - 

10 P-Q -0.175 -0.112 - 

11 P-Q -0.022 -0.007 - 

12 P-Q -0.095 -0.034 - 

13 P-Q -0.032 -0.009 - 

14 P-Q -0.090 -0.058 - 

15 P-Q -0.035 -0.018 - 

16 P-Q -0.082 -0.025 - 

17 P-Q -0.062 -0.016 - 

18 P-Q -0.112 -0.075 - 

19 P-Q -0.058 -0.020 - 

20 P-Q 0.0 0.0 - 

21 P-Q -0.228 -0.109 - 

22 P-Q 0.0 0.0 - 

23 P-Q -0.076 -0.016 - 

24 P-Q -0.024 -0.012 - 

25 P-V 0.0 0.0 1.071 

26 P-V 0.0 0.0 1.082 

27 P-V -0.300 - 1.010 

28 P-V -0.942 - 1.010 

29 P-V -0.217 - 1.045 

30 S 0.0 0.0 1.060 

 

  

Now, incorporating the data in Tables II – IV, the membership goals of the defined fuzzy objectives are obtained as follows: 
 

i) Fuel-cost Goal 

The fuel-cost goal appears as: 

1dd
20

F620
11

1 
   ,      

where  

F1 = 100PG1
2+200PG1+10+120PG2

2+150PG2+10+40PG3
2   + 180PG3+20+60PG4

2+    100PG4+10+40PG5
2 +180PG5+10+100PG6

2 + 

150PG6+10                 

(19) 
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ii)  Emission-discharge Goal  

     The emission-discharge goal takes the form: 

  1dd
03.0

F24.0
22

2 
  ,   

where  

F2 = 10-2 [4.091PG1
2-5.554PG1+6.490+2.4×10-4 exp(2.857PG1)+2.243PG2

2-6.047PG2+5.638+5.0×10-4 exp(3.333PG2)+4.258PG3
2-

5.094PG3+4.586+1.0×10-6 exp(8.000PG3)+5.326PG4
2-3.55PG4+3.380+2.0×10-3 exp(2.000PG4)+4.258PG5

2-5.094PG5+4.586+1.0×10-6 

exp(8.000PG5)+6.131PG6
2-5.555PG6+5.515+1.0×10-5 exp(6.667PG6)               

 (20) 

Again, using the data in Tables V and VI, the system constraints corresponding to (10) – (16) can be found as follows:  

a) For the case of load bus, 

     Pi – Pi
s = 0   

    and  Qi – Qi
s = 0        

   are defined for  i= 1,2,3,5,7,8,10,11,…,19,21, 23,24, 27, 29. 

    Then, the constraints appear are obtained as 

        P3 = 0,    P5 + 0.035= 0, 

        P7 + 0.087= 0,   P8 + 0.032= 0 

P10 + 0.175= 0,  P11 + 0.022= 0, 

P12 + 0.095= 0,  P13 + 0.032= 0, 

P14 + 0.090= 0,  P15 + 0.035= 0, 

P16 + 0.082= 0,  P17 + 0.062= 0, 

P18 + 0.112= 0,  P19 + 0.058= 0, 

P21 + 0.228= 0,  P23 + 0.076= 0, 

P24 + 0.024= 0,  P27 + 0.300= 0, 

P29 + 0.217= 0. 

                (21) 

and 

Q1 + 0.019= 0,  Q2 + 0.009= 0, 

Q3 = 0,    Q5 + 0.023= 0, 

       Q7 + 0.067= 0,                     Q8 + 0.016= 0 

Q10 + 0.112= 0,  Q11 + 0.007= 0, 

Q12 + 0.034= 0,  Q13 + 0.009= 0, 

Q14 + 0.058= 0,  Q15 + 0.018= 0, 

Q16 + 0.025= 0,  Q17 + 0.016= 0, 

Q18 + 0.075= 0,  Q19 + 0.020= 0, 

Q21 + 0.109= 0,  Q23 + 0.016= 0, 

Q24 + 0.012= 0,  Q27 = 0, 

     Q29 = 0. 

      (22) 

b) In case of a generator bus, 

0VV
s

ii 
    is defined for   i= 25,26, …,30. 

The expressions are obtained as:  

,0071.1V25  ,0082.1V26 
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,0010.1V27  ,0010.1V
28


 

,0045.1V29  0060.1V30 
. 

      (23) 

c) The power balance constraint is obtained as: 

 (PG1+PG2+PG3+PG4+PG5+PG6) – 2.834=0 

d) The generator output constraints are defined as: 

,50.0P05.0
1G


      
,60.0P05.0

2G
 ,00.1P05.0

3G


 

,20.1P05.0
4G
 ,00.1P05.0

5G
 60.0P05.0 6G 

 

        (24) 

 

Similarly, 

,45.0Q15.0
1G
 ,40.0Q10.0

2G
 ,50.0Q15.0

3G


 

,625.0Q15.0
4G
 6.0Q2.0 5G 

 

     (25) 

  And 

,071.1V000.1
1
 ,082.1V000.1

2
 ,010.1V000.1

3


 

,010.1V000.1
4
 ,045.1V000.1

5
 060.1V000.1 6 

 

      (26) 

Now, following the expression in (3) and for the stated membership goals of the problem, the executable mimnsum FGP model 

is obtained as:  

   Find {PG1, PG2, PG3, PG4, PG5, PG6} so as to: 

Minimize Z = ]d5.0d5.0[ 21

 

 

       

and satisfy the given membership goal expressions in (19)  

and (20), subject to the constraints given in (21) – (26). 

             (27) 

Now, since GA is a goal satisficer in [18] rather than objective optimizer, the GA scheme described in Section III can be 

employed here to minimize the achievement function ‘Z’ in (27), and thereby to reach a satisfactory solution. Here the goal 

achievement functions ‘Z’ appears as the fitness function in the GA solution search process.  

In the genetic search process, the following parameter values are introduced. 

 probability of crossover Pc = 0.7 

 probability of mutation Pm = 0.08 

 population size = 50 

 chromosome length = 50 

The GA based program is designed in Programming Language C++. The execution is done in an Intel Pentium IV with 2.66 

GHz. Clock-pulse and 1GB RAM. The optimal solution is reached after 200 generations. 

 

The model solution is presented in the Table 6.6. 

Table 6.6: Solutions under the proposed model 
 

Generator Output (in p.u) 

PG1 0.2478040             

PG2 0.4275178             

PG3 0.5381419            

PG4 0.7009985             

PG5 0.5381419            

PG6 0.3813958            

Total Generation Cost            ($/hr) 601.20 

Total Emission                    (ton/hr) 0.232 
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The achieved membership values are: µC = 1  and   µE = 0.67. 

 

The solutions obtained in [20] by using the €-constrained technique with the consideration of individual optimization of the 

defined objectives are presented in Table 6.7.  
 

Table 6.7: Solutions under the €-constrained technique 

 
 

Individual Optimization Scheme Total generation cost ($/hr) Total emission (ton/hr) 

For Generation Cost Minimization 606.04 0.2215 

For Emission Minimization 645.88 0.1952 

 

A comparison of the model solution with the results in the Table VIII reflects that a better compromise solution is achieved 

here under the proposed approach in terms of achieving the aspired goal levels of the objectives of the problem.     

The comparison between two different solution approaches 

 is presented in the following Fig 2 and Fig 3. 

 

 
 

Fig. 2. Graphical representation of solution comparison of Total Generation Cost. 
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Fig. 3. Graphical representation of solution comparison of Total Emission. 

 

 

It is apparent  from the Fig 2 and Fig 3 that a better power generation planning is achieved here under the proposed GA 

approach over  the €-constrained technique from the view point of minimizing both the power generation cost and emission 

hazard in the decision making environment. 

VII. CONCLUSIONS    

In this paper, an GA based FGP approach to solve the multi-objective optimal planning of electric power generation and 

dispatch is presented. 

The main advantage of the proposed approach is that the computational load and approximation error inherent to conventional 

linearization approaches can be avoided here with the use of the GA based solution method.  

Again, since the various objectives involved with the optimal power generation and dispatch problem often conflict each other 

in achieving the aspired goal levels, the use of the GA search method as a global one and goal satisficer offers the most 

satisfactory decision in the decision making environment.  

In the proposed problem, the multiobjective optimization problem with competing fuel cost and environmental impact are only 

considered. In the framework of the model, an extension of considering other objectives and environmental constraints may be 

take place in power generation and dispatch planning situation, which is the problem in future study.    

Finally, it is hoped that the solution approach presented here may lead to future research for proper planning in the context of 

solving optimal power flow and dispatch problems on the basis of needs in society.  
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