
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 621

EVALUATING SCHEDULING ALGORITHM IN

GRID COMPUTING

Mr Vivek Sukla,Tapesh Kumar Roshan,Dr Rohit Miri

 ABSTRACT

This paper presents the results of a study of a heterogeneous

computational grid using different scheduling algorithms. After a

definition of several algorithms based on the concept of work

completion, efficiency is discussed; a new algorithm in grid

computing is presented. Two well known scheduling algorithms

and our own algorithm are then compared against each other, and

it is proved that our algorithm has the highest computing

efficiency performer.

 In a shared environment, Good

schedules involve the integration of specific information. The

application performance may suffer when some resources

represent abnormal usage pattern during applications execution.

We study a performance-prediction based task scheduling

system, which provides scheduling based on system-level

performance prediction. The efforts to construct a grid

computing environment have brought unprecedented computing

capacity. Exploiting this complex infrastructure requires efficient

middleware to support the execution of a distributed application,

composed of a set of subtasks, for best performance. This

presents the challenge how to schedule these subtasks in shared

heterogeneous systems. For, this we develop our own algorithm

whose computational efficiency is very less than the existing

algorithm.

Index Terms: grid computing, scheduling, heterogeneous

systems, distributed systems.

I. INTRODUCTION

The major goal of distributed computing research was to give

users an easy, simple and

transparent method of access to a vast set of heterogeneous

resources. This is generally Known as metacomputing.

Metacomputing done on local area networks (LAN) are typically

known as Cluster Computing Environments and those, which are

done on wide area networks (WAN), are known as Grid

Computing.

This paper explores the results of using several well-known

scheduling algorithms to schedule work on a grid we present a

algorithm for modeling computational grids and we developed to

analyze different scheduling algorithms under a variety of

workloads.

We then describe three scheduling algorithms and give the results

of three experiments, the first to investigate the performance of

the three algorithms compare to each other, and the second to

investigate the effects of variation in work completion times on a

specific scheduler.

A. What are Grids?

The definition of a computational grid is still a subject of

some debate. What follows here is a short definition of a

computational grid sufficient to give an adequate background for

the rest of the paper; for a more in-depth definition, Let us begin

by giving an intuitive definition of what we mean by a

computational grid, a computational grid is a collection of

nodes, each of which may be thought of as a system that can

perform work and has access to a network. Many systems

share this property, including computer clusters. However, a

grid is unique in that nodes on the grid vary in capability, and

that the grid may provision more nodes to do work, or release

nodes from the grid at any time. In addition to these unique

properties, the grid also has several properties stemming from its

distributed nature, namely, that nodes may fail (become unable

to perform work due to software or hardware problems) at any

time, and communication efficiency between nodes can vary

widely.In addition, nodes are typically .

A computational grid, then, can be seen as an adaptive system

that provisions extra computational capacity as demand

requires or as machines fail, and assigns work to nodes where the

work can be done most effectively.As promising as such a

description of a full-fledged grid sounds , a number of

obstacles remain before systems that have all the above

properties can even be constructed , much less utilized

effectively. For our purposes, we will study computational

grids that are one step removed from their cluster

counterparts: our grids will not expand or contract over time, nor

will nodes fail, nor will there be significant communication

delays between nodes; however, our grids will be made of

nodes of heterogeneous capability. By studying grids of this

type, we hope to enable an evolutionary approach to studying

more complex grids.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 622

 Costs and Benefits
No need to buy large six figure SMP servers for applications that

can be split up and farmed out to smaller commodity type

servers. Results can then be concatenated and analyzed upon

job(s) completion.

Much more efficient use of idle resources. Jobs can be farmed

out to idle servers or even idle desktops. Many of these resources

sit idle, especially during off business hours. Policies can be in

place that allow jobs to only go to servers that are lightly loaded

or have the appropriate amount of memory/CPU characteristics

for the particular application.

Grid environments are much more modular and don't have single

points of failure. If one of the servers/desktops within the grid

fail, there are plenty of other resources able to pick the load. Jobs

can automatically restart if a failure occurs.

Policies can be managed by the grid software. The software is

really the brains behind the grid. A client will reside on each

server which send information back to the master telling it what

type of availability or resources it has to complete incoming

jobs.

This model scales very well. Need more compute resources? Just

plug them in by installing grid client on additional desktops or

servers. They can be removed just as easily on the fly. This

modular environment really scales well.

Upgrading can be done on the fly without scheduling downtime.

Since there are so many resources some can be taken offline

while leaving enough for work to continue. This way upgrades

can be cascaded as to not affect ongoing projects.

Jobs can be executed in parallel speeding performance. Grid

environments are extremely well suited to run jobs that can be

split into smaller chunks and run concurrently on many nodes.

Using things like MPI will allow message passing to occur

among compute resources.

 LIMITATIONS
For memory hungry applications that can't take advantage of MPI

you may be forced to run on a large SMP.

You may need to have a fast interconnect between compute

resources (gigabit ethernet at a minimum). Infiband for MPI

intense applications

Some applications may need to be tweaked to take full advantage

of the new model.

Licensing across many servers may make it prohibitive for some

apps. Vendors are starting to be more flexible with environment

like this.

Grid environments include many smaller servers across various

administrative domains. Better tools for managing change and

keeping configurations in sync with each other can be

challenging in large environments.

Political challenges associated with sharing resources (especially

across different admin domains). Many groups are reluctant with

sharing resources even if it benefits everyone involved. The

benefits for all groups need to be clearly articulated and policies

developed that keeps everyone happy.

 PROBLEM DESCRIPTION
Our problem is to develop an algorithm which in comparison to

other existing algorithms have less waiting time and the system

operating on that algorithm have higher computing efficiency.

The Object grid computing is the integration of heterogeneous

computing systems and data resources with the aim of

providing a global computing space such that all the systems

attached to that grid get benefited simultaneously . The

efficient use of resources from different destinations spread

over a large area globally.

PROBLEM FORMULATION

We are assigning some jobs to the systems following the different

algorithm and comparing the waiting time obtained from the

different system.

The goal of grid computing, which gets its name from its

gridlock architecture, is to link surplus computing power and

other spare IT resources with clients who have periodic needs

beyond the capacity of their machines.

PRACTICAL IMPLEMENTATIONS

 TKR ALGORITHM

In this algorithm, we implement a special type of technique to

improve processor efficiency. We consider three different nodes

and each node have two processor (or system). Firstly, all the

processor is assigned with a process. Before executing the

process, the deadline time of the remaining process is checked

with the existing process’s deadline time. If the existing deadline

time is more than the remaining deadline time, the remaining one

will execute first and the existing process will wait for the

processor to get free. So, this way all the remaining process will

be compared and assigned to the processor.

If a processor executes his process within deadline time then

other waiting process will start to execute without waiting to

complete his deadline. So computation efficiency is increased.

ALGORITHM:-

Step 1: initialize process, their execution time and their deadline,

waiting time and status of processor.

 For i=1 to i=10

http://www.outervillage.com/content/tools-manage-your-servers-budget
http://www.outervillage.com/content/tools-manage-your-servers-budget
http://www.outervillage.com/content/tools-manage-your-servers-budget

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 623

{

enter ex[i];

enter dead[i];

wait[i]=0;

}

For j=1 to j=6

p[i] =0;

Step 2: assign first six processes into processors.

Step 3: for remaining process

for k=7 to k=10

{

if (p[1]==0 && dead[1]>dead[k])

{

wait[1]+=ex[k];

p[1]=1;

}

else if (p[2]==0 && dead[2]>dead[k])

{

wait[2]+=ex[k];

p[2]=1;

}

else if (p[3]==0 && dead[3]>dead[k])

{

wait[3]+=ex[k];

p[3]=1;

}

else if (p[3]==0 && dead[3]>dead[k])

{

wait[3]+=ex[k];

p[3]=1;

}

else if (p[4]==0 && dead[4]>dead[k])

{

wait[4]+=ex[k];

p[4]=1;

}

else if (p[5]==0 && dead[5]>dead[k])

{

wait[5]+=ex[k];

p[5]=1;

}

else if (p[6]==0 && dead[6]>dead[k])

{

wait[6]+=ex[k];

p[6]=1;

}

else

{

choose minimum execution time of process

small=minimum(execution of 6 processes)

then

wait[k]+=small;

}

}

Step 4: calculate waiting time of each process

 calculate turnaround time of each process

 calculate total turnaround time of each process

Step 5: Exit

Scheduling
The grid scheduler assigns applications to nodes. Each node can

run one application at a time, and must run that application to

completion. (By splitting multi cpu machines into a set of single

cpu nodes, powerful machines may in fact run more than one

job at a time.) The scheduler maintains a queue of work for

each node, and may re-order the queue at any time. An

application that is being run but whose previous application has

not finished will wait until the previous application has finished

before starting. (This is a simplifying assumption: in reality,

some applications may begin before their previous

application has finished. For instance , a sequence of

applications that are streaming data to each other has this

property.) The scheduler is invoked when mapping events occur.

During a mapping event, the scheduler may reorder each

node’s work queue (thereby mapping applications to nodes), and

assigns new jobs that have arrived to various nodes. In

general, mapping events

occur whenever

• a new job arrives

• a node enters or exits the grid

• an application finishes or is aborted

• acceptable robustness/performance changes

However, for the purposes of this simulation, mapping events

are only fired when new jobs arrive, and when applications

finish. In general, a robust scheduler will need to take

robustness into account when making mapping decisions. It

is interesting to ask, however, how well scheduling

algorithms which are not aware of robustness will perform. We

have selected the following three scheduling algorithms to study.

FCFS : First come, first serve. Maintains a queue of

applications,in the order they arrive at the grid, and assigns them

to the nodes in the order the nodes become available. When an

application finishes running, if there is another application to

run to complete that application’s associated job, then that

application will be added to the end of the incoming work

queue. Thus, this is a FCFS algorithm on applications, not jobs.

SJF : Shortest-Job-First (SJF) is a non-preemptive discipline in

which waiting job (or process) with the smallest estimated run-

time-to-completion is run next. In other words, when CPU is

available, it is assigned to the process that has smallest next CPU

burst.The SJF scheduling is especially appropriate for batch jobs

for which the run times are known in advance. Since the SJF

scheduling algorithm gives the minimum average time for a

given set of processes, it is probably optimal.The SJF algorithm

favors short jobs (or processors) at the expense of longer

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 624

ones.The obvious problem with SJF scheme is that it requires

precise knowledge of how long a job or process will run, and this

information is not usually available.

 TKR ALGORITHM
In this algorithm, we implement a special type of technique to

improve processor efficiency. We consider three different nodes

and each node have two processor (or system). Firstly, all the

processor is assigned with a process. Before executing the

process, the deadline time of the remaining process is checked

with the existing process’s deadline time. If the existing deadline

time is more than the remaining deadline time, the remaining one

will execute first and the existing process will wait for the

processor to get free. So, this way all the remaining process will

be compared and assigned to the processor.

If a processor executes his process within deadline time then

other waiting process will start to execute without waiting to

complete his deadline. So computation efficiency is increased.

 LITERATURE REVIEW
The concept of grid has emerged as a new approach to high

performance distributed computing infrastructure. In general,

Grids represent a new way of managing and organizing computer

networks and mainly their deeper resource sharing. In this project

we are trying to develop a new algorithm which will be more

better than the existing one. We are supposing three nodes which

will consist of two processor each.Therefore we have six

processor in total.We are providing ten processes in total to the

six processers. Now we are trying to execute those proceses with

the help of all the six processors such that the average waiting

time recorded will be less than the waiting time of the existing

algorithm.We are working on the algorithm which will be use to

execute the processes more effectively with minimum waiting

time and high computing efficiency.The existing algorithms have

their own waiting time and thus the system following that

algorithm have their particular computing efficiency. We are just

comparing the existing algorithm with our algorithm and thus

note down the difference in the respected waiting time as well as

the computing efficiency.

 RESULTS AND CONCLUSIONS

Fig1.Result from TKR algorithm

F
ig 2. Result from TKR algorithm

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 625

Fig. 3 : Result of Shortest Job First

Fig 4. Result from first come first

serve

COMPARISION TABLE

 SHORTES

T JOB

FIRST

FIRST

COME

FIRST

SERVE

 TKR

ALGORIT

HM

J

o

b

s

D

T

E

T

B

T

WT

TOT

WT

TOT

WT

TOT

1 3 6 6 0 6 0 6 0 6

2 4 3 3 2 5 6 9 0 3

3 5 4 4 4 8 9 13 0 4

4 2 5 5 7 12 13 18 0 5

5 6 2 2 10 12 18 20 0 2

6 4 4 4 14 18 20 24 2 6

7 7 3 3 18 21 24 27 2 5

8 9 2 2 22 24 27 29 2 4

9 6 4 4 27 31 29 33 2 6

1

0

8 6 6 33 39 33 39 2 8

AVERAGE 13

.7

17

.6

17

.9

21

.7

9

1

.

0

0

4.9

 COMPARISION GRAPH

 COMPARISION GRAPH (WAITING TIME)

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812948 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 626

 COMPARISION GRAPH (TURNAROUND TIME)

 CONCLUSIONS
 In conclusion, we believe that our project is of great use for

many organizations and the systems on which they runs. We

believe that the algorithm which we developed in this project

help the task get executed with minimum waiting time. The

algorithm is quite efficient in carrying out the task given to the

system. It is very helpful in increasing the processor's efficiency

and giving up the output in minimum time. It can work on

multiple systems connected together in a network and thus carry

out the number of tasks simultaneously. By implementing this we

can get much faster response from the processors. By applying

this algorithm we are getting major differences in waiting time,

burst time, turnaround time etc.

Related Work

The concept of computational grids, and grid computing in

general, is being studied by researchers in many fields, including

high-performance computing, networking, distributed systems

,and web services is an extensive introduction to what a

computational grid actually consists of, and what is required to

implement it. The Globus Consortium (http://www.globus.org) is

a consortium of dozens of companies, government agencies, and

universities that is creating an open standard for grid

development using web-services as an RPC mechanism. The

modeling of computational grids with heterogeneous resources is

just beginning to be explored. published in 2002,can point to no

directly related work in the field. Scheduling tasks of unknown

duration on distributed systems is investigated in The evaluation

of scheduling algorithms focused on efficiency is explored in the

construction of actual grids for industrial and scientific work has

been undertaken by many companies and scientific

groups. One particular success story is the Grid 2003 project

(http://www.ivdgl.org/grid2003), which has developed

a grid consisting of 2000 CPUs spread across the world.

.

ACKNOWLEDGEMENT
I would like to place on record my deep sense of gratitude to

Prof. Rohit Miri, HOD of Computer Science & Engineering, Dr

C V Raman University, Kota Bilaspur, for his generous guidance,

help and useful suggestions.

I also express my sincere gratitude to Mr. Vivek Sukla, Asst.Prof

of Computer Science & Engineering Dept, Dr C V Raman

University, Kota Bilaspur, for his stimulating guidance,

continuous encouragement and supervision throughout the course

of the present work.

I am extremely thankful to Prof. S. R. Tandan, Asst.Prof of

Computer Science & Engineering Dept, Dr C V Raman

University, Kota Bilaspur for providing me infrastructural

facilities to work in, without which this work would not have

been possible.

 References

[1] C. Boeres et al. A tool for the Design and Evaluation of

Hybrid Schedulin g Algorithms for Computational Grids.

Proceedings of the 2nd workshop on Middleware for grid

computing, ACM International Conference, October 2004.

[2] Harchol-Balter, Mor. Task Assignment with Unknown

Duration. Journal of the ACM, Volume 49 Issue 2, March

2002.

[3] Ian Foster. What is the Grid? A Three Point Checklist Grid

Today, volume1 number 6, July 22 2002.

[4] Ian Foster, Carl Kesselman. Computational Grids. Chapter 2

of The Grid:Blueprint for a Future Computing Infrastructure.

Ian Foster and Carl Kesselman, Morgan Kaufman, 1998.

[5]Evaluating Scheduling Algorithms On Distributed

Computational Grid

[6] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran,

Debra A. Hensgen, Sahra Ali. Task Execution Time Modeling for

Heterogeneous Computing Systems. Heterogeneous Computing

Workshop, 2000: 185-199.

[7]Grid Computing Models: A Research by D Jankiram.

[8] Grid Computing: By Fram Berman

[9] International Journal of Grid and Utility Computing

[10]Future Generation Computer Systems

[11] A Game-Theoretic Analysis of Grid Job Scheduling

Maria Grazia Buscemi · Ugo Montanari , Sonia Taneja

http://www.google.co.in/aclk?sa=l&ai=CsVtgGdA7U7GlLJWG8AW-m4DoBs38u78EnaG3iI0Bo5bTrYgBCAYQAigDUL_LnZf______wFg5YKAgOQOoAHjya3cA8gBB6kCA5kQKnr9UT6qBCRP0FYq9H3mgwRnKH72vDJM8O3WOAV4bHbNHeXF3e1EYVnf0gXABQWgBiaAB4W20iOQBwLgEsPV_7PX2ofiGg&sig=AOD64_3u3RHndMAzi6OwuZ0aHriUDejVsQ&ctype=5&rct=j&q=books+on+grid+computing&ved=0CKABEPQO&adurl=http://www.snapdeal.com/product/grid-computing-models/505808%3Futm_source%3Dearth_feed%26utm_campaign%3D364_376%26utm_medium%3D10951682
http://www.google.co.in/aclk?sa=l&ai=CsVtgGdA7U7GlLJWG8AW-m4DoBs38u78EnaG3iI0Bo5bTrYgBCAYQAigDUL_LnZf______wFg5YKAgOQOoAHjya3cA8gBB6kCA5kQKnr9UT6qBCRP0FYq9H3mgwRnKH72vDJM8O3WOAV4bHbNHeXF3e1EYVnf0gXABQWgBiaAB4W20iOQBwLgEsPV_7PX2ofiGg&sig=AOD64_3u3RHndMAzi6OwuZ0aHriUDejVsQ&ctype=5&rct=j&q=books+on+grid+computing&ved=0CKABEPQO&adurl=http://www.snapdeal.com/product/grid-computing-models/505808%3Futm_source%3Dearth_feed%26utm_campaign%3D364_376%26utm_medium%3D10951682
http://www.inderscience.com/jhome.php?jcode=ijguc
http://www.journals.elsevier.com/future-generation-computer-systems/

