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Abstract :  Brain tumor breaking down into parts try to separate the different tumor tissues such as active prison rooms, 

necrotic middle part, heart, and edema from normal brain tissues of White material or substance (WM), gray material or 

substance (GM), and cerebrospinal fluid (CSF). MRI based brain tumor  breaking down into parts studies are pulling to self 

more and more attention in near in time years because of, in relation to non-invasive imaging and good soft tissue in 

comparison of Magnetic resonance imaging (MRI) images. With the development of almost tens of years, the tending to new 

views sending in name for computer-aided techniques for segmenting brain tumor are becoming more and more get older and 

coming closer to regularly order clinical applications. Early diagnosis of brain tumors plays an important part in getting well 

treatment possible states and increases the selection of the strongest rate of the persons getting care. Manual breaking down 

into parts of the brain tumors for cancer diagnosis , from greatly sized amount of MRI  images produced in clinical  regularly 

order, is a hard and time getting used up work. There is a need for automatic brain tumor  image breaking down into parts. 

This paper try to give an over-view of current deep learning-based breaking down into parts views for (able to be) measured 

brain MRI. First we paper the current deep learning buildings and structure design used for breaking down into parts of as in 

bodily structure relations brain structures and brain wound. next, the performance, speed, and properties of deep learning 

moves near are made a short account of and had a discussion about. at last, we give a critical Assessment of the current state 

and make out likely future developments and trends. 

 

IndexTerms - MRI, Deep Learning, Brain Tumor Segmentation 

  

I. INTRODUCTION 

 Magnetic resonance imaging (MRI) is usually the modality of good quality for to do with structure brain analysis, since it 

provides images with high in comparison for soft tissues and high spatial resolution and presents no experienced being healthy 

chances. While modalities such as worked out tomography (CT) and positron emission 8 tomography (person specially loved) are also 

used to work-place the brain, MRI  is the most having general approval, and we will give all attention on MRI in this work. (able to 

be) measured analysis of brain MRI has been used in a wide ranging way for being representative of brain diseases such as 

Alzheimers disease, epilepsy , schizophrenia, multiple sclerosis  (ms), cancer, and infectious and worsening diseases. For example, 

tissue atrophy  is one of the common biomarkers used in diagnosis and therapy Assessment in Alzheimers disease, epilepsy, 

schizophrenia, ms, and many other neurological diseases and diseases. To measure tissue  atrophy, breaking down into parts and being 

like (in some way) measurements of brain tissues are needed. in the same way, measuring amount of change in brain structures has 

need of breaking down into parts of the MRI got at different time points. In addition, discovery and right in details localization of the 

abnormal tissue and all round, nearby healthy structures are important for diagnosis, surgical  planning, postoperative analysis , and 

chemo/radiotherapy designing. (able to be) measured and qualitative being representative of normal and pathological structures, both 

in space and time, are often part of clinical Trials, in which the effects of treatment are studied on a cohort of persons getting care and 

normal controls. (able to be) measured analysis of brain mr images is regularly order for many neurological 21 diseases and 

conditions. breaking down into parts, i.e making tickets giving name of bit of picture in 2d voxels in 3d), is a critical part of (able to 

be) measured analysis. Manual breaking down into parts is the gold quality example for in vivo images. however, this has need of out-

lining structures slice-by-slice, and is not only high in price and tiresome, but also full of errors because of, in relation to do with man 

error. as an outcome of that, there is a need for made automatic breaking down into parts methods to make ready accuracy  close to 

that of expert raters with a high degree. Asd and 4d imaging are becoming regularly order, and with physiological and functional 

imaging increasing, medical imaging data is increasing in size and being complex. as an outcome of that, it is essential to undergo 

growth apparatus for making or put right things that can help in getting from knowledge from these greatly sized knowledge. Machine 

learning is a group of algorithmic techniques that let knowledge processing machine systems to make data-driven statements of what 

will take place in the future from greatly sized data. These techniques have a range of applications that can be tailored to the medical 

field. 
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 There has been a significant effort in developing classical machine learning algorithms for segmentation of normal (e.g., 

white matter and gray matter) and abnormal brain tissues (e.g.,brain tumors) in MRI. However, creation of the imaging features that 

enable such segmentation requires careful engineering and specific expertise. Furthermore, traditional machine learning algorithms do 

not generalize well. Despite a significant effort from the medical imaging research community, automated segmentation of the brain 

structures and detection of the abnormalities remain an unsolved problem due to normal anatomical variations in brain morphology, 

variations in 

acquisition settings and MRI scanners, image acquisition imperfections, and variations in the appearance of pathology. 

 An coming-to-be-important machine learning way of doing has relation to as deep learning [1], can help keep from limiting 

conditions of Greek and Latin machine learning algorithms, and its self-learning of features may make able seeing who a person is of 

new useful imaging features for (able to be) measured observations of brain MRI, Deep learning techniques are getting more 

condition of having general approval in many areas of medical image observations [2], such as computer-aided discovery of chest 

wound [3], computer-aided diagnosis of chest wound and breathing part small round mass of anything [4], and in histopathological 

diagnosis [5]. In this measures-taking, we give an over-view of state-of-the-art deep learning techniques in the field of brain mr 

breaking down into parts and have a discussion still in the same way openings, nothing in between that have a possible unused quality 

to be put into effect by the use of deep learning expert ways of art and so on. 

 Early diagnosis of gliomas plays an important part in getting well treatment possible states. Medical maging techniques such 

as worked out tomography (CT), Single-Photon emission worked out tomography (SPECT), positron emission tomography (person 

specially loved), magnetic resonance spectroscopy mrs and Magnetic resonance imaging (MRI) are all used to make ready of great 

value knowledge about form, size, placing and metabolism  of brain tumors giving help to in diagnosis. While these modalities are 

used in mix to give the highest detailed knowledge about the brain tumors, because of, in relation to its good soft tissue in comparison 

and widely able to use MRI is taken into account as the quality example way of doing. MRI is a non-invasive in vivo  imaging way of 

doing that uses radio frequency  signal to excite Target tissues to produce their inside images under the power over of a very powerful 

magnetic field. Images of different MRI orders are produced by making a change excitation and again and again times during image 

getting. These different MRI  modalities produce different types of tissue in comparison images, thus making ready of great value to 

do with structure knowledge and making able to diagnosis and breaking down into parts of tumors in company with their subregions4. 

four quality example MRI modalities used for glioma diagnosis cover T1-weighted MRI t1 T2-weighted MRI t2 T1-weighted MRI 

with gadolinium in comparison thing giving greater value to (T1-Gd) and fluid made more feeble being up-side down got over a 

disease (FLAIR) (see fig. 1). During MRI getting, although can (make, become, be) different from apparatus to apparatus, around one 

hundred and fifty thin, wide bits of 2d images are produced to represent the 3d brain amount. in addition, when the thin, wide bits 

from the needed quality example modalities are got in grain for diagnosis 3 the knowledge for computers becomes very full with 

group and complex. 

  Generally, t1 images are used for noting healthy tissues, in view of the fact that t2 images are used to outline the edema field, 

range which produces bright sign put out on the image. In T1-Gd images, the tumor edge can easily be noted, great by the bright sign 

put out of the stored in comparison person acting for (gadolinium ions 5) in the action-bound prison room field, range of the tumor 

tissue. Since necrotic units do not acts between, among with the in comparison person acting for, they can be made observations by 

hypo very strong (great) part of the tumor middle part, heart making it possible to easily part them from the action-bound unit field, 

range on the same order. In flair images, sign put out of water smallest units are suppressed which helps in noting edema field, range 

from the cerebrospinal fluid (CSF). Before sending in name for any therapy , it is turning point to part the tumor 3 in order to keep 

safe (out of danger) healthy tissues while damaging and making waste to tumor units during the therapy. Brain tumor breaking down 

into parts has to do with working out, out-lining and separating tumor tissues, such as action-bound prison rooms, necrotic middle 

part, heart and edema from normal brain tissues including gray material or substance (GM), White material or substance (WM) and 

CSF. In current clinical regularly order, this work has to do with done with the hands note and breaking down into parts of greatly 

sized amount of multimodal MRI images. however, since handbook, school book breaking down into parts is a very time taking in 

way, development of strong automatic breaking down into parts ways of doing, to make ready good at producing an effect of and end 

breaking down into parts, became an interesting and having general approval operation of making observations part in near in time 

years. Current high breaking down into parts performances got by deep learning methods make them good candidates for doing this 

work. 

 The rest of the paper is organized as follows: First we briefly review methods for brain tumor image segmentation in section 

2. Then, in section 3, we especially focus on methods based on deep learning algorithms, which provide the state-of-the-art results in 

recent years. In particular, we compare designs of different deep learning methods and their performances. Finally, in conclusions, we 

assess the current state-of-the-art and provide future directions for development. 
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Fig.1. Four different MRI modalities showing a high grade glioma, each enhancing different subregions of the tumor. From left; T1, 

T1-Gd, T2, and FLAIR. Images are generated by using BRATS data5 

II. METHODS FOR BRAIN TUMOR IMAGE SEGMENTATION 
 Brain tumor segmentation methods can be classified as manual methods, semi-automatic methods and fully automatic 

methods based on the level of user interaction required. 

Manual Segmentation Methods 

 Manual breaking down into parts has need of the radiologist to use the multi-modality news given presented by the MRI  

images in company with as in bodily structure relations and physiological knowledge gained through training and experience. way has 

to do with the radiologist going through number times another thin, wide bits of images cut thin bits by thin, wide bit, working out the 

tumor and done with the hands picture the tumor  fields, ranges carefully. Apart from being a time getting used up work, handbook, 

school book breaking down into parts is also radiologist dependent and breaking down into parts results are thing talked of to greatly 

sized Intra and Inter rater changing one way and then the other. However, handbook, school book breaking down into parts is widely 

used to value the results of almost automatic and fully automatic ways of doing. 

Semi-Automatic Segmentation Methods 

 Semi-automatic methods require interaction of the user for three main purposes; initialization, intervention or feedback 

response and evaluation8. Initialization is generally performed by defining a region of interest (ROI), containing the approximate 

tumor region, for the automatic algorithm to process. Parameters of pre-processing methods can also be adjusted to suit the input 

images. In addition to initialization, automated algorithms can be steered towards a desired result during the process by receiving 

feedbacks and providing adjustments in response.Furthermore, user can evaluate the results and modify or repeat the process if not 

satisfied. 

 Hamamci et al. proposed the “Tumor Cut” method9. This semi-automatic segmentation method requires the user to draw the 

maximum diameter of the tumor on input MRI images. After initialization a cellular automata (CA) based seeded tumor segmentation 

method run twice, once for tumor seeds provided by the user and once for the background seeds to obtain a tumor probability map. 

This approach includes separately applying the algorithm to each MRI modality (e.g. T1, T2, T1-Gd and FLAIR), then combining the 

results to obtain the final tumor volume. 

 A near in time almost automatic careful way used a fiction story order approach. In this way in breaking down into parts hard 

question was greatly changed into an order hard question and a brain diseased growth (in body) is segmented by training and putting 

in order within that same brain only. generally, machine learning order ways of doing, for brain diseased growth (in body) breaking 

down into parts, has need of greatly sized amounts of brain MRI digital copy (with experienced get onto land truth) from different 

cases to train on. This results in a need to business agreement with in number tendency in a certain direction putting right and other 

noises. However in this careful way, user makes ready the process by selecting and a division of voxels being the property of to each 

tissue sort, from a single Case. For these divisions of voxels algorithm copies from the in number values in company with spatial 

orders as features and train a support guide machine (SVM) that is used to put in order all the voxels of the same image to their being 

like (in some way) tissue sort. Despite almost automatic brain diseased growth (in body) breaking down into parts methods are less 

time taking in than done with the hands methods and can get good at producing an effect of outcomes, they are still with a tendency to 

Intra and Inter rater/user changing one way and then the other. in this way, current brain diseased growth (in body) breaking down 

into parts make observations is mainly put at point at which rays come together on fully automatic ways of doing. 

Fully Automatic Segmentation Methods 
 In fully automatic brain tumor segmentation methods no user interaction is required. Mainly, artificial intelligence and prior 

knowledge are combined to solve the segmentation problem. 

Challenges 

 Automatic segmentation of gliomas is a very challenging problem. Tumor bearing brain MRI data is a 3D data where tumor 

shapes, size and location can vary greatly from patient to patient. Also tumor boundaries are usually unclear and irregular with 

discontinuities, posing great challenge especially against traditional edge-based methods. In addition to these, brain tumor MRI data 

obtained from clinical scans or synthetic databases11 are inherently complex. MRI devices and protocols used for acquisition can vary 

dramatically from scan to scan imposing intensity biases and other variations for each different slice of image in the dataset. The need 

for several modalities to effectively segment tumor sub-regions even adds to this complexity. 
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BRATS Dataset 
 Objective evaluation of the results of various brain tumor image segmentation methods with the state-of-the-art is a difficult 

task. However, with the development of a widely accepted benchmark, the BRATS benchmark, for automatic brain tumor 

segmentation, now it is possible to objectively compare various glioma segmentation methods using this common dataset. Current 

version  of the BRATS training dataset contains 274 multi-modality MRI scans of patients with gliomas (both high and low grades) 

along with their ground truth segmentations for evaluation. As for testing data, 110 scans are available with unknown grades and 

unknown ground truths. Evaluation on the testing data is only possible with the online evaluation tool. Results are presented by the 

tool mainly in the form of well-known Dice Score, Sensitivity (true positive rate) and Specificity (true negative rate) for three main 

tumor regions; whole tumor (all tumor components), core tumor (all tumor components except edema) and active tumor (only active 

cells). We only report dice scores as performance measures. For each tumor region, P1 represents 

the segmented tumor area by the proposed method, and T1 is the actual tumor area in the ground truth. Then, dice score is calculated 

by the online tool for each region as; 

𝐷𝑖𝑐𝑒(𝑃, 𝑇) =
𝑃1Λ𝑇1

(|𝑃1| +  |𝑇1|)/2
 

Where Ʌ is the logical operator and |.| is the size of the set (the number of voxels  belonging to it). 

 Types of Automatic Brain Tumor Segmentation Methods 

 Automatic brain tumor segmentation methods can be classified as; discriminative and generative methods.  Detailed reviews 

of these methods were previously presented. Earlier reported results indicate that, methods based on discriminative classification 

techniques were the top performing in general among other automatic methods5. Discriminative methods try to learn the relationship 

between the input image and the ground truth. Mainly they rely on choice of features and feature extraction. In most cases they use 

supervised learning techniques requiring large data set with valid ground truth. On the other hand, generative methods generate 

probabilistic models by using prior knowledge like location and spatial extent of healthy tissues. Previously obtained atlases of 

healthy tissues are used to extract the unknown tumor compartments. However, converting prior knowledge into suitable probabilistic 

models is a complicated task. Although a semiautomatic method, Kuwon et al. proposed the best performing generative model. 

 

III. DEEP LEARNING 

 Deep learning says something about to neural networks with many levels (commonly more than five) that get out an 

organizations with a scale of positions of features from cold wet (weather) input images. It is a new and having general approval sort 

of machine learning techniques that get out a complex organizations with a scale of positions of features from images because of, in 

relation to their self-learning power as opposite to the hand-crafted point extraction in Greek and Latin machine learning algorithms. 

They get done deeply effecting results and generalizability by training on greatly sized amount of facts. The quick increase in GPU 

processing power has gave power to the development of state-of-the-art deep learning algorithms. This let training of deep learning 

algorithms with millions of images and on condition that being strong to different in some way in images. There are several types of 

deep learning views that have been undergone growth for different purposes, such as purpose discovery and breaking down into parts 

in images, speech recognition, and genotype/phenotype discovery and order of diseases. Some of the experienced deep learning 

algorithms are well made auto-encoders, deep Boltzmann machines, deep neural networks, and convolution neural networks (CNNs). 

CNNs are the most commonly applied to image breaking down into parts and order. 

 CNNs were first introduced in 1989 [14], but gained great interest after deep CNNs achieved spectacular results in ImageNet 

[15, 16] competition in 2012 [17]. Applied on a dataset of about a million images that included 1000 different classes, CNNs nearly 

halved the error rates of the previously best computing approaches [18]. CNN architectures are increasingly complex, with some 

systems having more than 100 layers, which means millions of weights and billions of connections between neurons. A typical CNN 

architecture contains subsequent layers of convolution, pooling, activation, and classification (fully connected). Convolutional layer 

produces feature maps by convolving a kernel across the input image. Pooling layer is used to downsample the output of preceding 

convolutional layers by using the maximum or average of the defined neighborhood as the value passed to the next layer. Rectified 

Linear Unit (ReLU) and its modifications such as Leaky ReLU are among the most commonlyused activation functions. ReLU 

nonlinearly transforms data by clipping any negative input values to zero while positive input values are passed as output [19]. To 

perform a prediction of an input data, the output scores of the final CNN layer are connected to loss function (e.g., cross-entropy loss 

that normalizes scores into multinomial distribution over labels). Finally, parameters of the network are found by minimizing a loss 

function between prediction and ground truth labels with regularization constraints, and the network weights are updated at each 

iteration (e.g., using stochastic gradient descent – SGD) using backpropagation until convergence (see Fig. 2). 
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Fig. 2 A schematic representation of a convolutional neural network (CNN) training process 

  

Recent performances of deep learning methods, specifically Convolutional Neural Networks (CNNs), in several object 

recognition25 and biological image segmentation26 challenges increased their popularity among researches. In contrast to traditional 

classification methods, where hand crafted features are fed into, CNNs automatically learn representative complex features directly 

from the data itself. Due to this property, research on CNN based brain tumor segmentation mainly focuses on network architecture 

design rather than image processing to extract features. CNNs take patches extracted from the images as inputs and use trainable 

convolutional filters and local subsampling to extract a hierarchy of increasingly complex features. Although currently very few in 

number compared to other traditional brain tumor segmentation methods, due to state-of-the-art results obtained by CNN based brain 

tumor segmentation methods, we will focus the review on these methods in this section. Comparison of the reviewed deep learning 

and traditional glioma segmentation methods is presented in Table 1.  Urban et al. proposed a 3D CNN architecture for the multi-

modal MRI glioma segmentation task. Multimodality 3D patches, basically cubes of voxels, extracted from the different brain MRI 

modalities are used as inputs to a CNN to predict the tissue label of the center voxel of the cube. Input has 3D spatial intensity 

information and one additional dimension for MRI modalities. Thus 4D input data is handled effectively by the CNN. While high 

dimensional processing can better represent 3D nature of biological structures, it also increases processing load of the network. As for 

the architecture, two different networks are designed. The first one is a four layer CNN with the input layer containing 15 3D filters 

that have 53 spatial dimensions with an additional 4th dimension accounting for the corresponding MRI modality resulting in a filter 

shape of 5 x 5 x 5 x 4. Two of the hidden layer filters also have 53 spatial dimensions plus one dimension which corresponds to the 

number of filters in the preceding layer. Number of filters in each hidden layer is 25. The last layer, the softmax layer contains 6 

filters one for each tissue type to be classified allowing the interpretation of the output as probabilities (see Fig.3. for example 

architecture). The second network is almost identical with the exception of an additional hidden layer with 40 filters of size 53. 

Connected components are used to post-process the results. Reported average results of the two proposed networks are promising with 

BRATS dice scores of 87% for the whole tumor region, 77% for the core tumor region and 73% for the active tumor region. 

 In contrast to the high dimensional method of Urban et al., Zikic et al. developed an interpretation method to transform the 

4D data, so that standard 2D-CNN architectures can be used to solve the brain tumor segmentation 

task28. This can remove the burden of high dimensional CNN design while increasing computational efficiency. 

Interpretation is done by transforming each 4-modalitiy 3D input patch of size (d1 x d2 x d3 x 4) into 4.d3-channel of 2D patches of 

size (d1 x d2 x 4d3). With this method, input patches of size 19x19x4 (single slice is used for each modalitiy) are fed into a 2D-CNN 

containing two convolutional layers with 64 filters with size 5 x 5 x 4 and 3 x 3 x 

4 respectively, separated by a max-pooling layer, followed by one fully-connected (FC) layer and a soft-max layer. 
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Fig. 3. Example illustration of 3D-CNN architecture for brain tumor segmentation27. 

 While Urban et al. used hyperbolic tangent function, this method applied rectified linear unit (ReLU) as a nonlinearity term. 

No post-processing is applied. Reported results indicate BRATS dice scores of 83.7% for the whole tumor region, 73.6% for core 

tumor region and 69% for active tumor region. It is important to note that, these results are obtained with a limited dataset which 

might affect the performance. 

 Another novel approach implemented a cascaded two-pathway CNN architecture29. By extracting smaller sized patches and 

larger sized patches at the same time, a cascaded CNN that process local details of the brain MRI along with larger context of brain 

tissue is realized. Centred at the same location of the image, patches sized 33 x 33 pixels are extracted from each different MRI 

modality for local pathway and patches sized 65 x 65 are extracted for global pathway to classify the label of the central pixel. 2D 

multi-modality global input patches of size 65 x 65 x 4 are firs processed by a CNN to output patches of size 33 x 33 x 5. Those 

output patches are then concatenated with the local patches of size 33x33x4 and fed as an input to a two-pathway CNN with 

convolutional layers containing 7 x 7 sized filters in one path and 13 x 13 sized filters in the other one. Thus, creating cascaded two-

pathway CNN architecture. Several modified architectures of this cascaded CNN method are also proposed. Along with this novel 

architectural approach, two phase training is also implemented to avoid class imbalances. In first phase, cascaded CNN is trained with 

balanced distribution of classes and later in the second phase CNN is retrained with a more representative distribution of the original 

images. Furthermore, Maxout non-linearity is used and connected components method is implemented as a post-processing step. High 

BRATS dice scores of 88% for whole tumor region, 79% for core tumor region and 73% for active tumor region are reported. A 

similar two-pathway approach with only one CNN is also proposed30. 

 One of the recent CNN approaches31 evaluated the brain tumor segmentation performance of using deeper CNN 

architectures. This approach is realized by implementing small 3 x 3 sized filters in the convolutional layers. In this way, more 

convolutional layers can be added to the architecture without reducing the effective receptive field of the traditional bigger filters. 

Furthermore, deeper architectures apply more non-linearities and have less filter weights, due to the use of smaller filters, reducing the 

chance of overfitting. Modified version of ReLU, leaky rectifier linear unit (LReLU) is used as non-linearity activation function. 

Proposed CNN that has 11 layers of depth (6 convolutional layers followed by 3 fully-connected layers with 2 max-pooling layers 

dividing them into blocks of 

three) obtained BRATS dice scores of 88%, 83% and 77% for whole tumor, core tumor and active tumor regions respectively. 

Implementation of intensity normalization, intensity bias correction and input patch augmentation as 

pre-processing operations along with threshold based unwanted cluster removal as post- processing contributed to the state of the art 

results.  

 Some of the glioma segmentation methods combined CNN application with other classification or clustering techniques. In 

one method a local structured prediction with CNN is proposed32. Instead of using CNNs to classify central voxels of input image 

patches into brain tissue classes, first patches of labels are extracted from ground truth images and then clustered by k-means 

algorithm into N groups to form a label patch dictionary of size N. Later, a 2D CNN is used to classify multimodal input image 

patches into one of these clusters. As for the segmentation performance of the method, BRATS dice scores of 83%, 75% and 77% for 

whole tumor, core tumor and active tumor regions are reported respectively. On the other hand Rao et al.33 extracted multi plane 

patches around each pixel and trained four different CNNs each taking input patches from a separate MRI modality image. Outputs of 

the last hidden layers of those CNNs are then concatenated and used as feature maps to train a RF classifier 

 

Training, Validation and Evaluation 

 In the machine learning field, data are divided into training, validation, and test sets for learning from examples, establishing 

the soundness of learning results, and evaluating the generalization ability of a developed algorithm on unseen data, respectively. 

When there are limited data, cross validation methods (e.g., one-leave out, fivefold, or tenfold validations) are preferred. In a k-fold 

cross-validation, the data are randomly partitioned into k equal sized parts. One of the k parts is retained as the validation data for 

testing the algorithm, and the remaining k – 1 parts are used as training data. Training is typically done with a supervised approach 

which requires ground truth for the task. Ground truth is usually obtainedwith manual delineations of brain lesions or structures by 

experts for segmentation tasks. Even though this is the gold standard for the learning and evaluation, it is a tedious and laborious task 

and contains subjectivity. In their work, Mazzara et al. [11] reported intra-expert variabilities of 20 ± 15% and interexperts 
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variabilities of 28 ± 12% for manual segmentations of brain tumor images. To alleviate this variability, multiple expert segmentations 

are combined in an optimal way by using label fusion algorithms such as STAPLE [12, 13]. For classification tasks of brain lesions, 

the ground truth is obtained with biopsy and pathological tests. 

  To evaluate performance of a newly developed deep learning approach on a task, it is essential to compare its performance 

against available state of the art methods. In general, most of the algorithms are evaluated on different sets of data and reported 

different similarity metrics. This makes it hard to compare the performance of different algorithms against each other. Over the last 

decade, the brain imaging community has become more aware of this and created publicly available datasets with ground truth for 

evaluating the performance of algorithms against each other in an unbiased way. One of the first such datasets was  released in the 

framework of an MS lesion segmentation challenge, which was held in conjunction with MICCAI 2008. The dataset is maintained as 

an online challenge dataset (https:// www.nitrc.org/projects/msseg), meaning the training data is released with the ground truth to the 

public, while the test dataset is released without the ground truth and thus can be evaluated only by the organizers. The latter helps 

avoid overfitting of the methods and makes comparison more objective. Following the same paradigm, many other datasets have been 

released since then. Some of the other well-known publicly available datasets for brain MRI are Brain Tumor Segmentation 

(BRATS), Ischemic Stroke Lesion Segmentation (ISLES), Mild Traumatic Brain Injury Outcome Prediction (mTOP), Multiple 

Sclerosis Segmentation (MSSEG), Neonatal Brain Segmentation (NeoBrainS12), and MR Brain Image Segmentation (MRBrainS).  

 

IV IMPLEMENTATION DETAILS 
 Our implementation is based on the Pylearn2 library [20]. Pylearn2 is an open-source machine learning library specializingin 

deep learning algorithms. It also supports the use of GPUs, which can greatly accelerate the execution of deep learning algorithms. 

Since CNN’s are able to learn useful features from scratch, we applied only minimal pre-processing. We employed the same pre-

processing as Tustison et al., the winner of the 2013 BRATS challenge. The pre-processing follows three steps. First, the 1% highest 

and lowest intensities are removed. Then, we apply an N4ITK bias correction  to T1 and T1C modalities. The data is then normalized 

within each input channel by subtracting the channel’s mean and dividing by the channel’s standard deviation. As for post-processing, 

a simple method based on connected components was implemented to remove flat blobs which might appear in the predictions due to 

bright corners of the brains close to the skull. The hyper-parameters of the di 

erent architectures (kernel and max pooling size for each layer and the number of layers) can be seen in Figure 3. Hyper-parameters 

were tuned using grid search and cross-validation on a validation set. The chosen hyper-parameters were the ones for which the model 

performed best on the validation set. For max pooling, we always use a stride of 1. This is to keep per-pixel accuracy during full 

image prediction. We observed in practice that max pooling in the global path does not improve accuracy. We also found that adding 

additional layers to the architectures or increasing the capacity of the model by adding additional feature maps to the convolutional 

blocks do not provide any meaningful performance improvement. 

  Biases are initialized to zero except for the softmax layer for which we initialized them to the log of the label frequencies. 

The kernels are randomly initialized from U (0:005; 0:005). Training takes about 3 minutes per epoch for the TwoPathCNN model 

on an NVIDIA Titan black card. 

  At test time, we run our code on a GPU in order to exploit its computational speed. Moreover, the convolutional nature of 

the output layer allows us to further accelerate computations at test time. This is done by feeding as input a full image and not 

individual patches. Therefore, convolutions at all layers can be extended to obtain all label probabilities p(Yi jjX) for the entire image. 

With this implementation, we are able to produce a segmentation in 25 seconds per brain on the Titan black card with the 

TwoPathCNN model. This turns out to be 45 times faster than when we extracted a patch at each pixel and processed them 

individually for the entire brain. Predictions for the MFCascadeCNN model, the LocalCas- cadeCNN model, and InputCascadeCNN 

model take on average 1.5 minutes, 1.7 minutes and 3 minutes respectively. 

 

V. EXPERIMENTS AND RESULTS 
 The experiments were carried out on real patient data obtained from the  brain tumor segmentation challenge (BRATS), as 

part of the MICCAI conference. The BRATS dataset is comprised of 3 sub-datasets. The training dataset, which contains 30 patient 

subjects all with pixel accurate ground truth (20 high grade and 10 low grade tumors); the test dataset which contains 10 (all high 

grade tumors) and the leader board dataset which contains 25 patient subjects (21 high grade and 4 low grade tumors). There is no 

ground truth provided for the test and leaderboard datasets. All brains in the dataset have the same orientation. For each brain there 

exists 4 modalities, namely T1, T1C, T2 and Flair which are coregistered. The training brains come with ground truth for which 5 

segmentation labels are provided, namely non-tumor, necrosis, edema, non-enhancing tumor and enhancing tumor.  

In total, the model iterates over about 2.2 million examples of tumorous patches (this consists of all the 4 sub-tumor classes)  and goes 

through 3.2 million of the healthy patches.  we work with 2D slices due to the fact that the MRI volumes in the dataset do not posses 

an isotropic resolution and the spacing in the third dimension is not consistent across the data. We explored the use of 3D information 

(by treating the third dimension as extra input channels or by having an architecture which takes orthogonal slices from each view and 

makes the prediction on the intersecting center pixel), but that didn’t improve performance and made our method very slow. 

Quantitative evaluation of the models performance on the test set is achieved by uploading the segmentation results to the online 

BRATS evaluation system . The online system provides the quantitative results as follows: The tumor structures are grouped in 3 

different tumor regions. This is mainly due to practical clinical applications. As described by Menze et al. , tumor regions are defined 

as:  
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 a) The complete tumor region (including all four tumor structures). 

 b) The core tumor region (including all tumor structures exept “edema”). 

 c) The enhancing tumor region (including the “enhanced tumor” structure). 

 

For each tumor region, Dice (identical to F measure), Sensitivity and Specificity are computed as follows : 

    

𝐷𝑖𝑐𝑒(𝑃, 𝑇) =
|𝑃1Λ𝑇1|

(|𝑃1| + |𝑇1|)/2
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑃, 𝑇) =  
|𝑃1Λ𝑇1|

|𝑇1|
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑃, 𝑇) =  
|𝑃0Λ𝑇0|

|𝑇0|
 

 

where P represents the model predictions and T represents the ground truth labels. We also note as T1 and T0 the subset of voxels 

predicted as positives and negatives for the tumor region in question. Similarly for P1 and P0. The online evaluation system also 

provides a ranking for every method submitted for evaluation. This includes methods from the  BRATS challenge published in  as 

well as anonymized unpublished methods for which no reference is available.  

 

CONCLUSION: 

 Despite the significant impact of deep learning techniques in quantitative brain MRI, it is still challenging to have a generic 

method that will be robust to all variations in brain MR images from different institutions and MRI scanners. The performance of the 

deep learning methods depends highly on several key steps such as preprocessing, initialization, and post processing. Moreover, 

current deep learning architectures are based on supervised learning and require generation of manual ground truth labels, which is 

tedious work on a large-scale data. Therefore, deep learning models that are highly robust to variations in brain MRI or have 

unsupervised learning capability with less requirement on ground truth labels are needed. In addition, data augmentation approaches 

that realistically mimic variations in brain MRI data could alleviate the need of large amount of data. Transfer learning could be used 

to share well-performing deep learning models, which are trained on normal and pathological brain MRI data, among brain imaging 

research community and improve the generalization ability of these models across datasets with less effort than learning from scratch. 
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