
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1141

 Small file problem in Hadoop and solution to

improve access and storage performance

Neseeba p.b C#1,Dr. M Sharmila kumari *2

M.Tech Student, *Professor

 Department Of Computer Science & Engineering, P. A. College of Engineering, Mangalore, 574153, India

Abstract— HDFS gives the programmer unlimited storage and is the only reason behind turning to Hadoop. But when it comes to

storing lot of small files there is a big problem. HDFS is capable of handling large files which are GB or TB in size. Hadoop works

better with a small number of large files and not with large number of small files. Large

Number of small files take up lots of memory on the Name node. Each small file generates a map task and hence there are too many

such map task with insufficient input. Storing and transforming small size file in HDFS creates an overhead to map reduce program

which greatly affects the performance of Name node.

Large amount of high speed data presents new kind of challenges that traditional database system has limits to resolve. Every

organization had expertise to manage structured data but the world had already changed to unstructured data. All of these needed to

now bring to a single platform and build a uniform system and Big Data fulfil this need. Big Data does not mean lots of data. It is

actually a concept providing an opportunity to find new insight in to existing data and guidelines to capture and analysis future

data1.Apache Hadoop is freely available java based software framework. It offers a powerful distributed platform to store and manage

Big Data. It runs applications on large clusters of commodity hardware. It processes thousands offer a bytes of data on thousands of

the nodes. The major advantage of Hadoop framework is that it provides reliability and high availability and sequence files are used

for feature extraction.

.Keywords— HDFS, File merging, New har, combined input format, sequence input format

I INTRODUCTION

Merchants selling products on the Web often ask their customers to review the products that they have purchased and the associated

services [1]. As e-commerce is becoming more and more popular, the number of customer reviews that a product secures increases

rapidly. There will be hundreds or thousands comments for a trendy product in the web. This makes it difficult for a potential

customer to read all of them to make a decision on whether to purchase the product or not. It also makes it difficult for the

manufacturer of the product to keep track and to manage customer opinions [1].So we want to get the summary of the reviews. We

can use clustering algorithms which is a part of data mining. There are mainly two types of clustering algorithms: Partitioning and

Hierarchical [2].This work is using incremental clustering algorithm to discover the top-k clusters including different groups of

reviews about one product. Initially we are using batch short text summarization algorithm to form th e clusters of comments. After

that for each newly coming comment we have to include it in an existing matching cluster. For that we are using incremental

clustering algorithm. After that we are performing sentimental analysis to classify it as either positive comment or negative comment.

 The rest of the paper is organized as follows. Section II describes the problem. Section III explains the related works. Section IV

describes representation of comments as term vectors. Section V briefs the clustering definitions. Section VI illustrates the

methodology. Section VII detailed study of present case. Section VIII briefs the work and concludes. Section IX describes the future

work.

II PROBLEM DESCRIPTION

In the present world of cloud computing, a huge amount of data is being generated and this data needs to be stored,

processed and analyzed. HDFS [1] serves as primary storage system of Hadoop and has a master -slave architecture. HDFS is a

common representative for Cloud service file system running on clusters and has been widely used to support Cloud applications.

Having on-demand availability to computation, high scalability and large storage capacity, cloud computing [2] is the ideal solution

for big data analytics and processing. Deploying Hadoop on Cloud eliminates the operational challenges of running Hadoop. HDFS is

suitable for the analysis of large datasets of applications such as machine learning, data mining, etc. But, HDFS ignores the problem

associated with access and storage of small files. In applications like meteorology, energy, e-Library, messaging apps, e-Business, and

e-Learning [3], high-performance computing files and healthcare records, data generated is in huge numbers, but ,of very small sizes,

typically ranging from 10KB to 10MB. Datasets of digitized clinical data and genomic data records that helps researchers in

performing data analytics on healthcare data are all stored in the form of small files. Presently there are no available standard and

generic file systems which are specifically designed for storing, processing and analyzing small files. Face book has also faced a

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1142

similar problem; it has about 15 billion photos [4] of its users growing at a rate of 220 million/week. For storing photos, Face book

has developed Haystack a distributed system to serve their specific needs. All currently available local file system, distributed file

system, and the object-based storage systems such as Ceph,GFS, Google File, EXT4 are developed and designed for large files. Their

performance degrades significantly in the case of processing and storing small files .Moreover, among the distributed system at the

helm presently, Hadoop is prime big data analytics platform in the present data world. It is the leading platform regarding

performance, reliability, scalability. Thus, there are various reasons contributing to Hadoopsmall file problem [5]. Firstly, the Name

Node memory foot prints a big issue. Every block, file, and directory in Hadoop is represented as an object in the memory on Name

Node. As a rule, each small file requires 150 bytes of memory for storing its metadata. By reducing the number of small files on

Hadoop cluster, we can reduce the Name Node memory consumption .Also, access time and network IO time are reduced as the

number of requests to Name Node reduces with less number of small files. Secondly, the presence of a large number of small files

will deteriorate the performance of Map Reduce processing as a huge number of small files results in a large volume of random disk

IO. For Map Reduce performance, often disk IO is one of the prime limiting factors. Reading the data from, one large merged

sequential file will always take less time as compared to reading the same size of data through multiple random reads. If we are able

to store data in less number of blocks, the performance impact due to disk IO will be significantly mitigated. Practically, the

generation of small files has become increasingly common. To solve the small file problem, we mainly merge small files and store the

large file after merging. But, presently available solutions have not considered the size distribution of files and internal fragmentation

caused by merging of files into consideration. In this paper, we firstly analyze, compare and contrast various solutions available for

solving Hadoop small files problem, including Hadoop ownsolutions and other solutions which target various aspects of small files

problem. In this paper, we propose a novel algorithm named as, OMSS (OptimizedMapFile based Storage of Small files) to improve

storage efficiency and processing time for small files in Hadoop. The OMSS technique reduces memory wastage done due to internal

fragmentation by using Worst fit technique for merging several files into a Map File [10]. We have implemented and compared the

results on a Hadoop setup on cloud and find that our proposed algorithm performs better than basic MapFiletechnique.Our solution

can be applied to various big data applications such as in healthcare industry, where huge number of Electronic health records (EHR)

is stored in healthcare information systems. Also, there are millions of users of various messaging apps, wherein text messages

constitute major chunk of data and this data is generally backed up every few minutes. It can be used in big data analytics and gaining

insights in huge E-Commerce data. The rest of this paper is organized as follows. Section IIvdiscusses background on Hadoop and

Problems associated with small files; Section III describes related work; Section vI describes our proposed solution, OMSS; Section V

contains experimental results and Section VI concludes the paper

III. BACKGROUND

In this section, we discuss architecture of Hadoop DistributedFilesystem (HDFS) and then the problems associated

with processing, storing and accessing small files.

A. HDFS

HDFS [1] is the primary storage system of Hadoop and has a master/slave architecture. It consists of Name Node/s and Data Nodes as

architectural components. HDFS is one of the file systems of Hadoop written in Java which divides a large file into small blocks and

distributes them to various nodes called Data Nodes. Redundant copies of each block are maintained in HDFS to avoid loss of data in

case of failures. Name Node maintains a database containing a mapping from logical files to physical blocks in the Data Nodes. Block

replication is also managed by the Name Node. The Name Node handles the management of the file system namespace, metadata, and

requests from clients to access data. The Data Nodes provide block storage and serve IO requests from clients. They also create,

delete, and replicate data blocks up on getting command from the Name Node.

B.PROBLEMS WITH SMALL FILES

The HDFS is originally designed for storing and processing a files. We can consider a small file as any file that considerably smaller

than the Hadoop block, i.e., 64 MB.However, the small file problem is not just caused by the small size of files, if a large number of

files in Hadoop cluster are marginally greater than an increment of the block size, the user will encounter the same challenges as small

files. In present-day scenario with the help of cloud computing ,everybody wants data to be available in real time. Due to real time

syncing of data, Hadoop ingestion is made to run frequently, which in turn leads to the creation of small files in HDFS. HDFS has

problems in processing and handling small files as mentioned below:

1) Name Nodes High memory consumption: Metadata in stored in main memory of Name Node. In general, the metadata

of a file consumes about 150 bytes of main memory. With say, 24 million files in HDFS, Name Node will require 3.5GB of main

memory for storing metadata. Therefore, an application consisting of huge number of small files will eventually consume all memory

spaces of Name Node. Hadoop framework represents every block, file, directory as an objectin the memory. So, If we are able to

reduce the number of small files on Hadoop cluster, we can also reduce network impact and startup time along with the Name Node

memory footprint.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1143

2) The Map Reduce performance problem: Having a large number of small files degrades the performance of Map Reduce[6]

processing. The reason for performance degradation is that a huge number of small files means a significant amount of random disk

IO, which is often one of the prime limiting factors in Map Reduce performance. Reading the same data in single sequential read will

generally take less time than reading via multiple random reads. We can reduce this performance penalty due to random disk IO if we

can store our data on few large blocks.

3) High storing time: Storage time of small files in HDFS is quite high. For example [7], to store 550,000 small files into

HDFS system, it requires around 7.7 hours. The files in this case vary in size from 1KB to 10KB. On the other hand, if we

attempt to store these files using a local file system, it takes considerably less time. Thus showing unfeasibility of storing

time.

4) Name Node performance degradation: HDFS takes a significant amount of time for managing metadata as it requires

nodes to cooperate. When HDFS client receives a request for accessing a file it needs to retrieve metadata of the file from

Name node for each such request for file access. For small files ,the major overheads are metadata management and disk seeks.

While data transfer takes very short time. HDFS client has to contact Name Node frequently and as a result performance of

Name Node is impacted, when there are huge number of small files in system.

II.I RELATED WORKS

In recent times, various organizations using Hadoop as well as research community have given a lot of attention towards

small file problem .Some of the general solutions for solving small file problem

are:

HAR : Hadoop Archive (HAR) [8] archives small files in to files using Hadoop archive method. Hadoop archive method

uses Map Reduce to merge small files into fewer large HDFSfiles. It contains metadata files and data files. The metadata

file contains a index and master index. Index file has the907 name and location of files that are part of an archive.

 HAR is effective in reducing memory consumption of Name Node. The data file consists of files which are archived together. But

there are many drawbacks of HAR, each access to HAR file requires 2 reads from the index file and one read from the

data file. And also, new files cannot be appended to HAR ,they are immutable once created. We need to re-create HAR

for inserting new files

.Sequence File : Sequence File [9] is a data structure which stores the data in the form of binary key-value pairs. Also, it acts as a

container for small files. Here key is file name and value is file contents. Compression and decompression are supported both at

record level and block level. Sequence File also has several disadvantages. For a particular key, It does not have mechanism for

update and delete operation; it only supports append method; and secondly, this approach ha slow access efficiency as it takes quite a

long time to make a Sequence file. If a user needs to look up for a particular key ,the complete sequence file is required to be read

.Map File:

A Map File [10] is a sorted Sequence File. It comprises of two files, one index file and another one is data file. It maintains index file

to store key location information to allow lookup of data by key. The key-value pairs are sorted by key and stored as records in the

data file. Map File facilitates to look up for key without needing to read full file .Drawbacks of Map File are similar to Sequence File.

They cannot provide flexible APIs for applications as only append method is supported for a particular key. Moreover, while storing

files correlations between files are not considered inall three methods namely, HAR, Sequence File, and Map File .Various authors

have also proposed application specific and several domain specific solutions for small file problems.

L.Xuhui Liu, et al. [7] proposed an approach where the main idea was to combine small files into large ones to reduce the file

number and build an index for each file. Additionally, they provided some features such as grouping neighboring files and reserving

several latest version of data considering the characteristics of Web GIS access patterns. Their technique was similar to Misfile. They

did not focus on size distribution and processing time of small files.

G. Mackey et al.[11] proposed a scheme based on HAR file layout to solve the small files problem. Their primary focuswas on the

scheduling of jobs on Hadoop cluster using quota policy. The HAR file layout itself has several disadvantages

as mentioned above in this paper. They did not introduce any good solutions for reducing access time, processing time and memory

consumption at major nodes of Hadoop. Dong et al. [12] presented a scheme in that, firstly, it merges all correlated small files of a

PPT courseware in to a larger file to reduce the memory footprint on NameNode.Secondly, to reduce the access time of small files, it

uses a two-level perfecting mechanism. The authors in their subsequent research[13], introduced an approach which focused on

improving the storage capabilities and reducing access time of small files on HDFS.

 File merging used by them is similar to other techniques. They classified files as structurally-related files, logically-related files, and

independent files. And a pre fetching scheme was applied for structurally-related small files, while file grouping and pre fetching

scheme were used for managing logically Related small files. Both the approaches proposed by authors were very similar to Map File

technique. In their work, they considered correlation among small files and tried to identify the relationship among various small files.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1144

But, here also size distribution of files was not considered while merging small files. Their prime focus was on the needs of their real

education system.

To further improve the storing capability and accessing time of the small files on HDFS, Chandrasekhar S et al.[14] proposed a

solution based on the works of Dong et al.,namely Extended Hadoop Distributed File System (EHDFS).Here, in this scheme,

correlated files are identified by the client and combined into a single large file to minimize total count of files. An indexing

mechanism was created to access the individual files from the corresponding combined file. Further, index prefetching was also

provided to improve Io performance and minimize the load on Name Node. In this paper, we propose anOptimizedMap File based

algorithm for Storage of Small files, considering the size distribution of files. The concept of considering size distribution offices for

merging small files was proposed by Hue He et al. The solution presented by Hue

He et al. [15] was a Tetris merge algorithm which was based on the balance of data block. The

merging strategy was similar to filling of gaps in Tetris. In the proposed scheme, based on the volume of small files, the small files are

evenly distributed into bigger files. Taking the size distribution of small files into consideration, we have proposed an OMSS

algorithm. In our proposed algorithm, we have modified the merging process of Map File in order improve storage and processing

efficiency. We have used worst fit strategy to merge files into Map File. Moreover, using OMSS, we have been able to reduce

processing time and memory burden on the primary nodes of HDFS. Hence using OMSSwe can resolve the small files problem

significantly and benefit with various applications such as healthcare and education which host large, small sized data by providing

fewer memory requirements and faster processing time.

IV. PROPOSED WORK

In this paper, we have proposed a modified Map File technique which attempts to reduce memory wastage while merging small files

into large Map Files. To overcome problems in handling small files, we merge small files into a larger file and store the merged file

on HDFS. While merging small files, variation in the size distribution of files is not taken into consideration. We propose a new

algorithm OMSS (OptimizedMapFile based Storage of Small files) which takes into account size distribution of files present in a file

set. It merges the small files into larger files based on Worst fit strategy that helps in reducing internal fragmentation in data blocks,

which in turn leads to fewer data blocks consumed for the same number of small files. Less number of data blocks means fewer

memory overheads at major nodes of Hadoop cluster and increased efficiency of data processing.

In our proposed algorithm we have reduced internal fragmentation in Map File using Worst-Fit strategy. In the worst-fit

strategy, process is placed in the biggest block of unallocated memory available by memory manager. As we have mentioned earlier

small file problem is not just due to very small files, but it is also created by files that are smaller than block size but due to less space

available in the data block, they spillover to next data block of Data Node and create the small file problem. As mainly, all the

merging algorithms are based on the cut-off size of the merged file, while merging many small files, if the size of the large file being

created reaches the cut-off point, the files are merged into a bigger file called as dequence file which are used for feature extraction.

Inthis process if a file crosses cut off size, it is removed from that large file, and internal fragmentation occurs in the merged file. As

shown in fig. 2, while merging 3 files i.e. 1,2,3 total sizes of these 3 files crosses the cut-off size pre decided by emerging algorithm,

then file 3 is removed from the file being merged. And thus leaving behind memory unutilized. Hence its imperative to take into

account size distribution of files and merging files accordingly; By this approach we can optimizememory requirements of major

nodes of Hadoop cluster.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1145

 1

 2 3.index file

 4

 Fig. 1. Schematic Diagram of Proposed solution

Merged file

 Cut-off-point

Fig. 2. Problem of Internal Fragmentation

 The File Set contains the set of files to be processed into Hadoop Cluster .As shown in fig. 1, we first segregate large files

Present in the File Set from small files. Then the large files are directly put into Hadoop Cluster for processing. Using the worst fit

strategy of file merging, as proposed in our algorithm, we sort the small files in the File Set into various merging queues. Small files

are put into the queue with the maximum merge limit. Files are placed into the merging queue until the

queue size become equal to merge criteria. After the files are sorted into various queues, the files are merged and converted in to Map

Files, one per queue. Map File is a file containing sorted key-value pairs. Here key is file name and value is file contents. Map File

also maintains an index file to facilitate faster access of small files. These Map Files are then put in to Hadoop Cluster for processing.

Our proposed File merging strategy for Map Files consists of two parts

(1) File filtering based on the size of small files,

(2) File merging using worst-fit strategy.

 1

2

3

1

2

fragmentation

Large files
Merged file

 Hdfs

Small files File merging

File indexing

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1146

 1) File Filtering Criteria: For optimizing performance ofHDFS for handling small files, it is crucial to decide the cutoff point

between small files and large files. Many applications have a huge number of files, which are considerably small in size .For example,

in the field of climatology [16], some applications contains 450,000 files with an average size of 61MB.In Sloan Digital Sky Survey,

there were around 20 million image files [17] with an average size even less than 1MB.Although Dong etal. discussed the cut-off

point between large and small files, they just presented the experimental analytical results.

 Algorithm 1 File Merging Algorithm

1: Initialize File set(Fs), Merge Criteria(Ms), Merge-

Queue(Qm)

2: for each file Fi in Fs do

3: if (Fi belongs to Fs and Fi is not a small file) then

4: Go to Step 3

5: else

6: Go to Step 7

7: Merging of the files using worst fit strategy where merge limit is the maximum limit. Select the queue with the max

 merge limit i.e. max free size

8: Insert the file into selected queue and calculate the queue size(Qs) and merge limit as:

Qs = Qs + file size(Fi)

merge limit = Ms - Qs

9: if (Qs==Ms) then

10: Make a sequence file of the files in the queue

11: else

12: Got o Step 2

13: Put all the sequence files generated and large files present in file set into HDFS for processing.

 2) File Merging: We can understand file merging process as shown in fig. 3, there are five files namely 1,2,3,4,5 in the

file list. Out of which File 3 represents a large file, while all other are small files. Here, sizes of file 1,2,3,4,5 are taken6,7,200,4,2

units respectively. And let’s consider threshold limit to be 10 units. Our file merging algorithm puts the file into various merging

queues based on worst fit strategy. File1 and 4 are placed into the 1st queue, while 2 and 5th into the second one. The files in the

queue are then converted into Map File (key, value pair). The Map Files generated and the large file are then put into HDFS cluster

for processing. As described in algorithm 1, We first initialize the set of all input files(Fs), the criteria for merging the files (Ms) and

the merging queue (Qm).

Next, we iterate for every input file of our set, if the file is a large file, we put it into the Hadoop Distributed File system for its

indexing, processing ,and storage in the cluster. Else, if the file is indeed a small file hen we merge it into the Merge Queue, using the

worst fit strategy, that is, we put it into the queue having the maximum possible empty space. After merging the file into the merge

queue, its queue size is incremented by the file size, and the merging limit is decremented by the queue size. Whenever ,for a queue,

the queue size becomes equal to the merge size limit, the queue is converted into a sequence file. And these quince files are put in the

Hadoop DFS for processing. This algorithm makes use of the worst fit strategy, to reduce internal fragmentation in storing of files.

As the hole (empty space) which is left after inserting a file into a queue is the maximum, hence the chances of accommodating
any new file
into the left over space are maximum. Thereby wastage of space is minimized.

 Merge criteria

K1 V1 K4 V4

1

4

HDFS

CLUSTER

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1147

 Merge criteria

Fig. 3. Schematic Diagram of File Merging Strategy

CONCLUSION

In proposed method we combine many number of small files and store them as large file after merging the available merging

algorithm does not consider the size distribution of files as well as internal fragmentation. In our algorithm we combine presently

available solution with Hadoop native solution and various solutions which resolves various aspects of small file problem. Present

solution reduces memory wastage by reducing internal fragmentation by using worst fit strategy to combine small files in to large file.

This solution can be used big data application such as in health care industry where Large number of electronics records are

generated and stored. and also used in various message apps which generates major chunks of textual data. Finally it uses map reduce

program to extract data from social website and all this data will be stored in small files and converted to single large file called as

sequence file. these files are used for any kind of feature extraction.

REFERENCES

[1] Hdfs architecture guide. [Online]. Available: https://hadoop.apache.org/docs/r1.2.1/hdfs design.html

[2] P. Mell and T. Grance, “A nist definition of cloud computing. nationalinstitute of standards and technology. nist sp 800-145,”

2009.

[3] B. Dong, Q. Zheng, M. Qiao, J. Shu, and J. Yang, “Bluesky cloudframework: an e-learning framework embracing cloud

computing,” in IEEE International Conference on Cloud Computing. Springer, 2009,

pp. 577–582.

[4] M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi, “Sharingsocial content from home: a measurement-driven feasibility

study,”in Proceedings of the 21st international workshop on Network andoperating systems support for digital audio and video.

ACM, 2011, pp. 45–50.

[5] T. White. The small files problem. [Online]. Available: http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1,

pp. 107–113,2008.

[7] X. Liu, J. Han, Y. Zhong, C. Han, and X. He, “Implementing webgison Hadoop: A case study of improving small file i/o

performance on hdfs,” in 2009 IEEE International Conference on Cluster Computing

and Workshops. IEEE, 2009, pp. 1–8.

[8] Hadoop archive guide. [Online]. Available: https://hadoop.apache.org/ docs/r1.2.1/hadoop archives.html

[9] Sequence file. [Online]. Available: https://wiki.apache.org/hadoop/SequenceFile

[10] Mapfile. [Online]. Available: https://hadoop.apache.org/docs/r2.6.0/api/ org/apache/hadoop/io/MapFile.html

K2 V2 K5 V5

2

5

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1813016 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1148

[11] G. Mackey, S. Sehrish, and J. Wang, “Improving metadata management for small files in hdfs,” in 2009 IEEE International

Conference on Cluster Computing and Workshops. IEEE, 2009, pp. 1–4.

[12] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li, “A novelapproach to improving the efficiency of storing and accessing

small fileson hadoop: a case study by powerpoint files,” in Services Computing(SCC), 2010 IEEE International Conference on. IEEE,

2010, pp. 65–72.

[13] B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane,An optimized approach for storing and accessing small files on

cloudstorage,” Journal of Network and Computer Applications, vol. 35, no. 6,pp. 1847–1862, 2012.

[14] S. Chandrasekar, R. Dakshinamurthy, P. Seshakumar, B. Prabavathy, andC. Babu, “A novel indexing scheme for efficient

handling of small filesin hadoop distributed file system,” in Computer Communication andInformatics (ICCCI), 2013 International

Conference on. IEEE, 2013,

http://www.ijcrt.org/

