
www.ijcrt.org                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 94 

 

Design of High Speed Low Power Parallel Prefix 

Adder
 

1A.Anandha Raja, 2R.Sandeep, 3K.P.Sandeep, 4K.Saravanavel 
1Assistant Professor, Dept.of ECE, SNS College of Technology, Saravanampatty, Coimbatore, India 

 234 UG Scholars, Dept.of ECE, SNS College of Technology, Saravanampatty, Coimbatore, India 

 

Abstract :  This paper addresses the parallel prefix adder synthesis which targets of area minimization under given bitwise timing 

constraints. Parallel-prefix adders offer a highly efficient solution to the binary addition problem and are well-suited for VLSI 

implementations. In this paper, a novel framework was introduced, which allows the design of parallel-prefix Ling adders. The 

proposed approach saves one-logic level of implementation compared to the parallel-prefix structures proposed for the traditional 

definition of carry look ahead equations and reduces the fan out requirements of the design. The proposed adder architecture was 

IMPLEMENTED FOR 16-BIT, 32-BIT WIDTH OPERANDS USING XILINX 14.5 VERSION OF VHDL WITH TARGETED DEVICE OF 

SPARTAN 3E. THE experimental results are compared with the basic adder variants such as Ripple Carry Adder, Carry Look 

ahead   adder, Carry Bypass Adder, Carry Select Adder. 

 

IndexTerms - Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA), Carry Bypass Adder (CBA), Carry select 

adder (CSLA), Parallel Prefix Adder (PPA), Very Large Scale Integration (VLSI). Adders, Parallel-prefix carry 

computation, Computer arithmetic, VLSI design. 

  

I. INTRODUCTION 

Binary addition is the most fundamental and frequently used arithmetic operation. A lot of work on adder design has been done so 

far and much architecture have been proposed. Among them, parallel prefix adders generalize carry look-ahead idea for faster 

carry propagation, and many regular structures, such as Brent-Kung , Kogge- Stone, and Sklansky parallel prefix adders, have 

been proposed. Not fixed structures, but some algorithms to generate parallel prefix adders also have been proposed. An 

advantage of algorithmic generation over fixed structures is that global structures of parallel prefix adders can be changed flexibly 

according to each context, such as bitwise input arrival times and output required times, which can result in faster or smaller 

circuits especially when bitwise timing constraints are not uniform. 

 

 Flexible parallel prefix adders can be synthesized through two-stage flow, that is, generation of global structures at 

technology-independent level and technology mapping. A global structure of a parallel prefix adder at technology-independent 

level can be visualized as a prefix graph whose node corresponds to some basic operation in carry propagation. Area and delay of 

a parallel prefix adder are roughly measured by the total number of nodes of a prefix graph and the level of nodes. By dividing 

two processes and using rough measures, the former process can be more tractable in formal way regardless of details of 

technology. These measures could be inaccurate, especially for delay. The levels of nodes correspond to load-independent delay 

model, so there is no consideration on effect of fan outs. But for this, we could assume gain-based technology mapping as a 

subsequent process to make this measure more reliable. 

 

 This paper addresses parallel prefix adder synthesis which targets area minimization under given bitwise timing 

constraints. This problem is captured as a problem to minimize the number of nodes of prefix graphs under timing constraints. 

Timing-constrained area minimization for a directed acyclic graph is inherently difficult to be solved exactly. Though there is an 

exact approach for delay optimization, only approaches based on local transformations have been proposed as for area 

minimization. They may generate good results for some examples, but we cannot judge whether there is any room for 

improvement since those approaches are lack of global view and cannot guarantee the optimality. 

 

II.  BASIC ADDER MODELS  

A. RIPPLE CARRY ADDER 

    The Ripple carry adder is one of the simplest adders to implement. This adder takes in two N-bit inputs and produces 

(N+1) output bits as N-bit Sum and 1-bit carry out bit. The Ripple carry adder is built from N full adders cascaded together, with 

the carry out bit of one full adder is connected to the carry in bit of the next full adder. Ripple carry adder for 4-bit addition. The 

implementation of 16-bit Ripple carry adder based on 4-bit RCA is shown in figure 01. 

 

http://www.ijcrt.org/


www.ijcrt.org                                © 2017 IJCRT | Volume 5, Issue 3 September 2017 | ISSN: 2320-2882 

 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 95 

 

 
Figure 01: Ripple Carry Adder 

B. CARRY LOOK AHEAD ADDER 

                    A Carry Look Ahead adder (CLA) is a type of adder used in digital circuits. A carry-look ahead adder improves 

speed by reducing the amount of time required to determine carry bits. It can be contrasted with the simpler, but usually slower, 

ripple carry adder[16] for which the carry bit is calculated alongside the sum bit, and each bit must wait until the previous carry 

has been calculated to begin calculating its own result and carry bits. The carry-look ahead adder calculates one or more carry bits 

before the sum, which reduces the wait time to calculate the result of the larger value bits. The Kogge-Stone adder and Brent-

Kung adder and Ladner- Fischer are examples of this type of adder. To reduce the computation time, engineers devised faster 

ways to add two binary numbers by using carry-look ahead adders. They work by creating two signals (P and G) for each bit 

position, based on if a carry is propagated through from a less significant bit position (at least one input is a '1'), a carry is 

generated in that bit position (both inputs are '1'), or if a carry is killed in that bit position (both inputs are '0'). In most cases, P is 

simply the sum output of a half-adder and G is the carry output of the same adder. After P and G are generated the carries for 

every bit position are created. Some advanced carry-look ahead architectures are the Brent-Kung adder, and the Kogge-Stone 

adder and Ladner-Fischer adder. The 4 bit CLA was shown in figure 02 

 
Figure 02: Carry look ahead adder 

C. CARRY SKIP ADDER 

  The critical path delay of the CSKA is much smaller than throne in the RCA, whereas its area and power consumption 

are similar to those of the RCA. In addition, the power-delay product (PDP) of the CSKA is smaller than those of the CSLA and 

PPA structures. In addition, due to the small number of transistors, the CSKA benefits from relatively short wiring lengths as well 

as a regular and simple layout. The comparatively lower speed of this adder structure, however, limits its use for high-speed 

applications. In this paper, given the attractive features of the CSKA structure, we have focused on reducing its delay by 

modifying its implementation based on the static CMOS logic. This carry skip adder was shown in figure 03. 

 

http://www.ijcrt.org/


www.ijcrt.org                                © 2017 IJCRT | Volume 5, Issue 3 September 2017 | ISSN: 2320-2882 

 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 96 

 

 
Figure 03: Carry skip adder 

D. CARRY SELECT ADDER(CSLA) 

  The carry select adder divides the adder into blocks that have the same input operands except forth carry in. 

Carry select adder perform two additions, one assuming the carry in is 1(Cin=1) andone assuming the carry in is 0 (Cin= 0), and 

chooses between the two results once the actual carry in is known. The logic circuit of 4-bit Carry select adder. The 

implementation of 16-bit Carry select adder based on 4-bit CSLA 

 

 
Figure 04: Carry Select Adder 

III. PROPOSED ADDERS 

         The PPA is like a Carry Look Ahead Adder. The production of the carriers the prefix adders can be designed in many 

different ways based on the different requirements. We use tree structure form to increase the speed of arithmetic operation. 

Parallel prefix adders are faster adders and these are faster adders and used for high performance arithmetic structures in 

industries. The parallel prefix addition is done in 3 steps.  

                     1. Pre-processing stage  

                     2. Carry generation network  

                     3. Post processing stage  

 
 

Figure 05: Structure of parallel prefix adder 

http://www.ijcrt.org/


www.ijcrt.org                                © 2017 IJCRT | Volume 5, Issue 3 September 2017 | ISSN: 2320-2882 

 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 97 

 

A. Pre-processing stage 

 In this stage we compute, the generate and propagate signals are used to generate carry input of each adder. A and B are 

inputs. These signals are given by the equation 1& 2. 

                             

Pi=Ai Bi                                                            (1) 

 

Gi=Ai . Bi                                                         (2) 

B. Carry generation network 

 In this stage we compute carries corresponding to each bit. Execution is done in parallel form and after the computation 

of carries in parallel they are divided into smaller pieces. Carry operator contain two AND gates, one OR gate. It uses propagate 

and generate as intermediate signals which are given by the equations 3 & 4. 

                       

P(i:k) =P(i:j) . P(j-1:k)    (3) 

 

G(i:k) =G(i:j) +(G(j-1:k) . P(i:j))  (4) 

     

 
 

Figure 06: (a) O3black operator          (b) O3gray operator 

 

 The black operator receives two sets of generate and propagate signals (gi,pi),(gj,pj), computes one set of generate and 

propagate signals (go , po) by the  following equations: 

                      

g0   = gi+ pigi     (5) 

 

p0 = pi pj     (6) 

 

 The gray operator receives two sets of generate and propagate signals (gi, pi), (gj, pj), computes only one generate signal 

with the same equation as in equation (8). 

 
Figure 07: (a) O3black operator (b) O3gray operator 

                                      

g0=  gi +pigj + pipjpk    (7) 

 

p0=pipjpk      (8) 

 

http://www.ijcrt.org/


www.ijcrt.org                                © 2017 IJCRT | Volume 5, Issue 3 September 2017 | ISSN: 2320-2882 

 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 98 

 

 The O3black operator, which takes three pairs of generate and propagate values (gi , pi),(gj, pj), (gk , pk) as inputs and 

produces the generate and propagate output values (go , po). The O3gray operator, which takes three pairs of generate and 

propagate values (gi , pi),(gj, pj), (gk , pk) as inputs and produces only one generate signal output as per equation. The 

implementation of these operators is done using multiplexer based design.  

 

C. Post processing: 

 Generate each sum bit si 

ci = G[i:1] 

si = pi ⊕ ci−1 

 Parallel prefix adders consist of the above three parts though both pre-processing and post-processing parts have fixed 

structures, the prefix processing part has high flexibility. Since ◦ satisfies associatively, prefix computation does not have to be 

done serially. How to parallelize prefix computation affects the qualities of parallel prefix adders. 

 

 
Figure 08: Hybrid parallel prefix adder for 16-bit 

 

IV. SIMULATION & RESULT COMPARISON 

        TABLE1: Results of various adders 

ADDER POWER AREA DELAY 

Ripple carry adder 28 31 20.129 

Carry look ahead adder 28 31 20.317 

Carry skip adder 28 31 18.352 

Carry select adder 28 31 14.384 

Proposed adder 28 31 14.213 

 

                                          

 
 

Figure 09: Simulated output of 32-bit hybrid adder 

 

http://www.ijcrt.org/


www.ijcrt.org                                © 2017 IJCRT | Volume 5, Issue 3 September 2017 | ISSN: 2320-2882 

 

IJCRT1813086 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 99 

 

V. CONCLUSION 

   This paper presents the implementation of carry look-ahead adder, carry bypass adder, carry select adder and the 

proposed hybrid parallel prefix adder for 16-bit and 32-bit addition. To evaluate the performance of these adders, Xilinx 14.5 

version of VHDL is used with the targeted device of Spartan 3E family of device XC3S500E. The proposed adders are faster 

because of less delay and area efficient compared to other basic adders. Among these three prefix adders Ladner-Fischer adder 

has better performance compared to remaining adders. The performance comparisons between these adders are measured in terms 

of area and delay. It would be interesting to investigate the design of the 128 and 256 bit adders. These adders are popularly used 

in VLSI implementations. 

 

REFERENCES 

[1]  J. Skalansky, “conditional sum additions logic”, IRE Transactions, Electronic Computers, vol. EC – 9, pp. 226 - 231, 

 June 1960. 

[2]  Y.Choi and E.E.Swartz lander, Ir, “Parallel Prefix adder design with matrix representation”,, in Proc.17th IEEE 

 symposium on computer Arithmetic (ARITH), PP 90-98,2005. 

[3]  Kogge P, Stone H, “A parallel algorithm for the efficient solution of a general class Recurrence relations”, IEEE Trans. 

 Computers, vol.C-22, No.8, pp. 786-793, Aug.1973. 

[4]  GiorgosDimitrakopoulos and DimitricNikolos, “High Speed Parallel –Prefix VLSI Ling Adders”, IEEE Trans on 

 computers, Vol.54, No.2, Feb 2005. 

[5]  Han T, Carlson D, “Fast area-efficient VLSI adders”, Proc.8th.symp.Comp.Arit.pp.49-56, Sep.1987. 

[6]  TaekoMatsunaga and Shinji Kimura, YusukaMatsunaga, “Synthesis of parallel prefix adders considering switching 

 activities”, IEEE International Conference on computer design, 

[7]  Reto Zimmermann. Binary Adder Architectures for Cell-Based VLSI an their Synthesis. Hartung-Gorre, 1998. 

[8]  Y. Choi, “Parallel Prefix Adder Design,” Proc. 17th IEEE Symposium on Computer Arithmetic, pp 90-98, 27th June 

 2005. 

[9]  D. Harris, “A taxonomy of parallel prefix networks,” in Signals, Systems and Computers,2003. Conference Record of 

 Thirty Seventh Asilomar Conference on, vol. 2, the Nov. 2003,pp.2217 

[10]  N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition, Pearson Addison-Wesley, 2011 

[11]  H. Ling, High-speed binary adder," IBM Journal of Research and Development, vol. 25,no. 3, pp. 156 March 1981. 

[12]  K.Vitoroulis and A. J. Al-Khalili “Performance of Parallel Prefix Adders Implemented with FPGA technology,” IEEE 

 Northeast Workshop on Circuits and Systems, pp. 498-501, Aug. 2007. 

[13]  D. H. K. Hoe, C. Martinez, and J. Vundavalli, “Design and Characterization of Parallel Prefix Adders using FPGAs, 

 IEEE 43rd Southeastern Symposium on System Theory, pp. 170-174, March 2011. 

[14]  T. Matsunaga, S. Kimura, and Y. Matsunaga.“Power-conscious syntheses of parallel prefix adders under bitwise timing 

 constraints,” Proc. the Workshop on Synthesis And System Integration of Mixed Information technologies(SASIMI), 

 Sapporo, Japan, October 2007, pp. 7–14. 

http://www.ijcrt.org/

