RADIALLY SYMMETRIC SOLUTIONS OF SYSTEM OF NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

D. P. Patil
Associate Professor
A. S. C. College Saikheda Tal Niphad Dist Nashik

Abstract

Symmetry properties of positive solutions of system of elliptic boundary value problems in R^{3} are studied. We employ the moving plane method based on maximum principle on unbounded domains to obtain the result on symmetry of solutions of systems of nonlinear elliptic boundary value problems.

IndexTerms :- Maximum principle; Moving plane method; Radial symmetry; System of nonlinear elliptic boundary value problem.
AMS 2010: 35B06, 35B09, 35J25, 35B50.

I. INTRODUCTION

In recent years, a lot of interest has been shown in the study of symmetry properties of solutions of nonlinear elliptic equations, reflecting the symmetry of domain. Linear elliptic equations arise in several models describing various phenomena in the Applied sciences. It is an important goal in mathematical analysis to establish symmetry property of solutions of differential equations both from a theoretical point of view and for the applications. In 1979 Gidas, Ni and Nirenberg [9, 10] introduced the method of moving planes to obtain the symmetry results and monotonicity for positive solutions of nonlinear elliptic equations. Li and $\mathrm{Ni}[19]$ proved the symmetry results for the conformal scaler curvature equation

$$
\Delta u+K(x) u^{(n+2) /(n-2)}=0 \text { in } R^{n} ; n \geq 3
$$

Recently, Naito [16] studied the problem of radial symmetry of classical solutions of semilinear elliptic equations $\Delta u+V(|x|) e^{u}=0$ in R^{2},
by the moving plane method. Recently Dhaigude and Patil [2] studied the radial symmetry of positive solutions of semilinear elliptic problem in unit ball. Also in [4] authors obtained symmetric results for semilinear elliptic boundary value problems (BVP) $\Delta u+f(|x|$

$$
u ; \nabla u)=0 \text { in } R^{n} u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty .
$$

In [5] authors studied the symmetry of solutions of elliptic boundary value problem

$$
\Delta u+V(|x|) e^{u}=0 \text { in } R^{3},
$$

using moving plane method. Dhaigude and Patil [3] have proved some symmetry result for the system of nonlinear BVP. Further author [6] proved that solution of a system of semilinear elliptic Neumann boundary value problem must be radially symmetric. Author [7] also proved radial symmetry of positive solutions for elliptic system with gradient term in R^{n}. Symmetric solutions of nonlinear elliptic Neumann boundary value problems are obtained by author D. P. Patil[8]. It is well known that a classical tool to study symmetry of such solutions is the moving plane method. Which goes back to Alexandrov and Serrin [20]. Since last four decades or so, "method of moving planes" has been numerous applications in studying non linear partial differential equations. It can be used to prove symmetry of solutions. Method of moving planes has been improved and simplified by Berestycki and Nirenberg in [21] with the aid of maximum principle in small domain. After that many other results followed with different operators, different boundary conditions and different geometries.

In this paper the nonlinear system of the following form

$$
\begin{align*}
& \Delta u(x)+g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{v(x)}=0 \quad \text { in } R^{3}(1.1) \\
& \Delta v(x)+g_{3}(|x|) e^{u(x)}+g_{4}(|x|) e^{v(x)}=0 \\
& u(x) \rightarrow 0 ; v(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \tag{1.2}
\end{align*}
$$

where $g_{1}(x) ; g_{2}(x) ; g_{3}(x) ; g_{4}(x)$ are locally Holder continuous in $(0 ; \infty)$, satisfying $u € L^{\infty}\left(R^{3}\right)$ and $\quad v € L^{\infty}\left(R^{3}\right)$ is studied. Naito [13] studied dirichlet nonlinear BVP

$$
\begin{gathered}
\Delta u(x)+f(|x| ; u(x))=0 \text { in } R^{2} \\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{gathered}
$$

Problems of this kind arise in geometry and various branches of physics; see Chanillo and Kiessling [14]. Chen and Li [17] explained and used moving plane method in proving symmetry of solutions of BVP. Chen and Zhu [18] proved radial symmetry of solutions of polyharmonic Dirichlet boundary value problem

$$
(-\Delta)^{m} u=f(u)
$$

in unit ball by using the corresponding integral equation and moving plane method in integral form. Recently, Hui and Kim [12] proved the symmetry of solution of the equation

$$
\Delta v+\alpha e^{v}+\beta x: \nabla e^{v}=0 \text { in } R^{n}
$$

We organize the paper as follows: Section 2 is devoted to some preliminary results which will be used in next section. The symmetric result and useful lemmas are proved in the last section.

2. PRELIMINARY RESULTS:

In this section, first we state some lemmas and theorem which are useful to prove our main result.
Lemma 2.1: Suppose that Ω satisfies the interior sphere condition at $x_{0} \in \partial \Omega$. Let L be strictly elliptic with $c \leq 0$. If $u €$ $C^{2}(\Omega) \cap C(\Omega)$ satisfies $L(u) \geq 0$ and $\max \Omega u(x)=u\left(x_{0}\right)$ then either $u=u\left(x_{0}\right)$ on Ω or $\lim _{\inf } \mathrm{t}_{\rightarrow 0}\left(u(x)-u\left(x_{0}+t v\right) / t>0\right.$, for every direction v, pointing into an interior sphere. If $u \in C^{1}$ subset of $\Omega U_{\{0\}}$ then $\partial u / \partial v\left(x_{0}\right)<0$.

Lemma 2.2 [16] Let Ω be unbounded domain in R^{n}, and let L denote the uniformly elliptic differential operator of the form $\quad L u=$ $a_{i j}(x) \partial_{i j} u+b_{i}(x) \partial_{i} u+c(x) u$
where $a_{i j} ; b_{i} ; c \in L^{\infty}(\Omega)$. Suppose that $u=0$ satisfies $L(u) \leq 0$ in Ω and $u \geq 0$ on $\partial \Omega$: Suppose furthermore that there exist a function w such that $w>0$ on $\Omega U \partial \Omega$ and $L(w) \leq 0$ in Ω. If $u(x) / w(x) \rightarrow 0|x| \rightarrow \infty ; x \in \Omega$
then

$$
u>0 \text { in } \Omega
$$

Theorem 2.1 [11] Let $u(x)$ satisfies differential inequality $L(u) \geq 0$ in a domain Ω where L is uniformly elliptic. If there exist a function $w(x)$ such that,

$$
w(x)>0 \text { on } \Omega U \partial \Omega . L(w) \leq 0 \text { in } \Omega .
$$

Then $u(x) / w(x)$ cannot attain a non negative maximum at a point p on $\partial \Omega$, which lies on the boundary of a ball in Ω and if u / w is not constant then

$$
, \partial / \partial v(\mathrm{u} / w)>0
$$

at P where $\partial / \partial v$ is any outward directional derivative.
Let w be harmonic function in R^{3} and $w(x)=o(|x|)$ as $|x| \rightarrow \infty$. Then w must be constant.
Lemma 2.3 [11] Let f be bounded and locally Holder continuous in Ω and let w be the Newtonian potential of f. Then $w \in C^{2}(\Omega), \Delta w$ $=f$ in Ω and for any

$$
x \in \Omega D_{i j} w(x)=\int_{\Omega 0} D_{i j} \Gamma(x-y)(f(y)-f(x)) d y-\int_{\partial \Omega 0} D_{i} \Gamma(x-y) v_{j}(y) d_{s y}=
$$

here Ω_{0} is any domain containing Ω for which the divergence theorem holds and is extended to vanish outside Ω.
Lemma 2.4 [5] If $w(x)=1 / 3 \omega_{3} \int_{R 3}(1 /|x-y|-|y|) f(y) d y$.
Let $f \in L^{\infty}\left(R^{3}\right) \cap L^{1}\left(R^{3}\right)$. Then

$$
\operatorname{Lim}_{|x| \rightarrow \infty} w(x) / \log |x|=1 / 3 \omega_{3} \int_{R}^{3} f(y) d y
$$

3. MAIN RESULTS:

Before going to prove main result we prove some lemmas.
Lemma 3.1 Let $(u ; v)$ be solution of (1.1) where $g_{1}(x)$; $g_{2}(x)$; $g_{3}(x) ; g_{4}(x)$ are locally Holder continuous in $(0 ; 1)$, satisfying $u+\epsilon L^{\infty}\left(R^{3}\right)$ and $v+\epsilon L^{\infty}\left(R^{3}\right)$ and $0<1 / 3 \omega_{3} \int_{R 3} g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{v(x)} d x=\beta_{1}<\infty$
and $0<1 / 3 \omega_{3} \int_{R 3} g_{3}(|x|) e^{u(x)}+g_{4}(|x|) e^{\nu(x)} d x=\beta_{2}<\infty$
Then $\lim _{|x| \rightarrow \infty} u(x) / \log |x|=\lim _{|x| \rightarrow \infty} u\left(x^{\lambda}\right) / \log |x|=-\beta_{1}$
and $\lim _{|x| \rightarrow \infty} v(x) / \log |x|=\lim _{|x| \rightarrow \infty} v\left(x^{2}\right) / \log |x|=-\beta_{2}$
Proof: Define the functions $w_{1}(x)$ and $w_{2}(x)$ as,

$$
\begin{align*}
& w_{1}(x)=1 / 3 \omega_{3} \int_{R 3}(1 /|x-y|-|y|) g_{1}(|y|) e^{u(y)}+g_{2}(|y|) e^{v(y)} d y \text { in } R^{3} \tag{3.5}\\
& w_{2}(x)=1 / 3 \omega_{3} \int_{R 3}(1 /|x-y|-|y|) g_{3}(|y|) e^{u(v)}+g_{4}(|y|) e^{v(v)} d y \text { in } R^{3} \tag{3.6}
\end{align*}
$$

As $x_{1} \neq x_{2}$ we have $w_{1}\left(x_{1}\right) \neq w_{1}\left(x_{2}\right)$ and $w_{2}\left(x_{1}\right) \neq w_{2}\left(x_{2}\right)$, and so $w_{1}(x)$ and $w_{2}(x)$ are well defined, and

$$
\begin{equation*}
\Delta w_{1}=g_{1}(|y|) e^{u(\theta)}+g_{2}(|y|) e^{(v)} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w_{2}=g_{3}(|y|) e^{u(y)}+g_{4}(|y|) e^{v(y)} \tag{3.8}
\end{equation*}
$$

From equations (3.3), (3.4) and $u+; v+\epsilon L^{\infty}\left(R^{3}\right)$ we have $g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{\nu(x)} \epsilon L^{\infty}\left(R^{3}\right) \cap L^{1}\left(R^{3}\right)$ and $g_{4}(|x|) e^{\nu(x)} \in L^{\infty}\left(R^{3}\right) \cap L^{1}\left(R^{3}\right)$. By lemma 2.1 we have

$$
\begin{align*}
& \operatorname{Lim}_{|x| \rightarrow \infty} \quad w_{I}(x) / \log |x|=1 / 3 \omega_{3} \int_{R 3} g_{1}(|y|) e^{u(v)}+g_{2}(|y|) e^{v(v)}=\beta_{1}<\infty \tag{3.9}\\
& \operatorname{Lim}_{|x| \rightarrow \infty} w_{2}(x) / \log |x|=1 / 3 \omega_{3} \int_{R 3} g_{3}(|y|) e^{u(v)}+g_{4}(|y|) e^{v(v)}=\beta_{2}<\infty \tag{3.10}
\end{align*}
$$

Therefore we have $\operatorname{Lim}_{|x| \rightarrow \infty W_{1}(x) / \log |x|} \beta_{1}<\infty$ and $\operatorname{Lim}_{|x| \rightarrow \infty} w_{2}(x) / \log |x|=\beta_{1}<\infty$
Before going to next lemma we shall define,

Lemma 3.2 Let $\lambda>0$ then $w_{1 ; \lambda_{-}}(x)$ and $w_{2 ; \lambda_{-}}(x)$ satisfies

$$
\begin{aligned}
& \Delta w_{1 ; \lambda_{-}}(x)+C_{1} ; ;_{2}(x) w_{1 ; \lambda_{-}}(x) \leq 0 \\
& \Delta w_{2 ; \lambda}(x)+C_{2} ; \lambda_{2}(x) w_{2 ; \lambda_{-}}(x) \leq 0
\end{aligned}
$$

where
for some constants $\delta_{1} ; \delta_{2}>3$.
Proof: Since $g_{i}(|x|) ; i=1 ; 2 ; 3 ; 4$: is nonincreasing in $|x|=r$ and $\left|x^{\lambda}\right|>|x|$ for $x \epsilon \sum_{\lambda}$. and $\lambda>0$ we know that $u\left(x^{\lambda}\right)$ satisfies the same equations that $u(x)$ does.
and

$$
\begin{equation*}
\Delta u\left(x_{\lambda}\right)+g_{1}\left(\left|x^{\lambda}\right|\right) e^{u(x \lambda)}+g_{2}\left(\mid x^{\lambda}\right) e^{v(x \lambda)}=0 \tag{3.12}
\end{equation*}
$$

Subtracting equation (3.12) from equation (1.1) we get,

$$
g_{3}(|x|) e^{u(x)}+
$$

$$
\begin{align*}
& w_{1 ; \lambda_{-}}(x)=u(x)-u\left(x^{\lambda}\right) \tag{3.11}\\
& w_{2 ; \lambda_{-}}(x)=v(x)-v\left(x^{\lambda}\right)
\end{align*}
$$

$\underbrace{\square}$

$$
\left.\left.C_{1} ; \lambda(x)=O(|x|)^{-\delta L}\right) \text { and } C_{2} ; \lambda(x)=O(|x|)^{-\delta 2}\right) \text { as }|x| \rightarrow \infty
$$

$0=\left[\Delta u(x)+g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{v(x)}\right]-\left[\Delta u\left(x^{\lambda}\right)+g_{1}\left(\left|x^{\lambda}\right|\right) e^{u(x \lambda)}+g_{2}\left(\mid x^{\lambda}\right) e^{v(x \lambda)}\right]$
$=\Delta u(x)-\Delta u\left(x^{\lambda}\right)+\left[g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{v(x)}-g_{1}\left(\left|x^{\lambda}\right|\right) e^{u(x \lambda)}-g_{2}\left(\mid x^{\lambda}\right) e^{v(x \lambda)}\right]$
$\geq \Delta w_{1 ; \lambda_{-}}(x)+\left[g_{1}(|x|) e^{u(x)}-g_{1}(|x|) e^{u(\lambda \lambda)}\right]+\left[g_{2}(|x|) e^{v(x)}-g_{2}\left(\mid x^{\lambda}\right) e^{v(x \lambda)}\right]$
$=\Delta w_{1 ; \lambda_{-}}(x)+g_{1}\left(|x|\left[e^{u(x)}-e^{u(x \lambda)}\right]+g_{2}(|x|)\left[e^{v(x)}-e^{v(x \lambda)}\right]\right.$
$=\Delta w_{1 ; \lambda_{-}}(x)+\left\{\left[g_{1}\left(|x|\left[e^{u(x)}-e^{u(x \lambda)}\right]+g_{2}(|x|)\left[e^{v(x)}-e^{v(x \lambda)}\right]\right] /\left(u(x)-u\left(x^{\lambda}\right)\right\}\left(u(x)-u\left(x^{\lambda}\right)\right.\right.\right.$
$=\Delta w_{1 ; \lambda}(x)+C_{1 ; \lambda_{-}}(x)\left(w_{1, \lambda_{-}}(x)\right)$
Where
$C_{1 ; \lambda_{-}}(x)=\left[g_{1}\left(|x|\left[e^{u(x)}-e^{u(x \lambda)}\right]+g_{2}(|x|)\left[e^{\nu(x)}-e^{\nu(x \lambda)}\right]\right] /\left(u(x)-u\left(x^{\lambda}\right)\right.\right.$
Similarly,
$0 \geq \Delta w_{2 ; \lambda}(x)+C_{2 ; \lambda_{-}}(x)\left(w_{2 ; \lambda_{-}}(x)\right)$
where
$C_{2 ; \lambda_{-}}(x)=\left[g_{3}\left(|x|\left[e^{u(x)}-e^{u(x \lambda)}\right]+g_{4}(|x|)\left[e^{v(x)}-e^{v(x \lambda)}\right]\right] /\left(v(x)-v\left(x^{\lambda}\right)\right.\right.$

Take $\epsilon>0$ so small that $\alpha_{i}+\beta_{j}-\epsilon>3$ for $i=1 ; 2 ; 3 ; 4 . j=1 ; 2$. Then we have

$$
\begin{aligned}
& u(x) / \log |x| \leq-\left(\beta_{1}-\epsilon\right), \quad u(x) \leq-\left(\beta_{1}-\epsilon\right) \log |x| ; u\left(x^{\lambda}\right) / \log |x| \leq-\left(\beta_{1}-\epsilon\right), \\
& v(x) / \log |x| \leq-\left(\beta_{2}-\epsilon\right), v(x) \leq-\left(\beta_{2}-\epsilon\right) \log |x|, v\left(x^{\lambda}\right) / \log |x| \leq-\left(\beta_{2}-\epsilon\right)
\end{aligned}
$$

Thus we have $u(x) \leq-\left(\beta_{1}-\epsilon\right) \log |x|$ and $u\left(x^{2}\right) \leq-\left(\beta_{1}-\epsilon\right) \log |x|$ for all large $|x|$. Also $v(x) \leq-\left(\beta_{2}-\epsilon\right) \log |x|$ and $\quad v\left(x^{2}\right) \leq$ $-\left(\beta_{2}-\epsilon\right) \log |x|$ for all large $|x|$. From $r^{\alpha i} g_{i}(r)<\infty$, for some $\alpha_{i}>0$ Thus we can conclude that $C_{1 ; \lambda_{-}}(x)=o\left(|x|^{-\left(\alpha a l+\beta l^{-\epsilon}\right)}\right.$) and $C_{1, \lambda_{-}}(x)=$ $o\left(|x|^{-(\alpha 2+\beta 2-\epsilon)}\right)$ as $|x| \rightarrow \infty$. This implies the result with $\alpha_{1}+\beta_{1}-\epsilon=\delta_{1}$ and $\alpha_{2}+\beta_{2}-\epsilon=\delta_{2}$. By virtue of lemma 3.2 we can take $R_{0}>\epsilon$ so large that,

$$
\begin{equation*}
1 /|x|+|x|^{2} \log (1 /|\mathrm{x}|) \geq C_{1, \lambda_{-}}(x) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
1 /|x|+|x|^{2} \log (1 /|x|) \geq C_{2 ; \lambda_{-}}(x) \tag{3.15}
\end{equation*}
$$

Lemma 3.3 Let $\lambda>0$ If $w_{1 ; 2}(x)>0$ and $w_{2 ; 2}(x)>0$ on $\sum_{\lambda} \backslash \boldsymbol{B}_{\text {Ro }}$ then $\lambda \in \Lambda$.
Proof: By lemma 3.2 and assumptions we have,
and

Let $w(x)=1 /|\mathrm{x}|+\log (1 /|\mathrm{x}|):$ Then

$$
\Delta w_{1 ; \lambda}(x)+C_{1, \lambda}(x) w_{1, \lambda}(x) \leq 0 \text { in } \sum_{\lambda} \backslash \boldsymbol{B}_{\boldsymbol{R} 0}
$$

$$
w_{1 ; \lambda}(x) \text { on } \partial\left(\sum_{\lambda} \backslash \boldsymbol{B}_{R 0}\right)
$$

$$
\begin{gathered}
\Delta w+1 /|x|^{2}=0 \\
\Delta w+1 /\left\{|x|^{2}(1 /|x|+\log (1 /|x|))\right\} w=0 \quad \text { in } R^{3} \backslash\{0\}
\end{gathered}
$$

By equation (3.14) and (3.15) we have
and

$$
\begin{aligned}
& \Delta w+C_{1 ; \lambda_{-}}(x) w \leq 0 \text { in } \sum_{\lambda} \backslash \boldsymbol{B}_{\boldsymbol{R} 0} \text { and } w>0 \text { on closure of } \sum_{\lambda} \backslash \boldsymbol{B}_{\boldsymbol{R 0}} \\
& \Delta w+C_{2 ; \lambda_{-}}(x) w \leq 0 \text { in } \sum_{\lambda} \backslash \boldsymbol{B}_{R 0} \text { and } w>0 \text { on closure of } \sum_{\lambda} \backslash \boldsymbol{B}_{R 0}
\end{aligned}
$$

By lemma 3.1 we have
and

$$
w_{1 ; \lambda}(x) / \mathrm{w}(x)=\left[\left(u(x)-u\left(x^{\lambda}\right)\right) / \log (|x|)\right] \cdot[\log (|x|) / w(x)] \rightarrow 0 \text { as }|x| \rightarrow \infty .
$$

$$
w_{2 ; \lambda}(x) / \mathrm{w}(x)=\left[\left(v(x)-v\left(x^{\lambda}\right)\right) / \log (|x|)\right] \cdot[\log (|x|) / w(x)] \rightarrow 0 \text { as }|x| \rightarrow \infty
$$

By lemma 2.2, we have
and

$$
\begin{aligned}
& w_{1 ; 2}(x)>0 \text { in } \sum_{\lambda} \backslash \boldsymbol{B}_{\boldsymbol{R} 0} \\
& w_{2 ; \lambda}(x)>0 \text { in } \sum_{\lambda} \backslash \boldsymbol{B}_{\boldsymbol{R} 0}
\end{aligned}
$$

Then by the assumptions,

$$
w_{1 ; \lambda}(x)>0 \text { in } \sum \lambda
$$

and
This implies that $\lambda \in \Lambda$.
Lemma 3.4 Let $\lambda \in \Lambda$ then $\partial u / \partial x_{1}<0$.
Proof: By lemma 3.2 we have,

$$
\begin{aligned}
& \Delta w_{1 ; \lambda}(x)+C_{1, \lambda_{-}}(x) w_{1 ; \lambda}(x) \leq 0 \text { in } \sum_{\lambda} \\
& \Delta w_{2 ; \lambda}(x)+C_{2, \lambda_{-}}(x) w_{2, \lambda}(x) \leq 0 \text { in } \sum \lambda
\end{aligned}
$$

And

$$
\Delta w_{1 ; \lambda}(x)>0, \Delta w_{2 ; \lambda}(x)>0 \text { in } \sum \lambda .
$$

Since $\Delta w_{1 ; \lambda}(x)=0, \Delta w_{2 ; \lambda}(x)=0$ on T_{λ}, we obtain $\partial w_{1 ; \lambda} / \partial x_{1}<0$ and $\partial w_{2 ; \lambda} / \partial x_{1}<0$ on T_{λ} by the Hopf boundary lemma. Therefore we have,

$$
\begin{aligned}
& \partial u / \partial x_{1}=(1 / 2) \partial w_{1, \lambda} / \partial x_{1} \text { on } T_{\lambda} \\
& \partial v / \partial x_{1}=(1 / 2) \partial w_{1 ; \lambda} / \partial x_{1} \text { on } T_{\lambda}
\end{aligned}
$$

Now we are well equipped to prove our main result about symmetry.
Theorem 3.1 Assume that $g_{1}, g_{2}, g_{3}, g_{4}$ satisfies

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty} r^{\alpha i} g_{i}(r)<1 \text { for some } \alpha_{i}>0 ; i=1 ; 2 ; 3 ; 4 \tag{3.16}
\end{equation*}
$$

Let $(u ; v)$ be the solution of the system (1.1)satisfying $u+\epsilon L^{\infty}\left(R^{3}\right) ; v+\epsilon L^{\infty}\left(R^{3}\right)$ where

$$
u+=\max \{0 ; u\} ; v+=\max \{0 ; v\}
$$

and
and

$$
0<1 / 3 \omega_{3} \int_{R 3} g_{1}(|x|) e^{u(x)}+g_{2}(|x|) e^{v(x)} d x=\beta_{1}<\infty
$$

$0<1 / 3 \omega_{3} \int_{R 3} g_{3}(|x|) e^{u(x)}+g_{4}(|x|) e^{v(x)} d x=\beta_{2}^{2}<\infty$
If $\alpha i+\beta j>3$, then (u, v) must be radially symmetric.
Proof: From lemma 3.1 we have,

$$
\begin{gathered}
\lim _{|x| \rightarrow \infty} u(x) / \log (|x|)=-\beta_{1} ; \lim _{|x| \rightarrow \infty} v(x) / \log (|x|)=-\beta_{2} \\
\lim _{|x| \rightarrow \infty} u(x)=-\infty \text { and } \lim _{|x| \rightarrow \infty} v(x)=-\infty
\end{gathered}
$$

then there exist $R_{1}>R_{0}$ and $R_{2}>R_{0}$ such that
and

$$
\max \left\{u(x):|x| \geq R_{1}\right\} \leq \min \left\{u(x):|x| \geq R_{0}\right\}
$$

$$
\max v(x):\left\{v(x):|x| \geq R_{2}\right\} \leq \min \left\{v(x):|x| \geq R_{0}\right\}
$$

Let $R m=\max \left\{R_{1} ; R_{2}\right\}$, therefore we have
and

$$
\operatorname{Max}\left\{u(x):|x| \geq R_{\mathrm{m}}\right\} \leq \min \left\{u(x):|x| \geq R_{0}\right\}
$$

$$
\left.\operatorname{Max}_{\{ } v(x):|x| \geq R_{\mathrm{m}}\right\} \leq \min \left\{u(x):|x| \geq R_{0}\right\}
$$

where R_{0} is constant such that

$$
1 /|x|+|x|^{2} \log (1 /|\mathrm{x}|) \geq C_{1 ; \lambda_{-}}(x)
$$

and

$$
1 /|x|+|x|^{2} \log (1 /|x|) \geq C_{2 ; \lambda_{-}}(x) \quad \text { for some } \quad|x| \geq R_{0}
$$

We shall prove the theorem in three steps.
Step-I: To prove $[R m ; \infty)$ subset Λ.
Let
$\lambda \epsilon[R m ; \infty)$, therefore $\lambda \geq R m$:
We know that $\boldsymbol{B R} \boldsymbol{R}_{\mathbf{0}}$ subset \sum_{λ}. Also we have
Thus $\lambda \in \Lambda$. Therefore

$$
w_{1 ; \lambda}(x)>0, w_{2, \lambda}(x)>0 \text { in } B R_{0}
$$

$[R m ; \infty)$ is subset Λ.
Step-II: Let $\lambda_{0} \epsilon \Lambda$, then we have to prove that there exist $\epsilon>0$ such that $\left(\lambda_{0}-\epsilon ; \lambda_{0}\right]$ subset Λ. We shall prove this step by the method of contradiction. Suppose that there exist an increasing sequence $\left\{\lambda_{i}\right\} ; i=1 ; 2 ; 3 ; \because$, such that $\lambda_{i} \epsilon \Lambda$ does not hold and $\lambda_{i} \rightarrow \lambda_{0}$ as $i \rightarrow$ ∞. By lemma 3.2 we have a sequence $\left\{x_{i}\right\}, i=1 ; 2 ; 3 ;: \because$ such that

$$
x i \epsilon \sum_{\lambda_{\mathrm{i}}} \cap \boldsymbol{B} \boldsymbol{R}_{\mathbf{0}} \text { and } w_{1 ; \lambda i_{-}}\left(x_{i}\right) \leq 0, w_{1 ; \lambda i_{-}}\left(x_{i}\right) \leq 0 .
$$

$$
w_{1 ; \lambda 0_{-}}\left(x_{0}\right) \leq 0 \text { and } w_{2 ; \lambda_{0}}\left(x_{0}\right) \leq 0 .
$$

Since $w_{1 ; \lambda 0_{-}}>0$ and $w_{2 ; \lambda 0_{-}>} 0$; in $\sum_{\lambda 0}$. We have $x_{0} \epsilon T_{\lambda 0}$. By mean value theorem we see that there exist a point y_{i} satisfying

$$
\partial u / \partial x_{1}\left(y_{i}\right) \geq 0 \text { and } \partial v / \partial x_{1}\left(y_{i}\right) \geq 0
$$

on the straight segment joining x_{i} to $\left(x_{i}\right)^{\lambda i}$ for each $i=1 ; 2 ; 3 ;::$: Since $y_{i} \rightarrow x_{0}$ as $i \rightarrow \infty$; we have

$$
\partial u / \partial x_{1}\left(x_{0}\right) \geq 0 \text { and } \partial v / \partial x_{1}\left(x_{0}\right) \geq 0 .
$$

On the other hand, since $x_{0} \epsilon T_{\lambda 0}$, we have

$$
\partial u / \partial x_{1}\left(x_{0}\right)<0 \text { and } \partial v / \partial x_{1}\left(x_{0}\right)<0 .
$$

This is a contradiction; hence step (II) is proved.

Step-III: Consider the following two statements (A) and (B),
(A) $u(x)=u\left(x^{\lambda 1}\right) ; v(x)=v\left(x^{\lambda 1}\right)$ for some $\lambda_{1}>0$ and

$$
\partial u / \partial x_{1}\left(x_{0}\right)<0, \partial v / \partial x_{1}\left(x_{0}\right)<0 \text { on } T_{\lambda} \text { for some } \lambda>\lambda_{1}
$$

(B) $u(x)=u\left(u^{0}\right) ; v(x)=v\left(x^{0}\right)$ for some $\lambda_{0}>0$ and

$$
\partial u / \partial x_{1}\left(x_{0}\right)<0, \partial v / \partial x_{1}\left(x_{0}\right)<0 \text { on } T_{\lambda} \text { for some } \lambda>0
$$

We have to prove that either (A) or (B) holds.
If $g_{1} ; g_{2} ; g_{3} ; g_{4} ;$ are not constant then statement (B) must holds.
Let $\lambda_{1}=\inf \{\lambda>0:[\lambda ; \infty)$ subset $\Lambda\}$.
We distinguish the proof in two cases: (i) $\lambda_{1}>0$ and (ii) $\lambda_{1}=0$:
Case (i): The case where $\lambda_{1}>0$: Let
Since u and v are continuous we have

$$
w_{1 ; \lambda I_{-}}(x) \geq 0 ; w_{1 ; \lambda I_{-}}(x) \geq 0, \text { in } \leq \sum \lambda \lambda_{1} .
$$

From lemma 3.2, we have

$$
\Delta w_{1 ; \lambda l}(x)+C_{1 ; \lambda l_{-}}(x) w_{1 ; \lambda l}(x) \leq 0
$$

and

$$
\Delta w_{2 ; \lambda l}(x)+C_{2 ; \lambda I_{-}}(x) w_{2 ; \lambda l}(x) \leq 0
$$

Hence, by strong maximum principle we have that either

$$
w_{1 ; \lambda I}>0 ; w_{2 ; \lambda I}>0 ; \text { in } \sum_{\lambda 1}
$$

or

$$
w_{1 ; \lambda I}=0 ; w_{2 ; \lambda I}=0 ; \text { in } \sum \lambda 1 .
$$

Assume that

$$
w_{1 ; \lambda I}>0 ; w_{2 ; \lambda I}>0 \text { in } \sum_{\lambda 1} \text { then } \lambda_{I} \in \lambda .
$$

From step (II) there exist $\epsilon>0$ such that ($\lambda_{1}-\epsilon ; \lambda_{1}$].This contradicts definition of λ_{1} : so

$$
w_{1 ; \lambda l}=0 ; w_{2 ; \lambda l}=0
$$

Since $\left(\lambda_{1} ; \infty\right)$ subset of Λ, we have

$$
\partial u / \partial x_{1}\left(x_{0}\right)<0, \partial v / \partial x_{1}\left(x_{0}\right)<0 \text { on } T_{\lambda}
$$

Thus we get statement (A).
Case (ii): The case where $\lambda_{1}=0$. From continuity of $u ; v$ we have

$$
w_{1 ; \lambda 0}(x) \geq 0, w_{2 ; \lambda 0}(x) \geq 0 \text { in } \sum_{0}
$$

i.e.

$$
u(x) \geq u\left(x^{0}\right) \text { in } v(x) \geq v\left(x^{0}\right) \text { in } \sum_{0}
$$

by lemma 3.4, we have,

$$
\partial u / \partial x_{1}<0, \partial v / \partial x_{1}<0 \text { on } T_{\lambda} \text { for } \lambda>0
$$

Assume that $g_{1} ; g_{2} ; g_{3} ; g_{4}$ are not constant, in this case we have to prove that (B) must hold. Assume to the contrary that (A) holds. From (1.1) we have,

$$
g_{i}(|x|)=g_{i}\left(\left|x^{\lambda}\right|\right) \text { for } x \in \sum_{\lambda} \text { and } ; i=1 ; 2 ; 3 ; 4
$$

Since $g_{i}(r)$ are non increasing, we have g_{i} are constant. This contradicts to the assumption. Thus (B) holds.
If (B) occurs in step (III) then we can repeat all the three steps for negatiye X_{1}-direction about plane
or

If (3.17) occurs then

$$
u(x)=u\left(x^{0}\right) \text { and } v(x)=v\left(x^{0}\right) \text { in } \sum_{0} \text { : }
$$

Therefore, u and v must be radially symmetric in X_{1}-direction about some plane and strictly decreasing away from the plane. Since equation (1.1) is invariant under rotation we may take any direction as X_{1}-direction and conclude that ($u ; v$) is symmetric in every direction about some plane. Therefore, ($u ; v$) is radially symmetric and decreasing the case where g_{i} are not constant then (B) and (3.17) holds. Then $(u ; v)$ is radially symmetric about origin and

$$
u_{r}<0, v_{r}<0 \text { for }|x|=r>0
$$

REFERANCES:

[1] L. Damascelli, F, Gladii, F. Pacella, A symmetry result for semilinear coop-erative elliptic systems, Serrin, James B.(ed.) et al., Recent trends in nonlinear partial differential equations. II: Stationary problems. Workshop in honor of Patrizia Pucci's 60th birthday 'Nonlinear partial differential equations', Perugia, Italy, May 28 - June 1,2012. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematies 595, 187-204 (2013)
[2] D.B.Dhaigude, D.P.Patil, Symmetry properties of solutions of nonlinear elliptic equations, International journal of Advances in Management, Technology and Engineering Sciences,Vol.II ,10(11), (July 2013) 24-28.
[3] D.B.Dhaigude, D.P.Patil, Radial symmetry of positive solutions of system of non-linear elliptic boundary value problems, Malaya J. Mat. 3(1)(2015) 23-29 .
[4] D.B.Dhaigude, D.P.Patil, SYMMETRY OF SOLUTIONS OF SYSTEM OF NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS IN BALL, Journal of Global Research in mathematical Archives, Volume 2, No. 4, April 2014, 110-115.
[5] D.B.Dhaigude, D.P.Patil, On symmetric solutions of elliptic boundary value problems, Internatiinal Journal of Latest Technology in Engineering, Management and Applied Sciences, Volume IV, Issue I, January 2015, 110-115.
[6] D. P. Patil, A system of semilinear elliptic Neumann boundary value problem, North Asian International Research Journal of Sciences, Engineering and I.T., Vol. 2 , Issue 5, May 2016, 3 - 7.
[7] D. P. Patil, Radial Symmetry of Positive Solutions for Elliptic System with Gradient term in R^{n}, International Journal of Engineering Science and Computing Vol. 6, Issue 4, April 2016, 4062 - 4066.
[8] D. P. Patil, Symmetric Solutions of Nonlinear Elliptic Neumann Boundary Value Problems, International Journal of Creative Research Thoughts, Vol. 5 Issue 3, Jan 2018, 1975 - 1979.
[9] B.Gidas, W.M.Ni and L.Nirenberg, symmetry and related properties via the maximum principle, Comm.Math.Phys. 68, (1979), 209-243.
[10] B.Gidas, W.M.Ni and L.Nirenberg, symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications Part A, ed. By L. Nachbin, adv. Math. Suppl. Stud. 7, Academic Press, New York, 1981,369-402.
[11] D. Gilbarg, N.S. Trudinger; Elliptic partial differential equations of second order,Springer-Verlag, Berlin,2001.
[12] K Hui and S Kim, Decay rate and radial symmetry of the exponential elliptic equation, J. Math. Anal. Appl. 413(2014), 269-283.
[13] M. H. Protter and H.F. Weinberger, Maximum principles in Differential equations, Prentice-Hall, Englewood Cliffs, N.J. 1967.
[14] S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry,Comm. Math.Phys.160,(1994), 217-238.
[15] Y. Naito, A note on radial symmetry of positive solutions for semi linear equations in R^{n}, Differential and integral equations 11 , (1998),835-845.
[16] Y. Naito, Symmetry results for semilinear elliptic equations in R2; Nonlinear Analysis 47 (2001),3661-3670.
[17] W. Chen and C. Li, Methods of nonlinear elliptic equations, SPIN AIMS international project monogaraph Sept. 2-2008.
[18] W. Chen, J. Zhu, Radial symmetry and regularity of solutions for polyharmonic Dirichlet problem, J. Math. Anal. Appl. 377(2011), 744-753.
[19] Y. Li and W Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in R^{n} I Asymptotic behavior, Arch. Rational Mech. Anal. 118 (1992) 195-222.
[20] J Serrin, A Symmetry problem in potential theory, Arch. Rational Mech. Anal , 43(1971) 304 - 318.
[21] H. Berestycki and L Nirenberg, On the method of moving planes and sliding method, Bol. Soc.Mat. 22 (1991) 1 - 39 .

