SOLUTION OF DIFFUSION EQUATION WITH CONSTANT CO-EFFICIENT IN CYLINDRICAL AND SPHERICAL COORDINATES

R.SURIYA, GUIDE: R.VAITHYALINGAM

Abstract: This paper aims to apply the variables separation Method to solve the three-dimensional Diffusion equation with constant coefficient in cylindrical and spherical coordinates. Illustrative some examples are related to known results.

Keywords: cylindrical coordinates, spherical coordinates

Basic definitions:

The diffusion equation in one dimensional:

\[
\frac{\partial u(x,t)}{\partial t} = \alpha \frac{\partial^2 u(x,t)}{\partial x^2}.
\]

On the interval \(x \in [0, L] \) with initial condition

\[u(x, 0) = f(x), \quad \forall x \in [0, L] \]

And dirichlet boundary condition

\[u(0, t) = u(L, t) = 0 \quad \forall t > 0 \]

The diffusion equation in two dimensional:

\[
\frac{\partial u}{\partial t} = D \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
\]

Where \(u = u(x, y, t), x \in [a_x, b_x], y \in [a_y, b_y], \) the second-order derivative in space leads to a demand for two boundary conditions.

The diffusion equation in three dimensional:

\[
\frac{\partial T}{\partial t} = \alpha \nabla^2 T
\]

Where \(T \) is a temperature and \(\alpha \) is a diffusion coefficient.

Bessel differential equation:

The Bessel differential equation is the linear second-order ordinary differential equation given by

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0
\]
SOLUTION OF DIFFUSION EQUATION IN CYLINDRICAL CO-ORDINATES

Consider a three-dimensional diffusion equation:
\[
\frac{\partial T}{\partial t} = \alpha \nabla^2 T
\]

Where \(T \) is a temperature and \(\alpha \) is a diffusion coefficient

In cylindrical co-ordinates \((r,\theta,z)\) the above equation becomes
\[
\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2}
\]
(1.1)

Where \(T=T(r,\theta,z,t) \)

Let us assume separation of variables in the form \(T(r,\theta,z,t) = R(r)H(\theta)Z(z) \beta(\alpha,t) \)

Substitute in equation (1.1), it becomes
\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} + \frac{1}{r^2} \frac{H'}{H} + \frac{Z''}{Z} = \frac{1}{\alpha} \frac{\beta'}{\beta} = \lambda^2 \text{ (say)}
\]
(1.2)

Where \(\lambda^2 \) is a separation constant.

Dividing by \(R \) \(H \) \(\beta \)

\[
\beta' + \alpha \lambda^2 \beta = 0
\]
(1.2)

\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} + \frac{1}{r^2} \frac{H'}{H} + \lambda^2 = \frac{Z''}{Z} = -\mu^2 \text{ (say)}
\]
(1.3)

where \(\mu^2 \) is a separation constant.

Thus the equation determining \(Z \), \(R \) and \(H \) becomes
\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} + \frac{1}{r^2} \frac{H'}{H} + \lambda^2 + \mu^2 = 0
\]
(or)
\[
r^2 \frac{R''}{R} + r \frac{R'}{R} + (\lambda^2 + \mu^2)r^2 = -\frac{H''}{H} = \nu^2 \text{ (say)}
\]

Therefore,
\[
H'' + \nu^2 H = 0
\]
(1.4)

\[
R'' + \frac{1}{r} \frac{R'}{r} + [(\lambda^2 + \mu^2) - \frac{\nu^2}{r^2}]R = 0
\]
(1.5)

Equation (1.2)-(1.4) have particular solutions of the form
\[
\beta = e^{-\alpha \lambda^2 t}
\]
H = C cos νθ + sin νθ
Z = A e^{μz} + B e^{-μz}

The diffusion equation (1.5) \(R'' + \frac{1}{r} R' + \left[(\lambda^2 + \mu^2 - \frac{v^2}{r^2}) \right] R = 0 \) is called Bessel’s equation of order \(v \) and its general solution is

\[R(r) = C_1 J_v(\sqrt{(\lambda^2 + \mu^2) r}) + C_2 Y_v(\sqrt{(\lambda^2 + \mu^2) r}) \]

Where \(J_v(r) \) and \(Y_v(r) \) are Bessel functions of order \(v \) of the first and second kind, respectively.

Equation (1.5) is singular when \(r=0 \). The physically meaningful solutions must be twice continuously differentiable in \(0 \leq r \leq a \).

Hence, Equation (1.5) has only one bounded solution,

\[R(r) = J_v(\sqrt{(\lambda^2 + \mu^2) r}) \]

Finally, the general solution of the equation (1.1) is given by

\[T(r, \theta, z, t) = e^{-\alpha \lambda^2 t} \left[A e^{\mu z} + B e^{-\mu z} \right] \left[C \cos \nu \theta + D \sin \nu \theta \right] J_v(\sqrt{(\lambda^2 + \mu^2) r}) \]

EXAMPLE 1

Determine the temperature \(T(r, t) \) in the infinite cylinder \(0 \leq r \leq a \) when the initial temperature is \(T(r, 0) = f(r) \) and the surface \(r=a \) is maintained at 0° temperature.

Solution:

The governing PDE from the data of the problem is

\[\frac{\partial T}{\partial t} = \alpha \nabla^2 T \] \hspace{1cm} (1.6)

Where \(T \) is a function of \(r \) and \(t \) only. Therefore

\[\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \]

The corresponding boundary and initial conditions are given by

Boundary condition: \(T(a, t) = 0 \)

Initial condition: \(T(r, 0) = f(r) \)

The general solution of equation (1.6) is

\[T(r, t) = A \exp(-\alpha \lambda^2 t) J_0(\lambda r) \]

Using the boundary condition, we obtain

\[J_0(\lambda a) = 0 \]

Which has an infinite no. of roots, \(\lambda_n \) (\(n = 1, 2, 3, \ldots \infty \)). Thus, we get from the superposition principle the equation is

\[T(r, t) = \sum_{n=1}^{\infty} A_n \exp(-\alpha \lambda_n^2 t) J_0(\lambda_n r) \]

Using initial condition \(T(r, 0) = f(r) \) we get,

\[f(r) = \sum_{n=1}^{\infty} A_n J_0(\lambda_n r) \]
to compute A_n multiply both sides by $r J_0(\epsilon_m r)$ and integrate with respect to r

$$
\int_0^a r f(r) J_0(\epsilon_m r) dr = \sum_{n=1}^\infty A_n \int_0^a r J_0(\epsilon_m r) J_0(\epsilon_n r) dr
$$

$$
= \begin{cases}
0 & \text{for } n \neq m \\
A_m \left(\frac{\alpha^2}{2} \right) a J_1^2(\epsilon_m a) & \text{for } n = m
\end{cases}
$$

Which gives

$$
A_m = \frac{2}{a^2 J_1^2(\epsilon_m a)} \int_0^a u f(u) J_0(\epsilon_m u) du
$$

Hence the final solution of the problem is

$$
T(r,t) = \frac{2}{a^2} \sum_{m=1}^\infty \frac{J_0(\epsilon_m r)}{J_1(\epsilon_m a)} \exp(-\alpha \epsilon_m^2 t) \left[\int_0^a u f(u) J_0(\epsilon_m u) du \right]
$$

SOLUTION OF DIFFUSION EQUATION IN SPHERICAL COORDINATES

Consider a 3-D diffusion equation,

$$
\frac{\partial T}{\partial t} = \alpha \nabla^2 T
$$

Let $T = T(r,\theta,\phi,t)$

This equation can be written in spherical coordinates,

$$
\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 T}{\partial \phi^2} = \frac{1}{a \alpha} \frac{\partial T}{\partial t}
$$

This equation is separated by assuming the temperature function of the form

$$
T = R(r) H(\theta) \Phi(\phi) \beta(t)
$$

Substituting (2.2) in (2.1), we get

$$
\frac{R''}{R} + \frac{2 R'}{R} + \frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dH}{d\theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{d^2 \Phi}{d\phi^2} = \frac{1}{a \alpha} \frac{\beta'}{\beta} = -\lambda^2 \text{(Say)}
$$

Where λ^2 is a separation constant. Thus,

$$
\frac{d\beta}{dt} - \lambda^2 \alpha \beta = 0
$$

$$
\int \frac{d\beta}{dt} = \lambda^2 \alpha \int dt
$$

$e^{\lambda^2 \alpha t} = e^{-\lambda^2 \alpha t}$
\[
\beta = C_1 e^{-\lambda^2 ct} \quad (2.3)
\]

Also,
\[
r^2 \sin^2(\theta) \left[\frac{1}{r} \frac{d^2 R}{dr^2} + \frac{2}{r} \frac{dR}{dr} \right] \left[\frac{1}{r^2 \sin \theta} H \frac{dH}{d\theta} \right] \left[\frac{1}{r^2 \sin \theta} H \frac{dH}{d\theta} + \lambda^2 \right] = -\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = m^2 \text{ (say)}
\]

Which gives
\[
\frac{d^2 \Phi}{d\phi^2} + m^2 \Phi = 0
\]

Whose solution is
\[
\Phi(\phi) = C_1 e^{im\phi} + C_2 e^{-im\phi} \quad (2.4)
\]

The other separated equation is
\[
\frac{r^2}{R} \left(R'' + \frac{2}{r} R' + \lambda^2 r^2 \right) = m^2 \frac{r^2}{\sin^2(\theta)} \sin(\theta) \frac{d^2 H}{d\theta^2} + \frac{1}{H} \sin \theta \frac{dH}{d\theta} = n(n+1) \text{ (say)}
\]

On re-arrangement, this equation can be written as
\[
R'' + \frac{2}{r} R' + \left(\lambda^2 - \frac{n(n+1)}{r^2} \right) R = 0
\]

\[
-\frac{1}{H} \sin(\theta) \sin \theta \frac{d^2 H}{d\phi^2} + \cos \theta \frac{dH}{d\phi} + \frac{m^2}{\sin^2(\theta)} n(n+1) H = 0 \quad (2.6)
\]

Let \(r = (\lambda r)^{-1/2} \psi(r) \) then Eq(2.6) becomes
\[
(\lambda r)^{-1/2} \left[\psi'' + \frac{1}{r} \psi'(r) + \left(\lambda^2 - \frac{(n+1/2)^2}{r^2} \right) \psi \right] = 0 \quad \text{since } (\lambda r) \neq 0
\]

We have
\[
\psi''(r) + \frac{1}{r} \psi'(r) + \left(\lambda^2 - \frac{(n+1/2)^2}{r^2} \right) \psi(r) = 0
\]

The above equation is the Bessel’s equation of order (n+1/2).
whose solution is

\[\Psi(r) = A J_{n+1/2}(\lambda r) + B Y_{n+1/2}(\lambda r) \]

\[R(r) = (\lambda r)^{-1/2} [A J_{n+1/2}(\lambda r) + B Y_{n+1/2}(\lambda r)] \] (2.7)

Where \(J_n \) and \(Y_n \) are Bessel’s function of first and second kind respectively.

Now equation (2.7) can be put in a more convenient form by introducing a new independent variable

\[\mu = \cos \theta \quad (\cot \theta = \mu / \sqrt{1 - \mu^2}) \]

\[(1 - \mu^2) \frac{d^2H}{d\mu^2} - 2 \mu \frac{dH}{d\mu} + \left[n(n+1) - \frac{m^2}{1 - \mu^2} \right] H = 0 \]

Thus (2.6) equation becomes

Which is an associated legendra differential equation. Whose solution is

\[H(\theta) = A_1 P_n^m(\mu) + A_2 Q_n^m(\mu) \]

Where \(P_n^m(\mu) \) and \(Q_n^m(\mu) \) are legendra function of degree \(n \) order \(m \), of first and second kind, respectively.

The physically meaningful general solution of the diffusion equation in spherical geometry is of the form

\[T(r, \theta, \phi, t) = \sum_{\lambda, m, n} A_{\lambda mn}(\lambda r)^{-1/2} J_{n+1/2}(\lambda r) P_n^m(\cos \theta) e^{\pm \imath m \phi - \alpha \lambda^2 t} \]

In this general solution, the function \(Q_n^m(\mu) \) and \((\lambda r)^{-1/2} Y_{n+1/2}(\lambda r) \) are excluded because these function have poles at \(\mu = \pm 1 \) and \(r = 0 \) respectively.

Example 2

Find the temperature in a sphere of radius \(a \) when its surface is kept at 0 temperature and its initial temperature is \(f(r, \theta) \).

Solution:

Here, the temperature is governed by the 3-D heat equation in spherical polar coordinates independent of therefore, the task is to find the solution of PDE.

\[\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{\alpha} \frac{\partial T}{\partial t} = 0 \] (2.8)

Subject to
Boundary condition \(T(a, \theta, t) = 0 \) \quad (2.9)

Initial condition \(T(r, \theta, 0) = f(r, 0) \) \quad (2.10)

The general solution of equation (2.8) with the help of Eq(2.9), can be written as

\[
T(r, \theta, t) = \sum_{\lambda, n} A_{\lambda n}(\lambda r)^{-\frac{1}{2}} J_{n+1/2}(\lambda r) P_n(\cos \theta) e^{-\alpha \lambda^2 t} \quad (2.11)
\]

Applying the boundary condition we get,

\[J_{n+1/2}(\lambda a) = 0 \]

This equation has infinitely many positive roots. Denoting them by \(\epsilon_j \), we have

\[
T(r, \theta, t) = \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} A_{n j}(\epsilon_j r)^{-1/2} J_{n+1/2}(\epsilon_j r) P_n(\cos \theta) \exp(-\alpha \epsilon_j^2 r) \quad (2.12)
\]

Now applying the initial condition and denote \(\cos \theta \) by \(\mu \), we get

\[
f(r, \cos^{-1}(\mu)) = \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} A_{n j}(\epsilon_j r)^{-1/2} J_{n+1/2}(\epsilon_j r) P_n(\mu)
\]

Multiply both sides by \(P_m(\mu) \) and integrating between the limits, -1 to 1, we obtain

\[
\int_{-1}^{1} f(r, \cos^{-1}(\mu)) P_m(\mu) d\mu = \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} A_{n j}(\epsilon_j r)^{-1/2} J_{n+1/2}(\epsilon_j r) \int_{-1}^{1} P_m(\mu) P_n(\mu) d\mu
\]

\[
= \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} A_{n j} (\epsilon_j r)^{-1/2} J_{n+1/2}(\epsilon_j r) \left(\frac{2}{2n+1} \right)
\]

(or)

\[
\left(\frac{2}{2n+1} \right) \int_{-1}^{1} f(r, \cos^{-1}(\mu)) P_m(\mu) d\mu = \sum_{j=1}^{\infty} A_{n j} (\epsilon_j r)^{-1/2} J_{n+1/2}(\epsilon_j r) \quad \text{for } n=0,1,2,\ldots
\]

Now, to evaluate the constant \(A_{n j} \)

Multiply both side of the above equation by \(\epsilon_j^2 J_{n+1/2}(\epsilon_j r) \) and integrate with respect to \(r \) get
Thus, equations (2.12) and (2.13) together constitute the solution for the given problem.

Conclusion

The expectation of using variables separable method and obtaining better results, in a very expressive way was achieved.