SOLUTION OF DIFFUSION EQUATION WITH CONSTANT CO-EFFICIENT IN CYLINDRICAL AND SPHERICAL COORDINATES

R.SURIYA, GUIDE: R.VAITHYALINGAM

Abstract: This paper aims to apply the variables separation Method to solve the three-dimensional Diffusion equation with constant coefficient in cylindrical and spherical coordinates. Illustrative some examples are related to known results.

Keywords: cylindrical coordinates, spherical coordinates

Basic definitions:

The diffusion equation in one dimensional:

$$
\frac{\partial u(x, t)}{\partial t}=\alpha \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

On the interval $x \in[0, L]$ with initial condition

$$
u(x, 0)=f(x), \quad \forall x \in[0, L]
$$

And dirichlet boundary condition

$$
u(0, t)=u(L, t)=0 \quad \forall t>0
$$

The diffusion equation in two dimensional:

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Where $u=u(x, y, t), x \in\left[a_{x}, b_{x}\right], y \in\left[a_{y}, b_{y}\right]$, the second-order derivative in space leads to a demand for two boundary conditions.

The diffusion equation in three dimensional:

$$
\frac{\partial T}{\partial t}=\alpha \nabla^{2} \mathrm{~T}
$$

Where T is a temperature and α is a diffusion coefficient.

Bessel differential equation:

The Bessel differential equation is the linear second-order ordinary differential equation given by

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0
$$

SOLUTION OF DIFFUSION EQUATION IN CYLINDRICAL CO-ORDINATES

Consider a three-dimensional diffusion equation:

$$
\frac{\partial T}{\partial t}=\alpha \nabla^{2} \mathrm{~T}
$$

Where T is a temperature and α is a diffusion coefficient
In cylindrical co-ordinates ($\mathrm{r}, \theta, \mathrm{z}$) the above equation becomes

$$
\begin{equation*}
\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}+\frac{\partial^{2} T}{\partial z^{2}} \tag{1.1}
\end{equation*}
$$

Where $\mathrm{T}=\mathrm{T}(\mathrm{r}, \theta, \mathrm{z}, \mathrm{t})$
Let us assume separation of variables in the form $\mathrm{T}(\mathrm{r}, \theta, \mathrm{z}, \mathrm{t})=\mathrm{R}(\mathrm{r}) \mathrm{H}(\theta) \mathrm{Z}(\mathrm{z}) \beta(\mathrm{t})$
Substitute in equation (1.1), it becomes

$$
R^{\prime \prime} H Z \beta+\frac{1}{r} R^{\prime} H Z \beta+\frac{1}{r^{2}} H^{\prime \prime} R Z \beta+Z^{\prime \prime} R H \beta=\frac{\beta^{\prime}}{\alpha} R H Z
$$

Dividing by RHZ β

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{H^{\prime \prime}}{H}+\frac{Z^{\prime \prime \prime}}{Z}=\frac{1}{\alpha} \frac{\beta^{\prime}}{\beta}=-\lambda^{2} \text { (say) }
$$

Where $-\lambda^{2}$ is a separation constant. Then

$$
\begin{equation*}
\beta^{\prime}+\alpha \lambda^{2} \beta=0 \tag{1.2}
\end{equation*}
$$

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{H^{\prime \prime}}{H}+\lambda^{2}=-\frac{Z^{\prime \prime}}{Z}=-\mu^{2}(\text { say })
$$

where μ^{2} is a separation constant. Then

$$
\begin{equation*}
Z Z^{\prime \prime}-\mu^{2} Z=0 \tag{1.3}
\end{equation*}
$$

Thus the equation determining Z, R and H becomes

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{H^{\prime \prime}}{H}+\lambda^{2}+\mu^{2}=0
$$

(or)

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}++\left(\lambda^{2}+\mu^{2}\right) r^{2}=-\frac{H^{\prime \prime}}{H}=\mathrm{v}^{2} \text { (say) }
$$

Therefore,

$$
\begin{align*}
& H^{\prime \prime}+v^{2} \mathrm{H}=0 \tag{1.4}\\
& R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left[\left(\lambda^{2}+\mu^{2}\right)-\frac{v^{2}}{r^{2}}\right] \mathrm{R}=0 \tag{1.5}
\end{align*}
$$

Equation (1.2)-(1.4) have particular solutions of the form
$\beta=e^{-\alpha \lambda^{2} t}$
$\mathrm{H}=\mathrm{C} \cos v \theta+\sin v \theta$
$\mathrm{Z}=\mathrm{A} e^{\mu z}+B e^{-\mu z}$
The diffusion equation (1.5) $R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left[\left(\lambda^{2}+\right) \mu^{2}-\frac{v^{2}}{r^{2}}\right] \mathrm{R}=0 \quad$ is called bessel's equation of order v and its general solution is

$$
\mathrm{R}(\mathrm{r})=\mathrm{C}_{1} \mathrm{~J}_{\mathrm{V}}\left(\sqrt{\left(\lambda^{2}+\mu^{2} r\right)}\right)+\mathrm{C}_{2} \mathrm{yv}_{\mathrm{V}}\left(\sqrt{\left(\lambda^{2}+\mu^{2} r\right)}\right)
$$

Where $\mathrm{J}_{\mathrm{V}}(\mathrm{r})$ and $\mathrm{y}_{\mathrm{V}}(\mathrm{r})$ are Bessel functions of order v of the first and second kind, respectively.
Equation (1.5) is singular when $\mathrm{r}=0$. The physically meaningful solutions must be twice continuously differentiable in $0 \leq \mathrm{r} \leq \mathrm{a}$
Hence, Equation (1.5) has only one bounded solution,

$$
\mathrm{R}(\mathrm{r})=\mathrm{J}_{\mathrm{V}}\left(\sqrt{\left(\lambda^{2}+\mu^{2} r\right)}\right)
$$

Finally, the general solution of the equation (1.1) is given by

$$
\mathrm{T}(\mathrm{r}, \theta, \mathrm{z}, \mathrm{t})]=e^{-\alpha \lambda^{2} t}\left[\mathrm{~A} e^{\mu z}+B e^{-\mu z}\right][\mathrm{C} \cos v \theta+D \sin v \theta] \mathrm{J}_{\mathrm{V}}\left(\sqrt{\left(\lambda^{2}+\mu^{2} r\right)}\right)
$$

EXAMPLE: 1

Determine the temperature $T(r, t)$ in the infinite cylinder $0 \leq r \leq a$ when the initial temperature is $T(r, 0)=f(r)$ and the surface $\mathrm{r}=\mathrm{a}$ is maintained at 0° temperature

Solution:

The governing PDE from the data of the problem is

$$
\frac{\partial T}{\partial t}=\alpha \nabla^{2} \mathrm{~T}
$$

Where T is a function of r and t only. Therefore

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}=\frac{1}{\alpha} \frac{\partial T}{\partial t} \tag{1.6}
\end{equation*}
$$

The corresponding boundary and initial conditions are given by
Boundary condition: $\mathrm{T}(\mathrm{a}, \mathrm{t})=0$
Initial condition $\quad: \mathrm{T}(\mathrm{r}, 0)=\mathrm{f}(\mathrm{r})$

The general solution of equation (1.6) is

$$
T(r, t)=A \exp \left[-\alpha \lambda^{2} t\right] J_{o}(\lambda r)
$$

Using the boundary condition, we obtain

$$
\mathrm{J}_{0}(\lambda \mathrm{a})=0
$$

Which has an infinite no. of roots, $\varepsilon_{\mathrm{n}}(\mathrm{n}=1,2,3 \ldots \infty)$. Thus, we get from the superposition principle The equation is

$$
T(r, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-a \varepsilon_{\mathrm{n}}^{2} t\right) J_{0}\left(\varepsilon_{\mathrm{n}} \mathrm{r}\right)
$$

Using initial condition $T(r, 0)=f(r)$ we get,

$$
\mathrm{f}(\mathrm{r})=\sum_{n=1}^{\infty} \operatorname{An} \mathrm{J}_{0}\left(\varepsilon_{\mathrm{g}} \mathrm{r}\right)
$$

to compute A_{n} multiply both sides by $\mathrm{r} \mathrm{J}_{0}\left(\varepsilon_{\mathrm{mr}}\right)$ and integrate with respect to r

$$
\begin{aligned}
\int_{0}^{a} r f(r) \mathrm{J}_{0}\left(\varepsilon_{\mathrm{m}} \mathrm{r}\right) d r & =\sum_{n=1}^{\infty} \mathrm{A}_{\mathrm{n}} \int_{0}^{a} r \mathrm{~J}_{0}\left(\boldsymbol{\varepsilon}_{\mathrm{m}} \mathrm{r}\right) \mathrm{J}_{0}\left(\boldsymbol{\varepsilon}_{\mathrm{g}} \mathrm{r}\right) d r \\
& =\left\{\begin{array}{cl}
0 & \text { for } \mathrm{n} \neq \mathrm{m} \\
\mathrm{~A}_{\mathrm{m}}\left(\frac{a^{2}}{2}\right) \mathrm{a}^{2} \mathrm{~J}_{\mathrm{l}^{2}}\left(\varepsilon_{\mathrm{m}} \mathrm{a}\right) & \text { for } \mathrm{n}=\mathrm{m}
\end{array}\right.
\end{aligned}
$$

Which gives

$$
\mathrm{A}_{\mathrm{m}}=\frac{2}{a^{2} J_{1}^{2}\left(\varepsilon_{\mathrm{m}} \mathrm{a}\right)} \int_{0}^{a} u \mathrm{f}(\mathrm{u}) \mathrm{J}_{0}\left(\varepsilon_{\mathrm{m}} \mathrm{u}\right) d u
$$

Hence the final solution of the problems is

$$
\mathrm{T}(\mathrm{r}, \mathrm{t})=\frac{2}{a^{2}} \sum_{m=1}^{\infty} \frac{\mathrm{J} 0\left(\varepsilon_{m} \mathrm{r}\right)}{\mathrm{J}_{1}{ }^{2}\left(\varepsilon_{m} \mathrm{a}\right)} \exp \left(-\alpha \varepsilon_{\mathrm{m}}{ }^{2} \mathrm{t}\right)\left[\int_{0}^{a} u f(u) J_{0}\left(\varepsilon_{\mathrm{m}} \mathrm{u}\right) d u\right]
$$

SOLUTION OF DIFFUSION EQUATION IN SPHERICAL COORDINATES

Consider a 3-D diffusion equation,

$$
\frac{\partial T}{\partial t}=\alpha \nabla^{2} \mathrm{~T}
$$

Let $\mathrm{T}=\mathrm{T}(\mathrm{r}, \theta, \phi, \mathrm{t})$

This equation can be written in spherical coordinates,

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{2}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} T}{\partial \Phi^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t} \tag{2.1}
\end{equation*}
$$

This equation is separated by assuming the temperature function of the form

$$
\begin{equation*}
\mathrm{T}=\mathrm{R}(\mathrm{r}) \mathrm{H}(\theta) \Phi(\phi) \beta(\mathrm{t}) \tag{2.2}
\end{equation*}
$$

Substituting (2.2) in (2.1), we get

$$
\frac{R^{\prime \prime}}{R}+\frac{2}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2} \sin \theta} \frac{1}{H} \frac{d}{d \theta}\left(\sin \theta \frac{d H}{d \theta}\right)+\frac{1}{\Phi r^{2} \sin ^{2}(\theta)} \frac{d^{2} \Phi}{d \phi^{2}}=\frac{1}{\alpha} \frac{\beta^{\prime}}{\beta}=-\lambda^{2} \text { (Say) }
$$

Where λ^{2} is a separation constant. Thus,

$$
\begin{gathered}
\frac{d \beta}{d t}+\lambda^{2} \alpha \beta=0 \\
\int \frac{d \beta}{d t}=-\lambda^{2} \alpha \int d t \\
e^{\log \beta}=e^{-\lambda^{2} \alpha t}
\end{gathered}
$$

$$
\begin{equation*}
\beta=C_{1} e^{-\lambda^{2} \alpha t} \tag{2.3}
\end{equation*}
$$

Also,

$$
r^{2} \sin ^{2}(\theta)\left[\frac{1}{R}\left(\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}\right)+\frac{1}{r^{2} \sin \theta} \frac{1}{H} \frac{d}{d \theta}\left(\sin \theta \frac{d H}{d \theta}\right)+\lambda^{2}\right]=\frac{-1}{\Phi} \frac{d^{2} \Phi}{\mathrm{~d} \Phi^{2}}=\mathrm{m}^{2} \text { (say) }
$$

Which gives

$$
\frac{d^{2} \Phi}{\mathrm{~d} \phi^{2}}+m^{2} \Phi=0
$$

Whose solution is

$$
\begin{equation*}
\Phi(\phi)=\mathrm{C}_{1} e^{i m \phi}+\mathrm{C}_{2} e^{-i m \phi} \tag{2.4}
\end{equation*}
$$

The other separated equation is

$$
\frac{1}{R}\left(\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}\right)+\frac{1}{r^{2} \sin \theta} \frac{1}{H} \frac{d}{d \theta}\left(\sin \theta \frac{d H}{d \theta}\right)+\lambda^{2}=\frac{m^{2}}{r^{2} \sin ^{2}(\theta)}=\mathrm{n}(\mathrm{n}+1)
$$

On Re-arrangement, this equation can written as

$$
\begin{equation*}
R^{\prime \prime}+\frac{2}{r} R^{\prime}+\left\{\lambda^{2}-\frac{n(n+1)}{r^{2}}\right\} R=0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\text { (or) } \frac{d^{2} H}{d \theta^{2}}+\cot \theta \frac{d H}{d \theta}+\left\{n(n+1)-\frac{m^{2}}{\sin ^{2}(\theta)}\right\} H=0 \tag{2.6}
\end{equation*}
$$

$$
\text { Let } \mathrm{R}=(\lambda r)^{-1 / 2} \Psi(r) \text { then } \mathrm{Eq}(2.6) \text { becomes }
$$

$$
=(\lambda r)^{-\frac{1}{2}}\left[\Psi^{\prime \prime}+\frac{1}{r} \Psi^{\prime}(r)+\left\{\lambda^{2}-\frac{(n+1 / 2)^{2}}{r^{2}}\right\} \Psi\right]=0 \quad \text { since }(\lambda r) \neq 0
$$

We have

$$
\Psi^{\prime \prime}(r)+\frac{1}{r} \Psi^{\prime}(r)+\left\{\lambda^{2}-\frac{(n+1 / 2)^{2}}{r^{2}}\right\} \Psi(r)=0
$$

The above equation is the Bessel's equation of order ($n+1 / 2$),
whose solution is

$$
\Psi(r)=A J_{n+1 / 2}(\lambda r)+B Y_{n+1 / 2}(\lambda r)
$$

$$
\begin{equation*}
R(r)==(\lambda r)^{-\frac{1}{2}}\left[A J_{n+1 / 2}(\lambda r)+B Y_{n+1 / 2}(\lambda r)\right] \tag{2.7}
\end{equation*}
$$

Where Jn and Yn are Bessel's function of first and second kind respectively.
Now equation(2.7) can be put in a more convenient form by introducing a new independent variable

$$
\mu=\cos \theta\left(\cot \theta=\mu / \sqrt{1-\mu^{2}}, \frac{d H}{d \theta}=-\sqrt{1-\mu^{2}} \frac{d H}{d \mu^{\prime}}, \frac{d^{2} H}{d \theta^{2}}=\left(1-\mu^{2}\right) \frac{d^{2} H}{d \mu^{2}}-\mu \frac{d H}{d \mu}\right)
$$

Thus(2.6) equation becomes

$$
\left(1-\mu^{2}\right) \frac{d^{2} H}{d \mu^{2}}-2 \mu \frac{d H}{d \mu}+\left[n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right] H=0
$$

Which is an associated legendra differential equation. Whose solution is

$$
H(\theta)=A_{1} P_{n}{ }^{m}(\mu)+A_{2} Q_{n}{ }^{m}(\mu)
$$

Where $P_{n}{ }^{m}(\mu)$ and $Q_{n}{ }^{m}(\mu)$ are legendra function of degree n order m, of first and second kind, respectively.
The physically meaningful general solution of the diffusion equation in spherical geometry is of the form

$$
\mathrm{T}(\mathrm{r}, \theta, \phi, \mathrm{t})=\sum_{\lambda, m, n} A_{\lambda m n}(\lambda r)^{-\frac{1}{2}} \mathrm{~J}_{\mathrm{n}+1 / 2}(\lambda r) \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{m}}(\cos \theta) e^{ \pm i m \phi-\alpha \lambda^{2} t}
$$

In this general solution, the function $\mathrm{Q}_{\mathrm{n}}{ }^{\mathrm{m}}(\mu)$ and $(\lambda r)^{-\frac{1}{2}} \mathrm{Y}_{\mathrm{n}+1 / 2}(\lambda \mathrm{r})$ are excluded because these function have poles at $\mu= \pm 1$ and $\mathrm{r}=0$ respectively.

Example: 2

Find the temperature in a sphere of radius a. when its surface is kept at 0 temperature and its initial temperature is $f(r, \theta)$.

Solution:

Here, the temperature is governed by the 3-D heat equation in spherical polar coordinates independent of therefore, the task is to find the solution of PDE .

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{2}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right)=\frac{1}{\alpha} \frac{\partial T}{\partial t} \tag{2.8}
\end{equation*}
$$

Subject to

Boundary condition : $\mathrm{T}(\mathrm{a}, \theta, \mathrm{t})=0$
Initial condition : $T(r, \theta, 0)=f(r, 0)$

The general solution of equation (2.8) with the help of $\mathrm{Eq}(2.9)$, can be written as

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \theta, \mathrm{t})=\sum_{\lambda, n} A_{\lambda n}(\lambda r)^{-\frac{1}{2}} \mathrm{~J}_{\mathrm{n}+1 / 2}(\lambda r) \mathrm{P}_{\mathrm{n}}(\cos \theta) e^{-\alpha \lambda^{2} t} \tag{2.11}
\end{equation*}
$$

Applying the boundary condition we get,

$$
\mathrm{J}_{\mathrm{n}+1 / 2}(\lambda a)=0
$$

This equation has infinitely many positive roots. Denoting them by $\varepsilon_{i j}$, we have

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \theta, \mathrm{t})=\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} A_{n_{i}}\left(\boldsymbol{\varepsilon}_{\mathbf{i}} \mathrm{r}\right)^{-1 / 2} \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\boldsymbol{\varepsilon}_{\mathbf{i}} \mathrm{r}\right) \mathrm{P}_{\mathrm{n}}(\cos \theta) \exp \left(-\alpha{\varepsilon_{i}}^{2} \mathrm{r}\right) \tag{2.12}
\end{equation*}
$$

Now applying the initial condition and denote $\cos \theta$ by μ, we get

$$
\mathrm{f}\left(\mathrm{r}, \cos ^{-1}(\mu)=\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} A_{n_{i}}\left(\varepsilon_{i} \mathrm{r}\right)^{-1 / 2} \mathrm{~J} \mathrm{n}+1 / 2\left(\boldsymbol{\xi}_{i} \mathrm{r}\right) \mathrm{P}_{\mathrm{n}}(\mu)\right.
$$

Multiply both sides by $P_{m}(\mu)$ and integrating between the limits, -1 to 1 , we obtain

$$
\begin{aligned}
\int_{-1}^{1} \mathrm{f}\left(\mathrm{r}, \cos ^{-1}(\mu) \mathrm{P}_{\mathrm{m}}(\mu) \mathrm{d} \mu=\right. & \sum_{n=0}^{\infty} \sum_{i=1}^{\infty} A_{n_{i}}\left(\xi_{i} r\right)^{-1 / 2} \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} r\right) \int_{-1}^{1} \mathrm{P}_{\mathrm{m}}(\mu) \mathrm{P}_{\mathrm{n}}(\mu) \mathrm{d} \mu \\
& =\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} A_{n_{i}}\left(\xi_{i} r\right)^{-1 / 2} \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\xi_{i} r\right)\left(\frac{2}{2 n+1}\right)
\end{aligned}
$$

(or)

$$
\left(\frac{2}{2 n+1}\right) \int_{-1}^{1} \mathrm{f}\left(\mathrm{r}, \cos ^{-1}(\mu) \mathrm{P}_{\mathrm{m}}(\mu) \mathrm{d} \mu=\sum_{i=1}^{\infty} A_{n_{i}}\left(\varepsilon_{i} \mathrm{r}\right)^{-1 / 2} \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} \mathrm{r}\right) \quad \text { for } \mathrm{n}=0,1,2 \ldots\right.
$$

Now, to evaluate the constant $A_{n_{i}}$
Multiply both side of the above equation by $r^{3 / 2} \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} r\right)$ and integrate with respect to r get
$\varepsilon_{\mathrm{i}}^{1 / 2}\left(\frac{2}{2 n+1}\right) \int_{0}^{a} r^{3 / 2} \mathrm{Jn}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} \mathrm{r}\right) \mathrm{dr}\left(\frac{2}{2 n+1}\right) \int_{-1}^{1} \mathrm{f}\left(\mathrm{r}, \cos ^{-1}(\mu) \mathrm{P}_{\mathrm{m}}(\mu) \mathrm{d} \mu=\sum_{i=1}^{\infty} A_{n_{i}} \int_{0}^{a} r \mathrm{~J}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} r\right) \mathrm{J}_{\mathrm{n}+1 / 2}\left(\varepsilon_{i} r\right) \mathrm{dr}\right.$

$$
\begin{equation*}
=\frac{1}{2} \sum_{i=1}^{\infty} A_{n_{i}}\left[\mathrm{~J}_{\mathrm{n}+1 / 2}\left(\xi_{i} \mathrm{r}\right)\right]^{2}, \mathrm{n}=0,1,2 \ldots \tag{2.13}
\end{equation*}
$$

Thus, equations (2.12) and (2.13) together constitutes the solution for the given problem.

Conclusion

The expectation of using variables separable method and obtaining better results, in a very expressive way was

