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 Abstract 
In this paper, a new lifetime distribution is introduced on the basis of SS transformation as suggested by Kumar et al. (2015(a)). The 

considered baseline distribution is Lindley(θ) −distribution. Some of the statistical properties of this new distribution such as MGF, 

Mean, Median, Skewness and Kurtosis have been studied. A real dataset has been considered and AIC, BIC, K-S test value with its p-

value are calculated for this new distribution and for some other distribution too in order to show its application and superiority as 

compared to some other distributions. 
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1. Introduction 

In day to day life of human, new technologies are being designed or developed, in order to have better item to fulfill need, satisfaction 
etc. The industries are, therefore, grows as fungus and it is responsibilities of the manufacturer to produce good qualities of their 
product in terms of their average life or expiry date. As the lifetime of any item is random, therefore any statistical distribution over 
positive support may be used to model it. In literature, a huge number of such distributions are available. Initially, Exponential, 
Gamma, Weibull, Log-Normal etc. were used due to their simplicity, flexibility or capability of closed form solution of the estimators 
of their parameter(s). But, till the date no one distribution is available that can fits all kinds of data. Therefore, several authors have 
paid attention on this and developed several techniques to generalized or transform any available distribution, called baseline 
distribution. For examples, (see, Gupta et al.(1998)) proposed the cumulative distribution function (cdf) G1(x) of new distribution 
corresponding to the cdfF1(x) of a baseline distribution as, 

𝐺1(𝑥) = (𝐹1(𝑥))
𝛼
 

where,𝛼 > 0is the shape parameter of the proposed distribution. For𝛼 = 1, the new distribution and the baseline distributions are the 
same. 
  
Another idea of generalizing a baseline distribution is to transmute it by using the quadratic rank transmutation map (QRTM) (see, 
Shaw and Buckley (2007)). If G2(x) be the cdf of transmuted distribution then, 
                            
                                                                       𝐺2(𝑥) = (1 + 𝜆)𝐹2(𝑥) − 𝜆(𝐹2(𝑥))2 
 
Where 𝐹2(𝑥) is the cdf of some baseline distribution and |λ|≤ 1. For λ = 0, the new distribution is same as the baseline distribution. 
 
The one explored by Kumar et al. (2015b) provides a modern alternative. They introduced a new class of distributions in terms of a 
trigonometric transformation and they call it as SS transformation. If F(x) be the cdf of some baseline distribution, then using SS 

transformation as suggested by them, the cdf G(x) of new distribution is given by 𝐺(𝑥) = sin (
𝜋

2
𝐹(𝑥)). The generalization of SS 

transformation is introduced by Hussain et al. (2018) and they have used 4 additional parameters. But, additional parameters may lead 
computational errors, if the closed form estimators may not be obtained. So motivated with this, we are using transformation of 
baseline distribution. 
 
In the fields of medical sciences, engineering and biological sciences, Lindley distribution has been widely used. It was introduced by 
Lindley (1958).The probability density function (pdf) and cumulative distribution function (cdf) of a Lindley distribution with the 
shape parameter θ are given by, 

                                                      𝑓(𝑥) =
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥                ;   𝑥 > 0, 𝜃 > 0                                                       (1)                      

𝑎𝑛𝑑 

                                         𝐹(𝑥) = 1 − (1 +
𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥  ;   𝑥 > 0, 𝜃 > 0                                                                             (2) 

𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 
Merovci and Elbatal [13] had used the QRTM in order to generate a flexible family of probability distributions taking Lindley-
geometric distribution as the baseline distribution that would offer more distributional flexibility and called it transmuted Lindley-
geometric distribution. Bakouch et al. [9] obtained an extended Lindley distribution and discussed its various properties and 
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applications. Ghitany et al. [6] developed a two-parameter weighted Lindley distribution and discussed its applications to survival 
data. A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [4], called as the power Lindley 
distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [7], named as the generalized 
Lindley distribution. Oluyede and Yang [14] proposed a new four-parameter class of generalized Lindley (GLD) distribution and 
called it as beta-generalized Lindley distribution (BGLD). Asgharzadeh et al. [15] introduced a general family of continuous lifetime 
distributions by compounding any continuous distribution and the Poisson-Lindley distribution. 
 
In the present paper, we have derived a new lifetime distribution using SS transformation and the considered baseline distribution is 
Lindley distribution having pdf (1). We will use the abbreviation 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 to denote this new distribution. The cdf and 
pdf of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛are given by; 

                                                    𝐺(𝑥) = cos (
𝜋

2
(1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥) ;   𝑥 > 0, 𝜃 > 0                                                            (3) 

and 

                                                 𝑔(𝑥) =
𝜋

2

𝜃2

𝜃+1
(1+x)𝑒−𝜃𝑥 sin (

𝜋

2
(1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥) ;   𝑥 > 0, 𝜃 > 0                             (4)  

𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.                                                                                                                                                                                 
 
The shapes of the cdf and pdf of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛are shown in Figures 1 and 2 respectively for different value of θ. 

 

 
Figure 1: Plots of The cdf of the 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛for different values of θ. 
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Figure 2: Plots of The pdf of the 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛for different values of θ. 

 
2. RELIABILITY ANALYSIS 

In this section, we present survival function, hazard rate function and cumulative hazard rate function of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
 

2.1 Survival Function 
The survival function R(x), which is the probability that an item is survived at least x units of time, is defined by  

R(x)= 1-G(x) and hence the survival function of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛is obtained as follows, 

                              𝑅(𝑥) = 1 − cos (
𝜋

2
(1 +

𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥) ; 𝑥 > 0                                                                   (5) 

 
The survival behavior of the survival function R(x) for different values of θ is shown in Figure 3. 
 

2.2 Hazard Rate Function 

The hazard rate function at time x is the instantaneous failure per unit time for the event to occur, given that the  

unit has survived up to time x. The hazard rate function h(x) is given as 

ℎ(𝑥) = lim
Δ→0

𝑃(𝑥 < 𝑋 < 𝑥 + Δ𝑥|𝑋 > 𝑥)

Δ𝑥
 

which provides information about a small interval after time x , (x + ∆x). The hazard rate function for a 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛can be 

shown to be 

                              ℎ(𝑥) =
𝜋

2

𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥 cot (

𝜋

2
(1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥) ; 𝑥 > 0                                                     (6)      

Figure 4, shows that𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛has decreasing hazard rate function for different considered valuesof θ. 
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                 Figure 3: Plots of The Reliability Function of the 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 for different values of θ. 

 
 

 
                     Figure 4: Plots of Hazard Rate function of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛for different values of θ 

 
2.3 Cumulative Hazard Rate Function 

 
Many generalized models have been proposed in reliability literature through the relationship between the  reliability function R(x) 

and its cumulative hazard rate function H(x) given by H(x) = -lnR(x). The cumulative hazard rate function of the 𝑆𝑆𝐿(𝜃) −

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛is given by 
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                          𝐻(𝑥) = − ln {1 − 𝑐𝑜𝑠 (
𝜋

2
(1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥)} ; 𝑥 > 0                                                                    (7)    

where H(x) is the total number of failure or deaths over an interval of time, and H(x) is a non-decreasing function of x satisfying; 

(a) H(0)=0,     (b) lim
𝑥→∞

𝐻(𝑥) = ∞ 

Figure 5 illustrates the behavior of the cumulative hazard rate function of𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 for different values of the parameter 

θ.  

Figure 5: Plots of Cumulative Hazard Rate Function of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛for different values of θ 

 
3. Statistical Properties 

 
3.1 Moment Generating Function 
The Moment Generating Function (MGF) of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 having pdf (3) is obtained as follows, 

𝑀𝑥(𝑡) =  
𝜋

2

𝜃2

𝜃 + 1
∑

(−1)𝑤+1 (
𝜋

2
)

2𝑤−1

(2𝑤 − 1)!

∞

𝑤=1

∑ (
θ

θ + 1
)

2w−k+1

(
2w − 1

k
)

2𝑤+1

𝑘=0

2𝑤(𝜃 + 1) − 𝑡 − 𝑘

(2𝑤𝜃 − 𝑡)2𝑤−𝑘+1
Γ(2𝑤 − 𝑘)     (8) 

provided 2wθ > 𝑡 . 

And we obtain rth  moment about origin (i.e. raw moment) of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛as follows, 

𝜇𝑟′ = [
𝛿𝑟𝑀𝑋(𝑡)

𝛿𝑡𝑟
]

𝑡=0 

 

   

3.2 Mean of 𝑺𝑺𝑳(𝜽) − 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

If µ is the mean 𝑜𝑓 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, we have  
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𝜇 = 𝐸(𝑋) = ∫ 𝑥𝑔(𝑥)𝑑𝑥
∞

0

 

𝜇 =
𝜋

2

𝜃2

𝜃 + 1
∫ 𝑥(𝑥 + 1) 𝑒−𝜃𝑥 sin (

𝜋

2
(1 +

𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥) 𝑑𝑥                                                    (9)

∞

0

 

The above integral is not solvable analytically. To solve it numerically for given value θ, one have to use some numerical integration 

technique such as Gauss-Lagurre quadrature formula or Monte-Carlo simulation or some other methods may be used. 

 

3.3 Median of 𝑺𝑺𝑳(𝜽) − 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

If M is the median of the 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, we have 

∫ 𝑔(𝑥)𝑑𝑥 =
1

2

∞

0

 

𝜋

2

𝜃2

𝜃 + 1
∫ (𝑥 + 1) 𝑒−𝜃𝑥 sin (

𝜋

2
(1 +

𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥) 𝑑𝑥 =

1

2

∞

0

 

After simplification, it reduces to, 

                             cos (
𝜋

2
(1 +

𝜃𝑀

𝜃+1
) 𝑒−𝜃𝑀) =  

1

2
                                                                      (10) 

which is not solvable analytically, some numerical iteration technique will be used for its numerical solution for any specific value of 

θ. 

 

3.4 Skewness and Kurtosis of 𝑺𝑺𝑳(𝜽) − 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

The coefficient of Skewness is a measure of the degree of symmetry of probability distribution (see, Sheskin (2011)). It come in the 

form of negative skewness or positive skewness, depending on whether data points are skewed to the left or to the right of the data 

average.  

 

The coefficient of Kurtosis is a measure for the degree of tailendness  in the probability distribution (see, Westfall (2014)). There are 

three categories of kurtosis that can be displayed by the data. First category is a mesokurtic distribution. Second is leptokurtic and 

third one is platykurtic distribution. The measure of skewness and kurtosis can be calculated using the following expressions 

𝛽1 =
(𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 2𝜇1
′ 3

)
2

(𝜇2
′ − 𝜇1

′ 2
)

3                                                                                            (11) 

𝛽2 =
𝜇4
′ − 4𝜇3

′ 𝜇1
′ + 6𝜇2

′ 𝜇1
′ 2

− 3𝜇1
′ 4

(𝜇2
′ − 𝜇1

′ 2
)

2                                                                                (12) 

The values of 𝛽1and 𝛽2 have been calculated for different values of θand for all considered values of θ, we get 𝛽1> 0 and 𝛽2> 3. Thus 

we may conclude that our proposed distribution is positively skewed and leptokurtic. The graphs of values of 𝛽1 and 𝛽2 for different 
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values of θ are shown in figures6 and 7 respectively.

 
                                          Figure 6: The values of 𝛽1  for different values of θ

 
                                  Figure 7:The values of 𝛽2 for different values of θ 

 

 

4. Estimation of the parameter 𝜽𝒐𝒇 𝑺𝑺𝑳(𝜽) − 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 

Maximum Likelihood Estimator 

Let  x=(x1, x2, .......,xn) a sample of size n from 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛having pdf (4). The likelihood function is given by, 

𝐿 = ∏ 𝑔(𝑥𝑖)

𝑛

𝑖=1

 

𝐿 = (
𝜋

2
)

𝑛

(
𝜃2

𝜃 + 1
)

𝑛

∏(1 + 𝑥𝑖)𝑒−𝜃𝑥𝑖 ∏ sin (
𝜋

2
(1 +

𝜃𝑥𝑖

𝜃 + 1
) 𝑒−𝜃𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 

And hence the log likelihood function is, 
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ln 𝐿 = 𝑛𝑙𝑛 (
𝜋

2
) + 2𝑛 ln(𝜃) − 𝑛 ln(𝜃 + 1) + ∑ ln(1 + 𝑥𝑖) − 𝜃 ∑ 𝑥𝑖 + ∑ ln {𝑠𝑖𝑛 (

𝜋

2
(1 +

𝜃𝑥𝑖

𝜃 + 1
) 𝑒−𝜃𝑥𝑖)}                           (13)

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

Now, the log likelihood equation for estimating θ is given by, 

                                                                            
𝜕 ln 𝐿

𝜕𝜃
= 0                                                                                         (14) 

This is not solvable analytically for θ and thus we have used  nlm, an R-code to solve it analytically on R-software 

. 

5. Real data application 

In this section, a real data set has been considered for checking applicability, suitability and superiority of the proposed distribution 

over on some existing distributions such as 𝑆𝑆𝐸𝑋𝑃(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝐷𝑈𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃)-distribution and Lindley Distribution. Consider 

following real data which represents the number of million revolutions before failure for each of 23 ball bearings in a life testing 

experiment, extracted from Lawless (2011). 

 

17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 

127.92, 128.04, 173.4. 

 

To check the validity of the considered model for the above data set, we have calculated various statistical tools such as Kolmogrov-

Smirnov (K-S) test statistic, Akaike information criterion (AIC) and Bayesian information criterion (BIC). These criterions are 

defined as follows 

𝐴𝐼𝐶 = −2 ln(�̂�) + 2𝑝 

𝐵𝐼𝐶 = −2 ln(�̂�) + 𝑝 ln(𝑛) 

𝐷𝑛 = sup |𝐹(𝑥) − 𝐹𝑛(𝑥)| 
where n is the sample size, p is the no. of unknown parameters in the model, �̂� is the maximized value of the likelihood function and 

𝐹𝑛(𝑥) (x) is empirical distribution function. 

 

    Table 1: The values of AIC, BIC, K-S test statistic with its p-value for considered real data set 

  Estimate AIC BIC  KS P-value 

𝑆𝑆𝐸𝑋𝑃(𝜃) 0.007911357 242.8583 243.9938 0.29532 0.0362 

𝑆𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃) 0.0187719 231.4266 232.5621 0.16423 0.5644 

𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃) 0.02732466 233.4707 234.6062 0.19286 0.3593 

𝐷𝑈𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃) 0.01725388 239.1521 240.2875 0.93389 2.20E-16 

 
We have computed MLE of the parameter θ of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛having pdf (4) for above data set and found it as 0.0187719 

and consequently, AIC, BIC and K-S test value with its p- value for 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛are calculated and their values are shown 

in Table 1. For other distributions, viz SSEXP(θ),  
𝐷𝑈𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃)and Lindley(θ) distributions, the value of AIC, BIC and K-S test value with its p-value are calculated for the above data 

set and are shown in comparative Table 1.  

 

From table 1, it is seen that the criterion values AIC, BIC and also K-S test value of our proposed distribution 𝑆𝑆𝐿(𝜃) −

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛is smallest as compared to those of 𝑆𝑆𝐸𝑋𝑃(𝜃), 𝐷𝑈𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝜃), and Lindley(θ) distributions and has largest p-value too. 

Thus we may conclude that 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is well fitted to the considered data set as compared to 

𝑆𝑆𝐸𝑥𝑝(𝜃), 𝐷𝑈𝑆𝐿𝑖𝑛𝑑𝑙𝑒𝑦 (𝜃)and Lindley(θ) distributions. 

The plots of empirical cdf Fn and fitted cdf G(x) of 𝑆𝑆𝐿(𝜃) −distribution having pdf (4) for above data set shown in Figure 8. 
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                                    Figure 8: Plot of ecdf of 𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛for given data set 

 

6. Simulation Study 

A simulation study is carried out to study the performance of MLEs of θ of proposed model. We consider mean square errors (MSEs) 

of MLEs of the parameter 𝜃, reliability R≡R(t) and hazard rate h≡h(t) for a specific value of t and asymptotic CI of the parameter θ. 

 

Table 2: Mean Square Error of MLEs of parameter θ, Reliability, Hazard Rate Function at t=0.5 and Confidence Interval for 

parameter θ 

n 

  
𝑀𝑆𝐸(�̂�) 

  

𝑀𝑆𝐸(�̂�) 𝑀𝑆𝐸(ℎ̂) 95 % CI of 𝜃 

  t=0.5 t=1 t=0.5 t=1 

10 0.001700994 0.000371909 0.0009872 0.003178 0.00441178 ( 0.3207599 ,0.7617263) 

15 0.001011944 0.000217979 0.0006159 0.001771 0.00248071 (0.3551504 , 0.7084717) 

20 0.000803559 0.00017035 0.0004986 0.001347 0.00189602 ( 0.3764446, 0.6802496) 

30 0.000603145 0.000125231 0.0003804 0.000963 0.00136155 (0.4014849,  0.6476331) 

80 0.000409562 8.20E-05 0.0002637 0.000604 0.0008594 (0.4455370 , 0.5949382) 

140 0.000340706 6.75E-05 0.0002204 0.000492 0.00070106 (0.4621882 ,0.5747282) 

200 0.000334482 6.69E-05 0.0002203 0.000491 0.00070135 (0.4714691,0.5656514) 

 

 

Table 3:Mean Square Error of MLEs of parameter θ, Reliability, Hazard Rate Function at t=1 and Confidence Interval for parameter 
θ 

n 

  
𝑀𝑆𝐸(�̂�) 

  

𝑀𝑆𝐸(�̂�) 𝑀𝑆𝐸(ℎ̂) 95 % CI of 𝜃 

  t=0.5 t=1 t=0.5 t=1 

10 0.005138153 0.000691209 0.0003998 0.017109 0.0197296 ( 0.6114234 1.5319384) 

15 0.002542872 0.000367103 0.0002407 0.008273 0.00966946 (0.6830099, 1.4178439) 

20 0.002033988 0.000315523 0.0002557 0.006332 0.00753446  (0.7288118,1.3613877) 

30 0.001155612 0.000186872 0.0001676 0.003512 0.00422427  (0.7787723 1.2892163) 

80 0.000672169 0.000120234 0.0001452 0.001877 0.00233  (0.8710001 1.1808524) 

140 0.000500426 9.19E-05 0.0001197 0.001362 0.00170659  (0.905702 , 1.139038) 

200 0.000439904 8.18978e-05 0.0001107 0.001182 0.00148761 (0.9235093 ,1.1184385) 
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Tables 2 and 3 shows that the performance of the estimators for the proposed model𝑆𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. In this regard, we have 

calculated the values of mean square error (MSE) for the parameter𝜃, reliability and hazard rate function (for t=0.5 and 1) and 95% 

Confidence interval for varying of sample size n=(10,15,20,30,80,140,200) for the true parameter θ = 0.5 and 1 respectively and it is 

observed that MSEs of the MLEs of the parameter 𝜃, Reliability and Hazard as well as the width of CI of the parameter 𝜃 are 

decreases as sample size increases. 

 

7. Conclusion 

In the present piece of work, a new distribution using SS transformation as suggested by Kumar et al. (2015) is introduced and the 

considered baseline distribution is Lindley(θ)-distribution. Some statistical properties of this new distribution has been studied and it 

is observed that it is suitable for data having decreasing failure rate. A real data application shows that it fits well as compared to 

𝑆𝑆𝐸(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝐷𝑈𝑆𝐿(𝜃) − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 and Lindley(θ) distribution and the real data set represents the no. of revaluations 

before failure rate of each of 23 ball bearings. Thus we may recommend further application of our proposed distribution to draw exact 

and valid inferences in engineering, science and technology. 
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