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Abstract- In this paper we describe Cloud Computing which concentrates on storage, security and safety of the cloud. Where 

Previously classical techniques where used i.e., Sharding such data using classical techniques lead to insecure data and loss of data 

because of single cloud where there is a risk of alteration of data or the cloud crash or segregating the graph using traditional min-cut 

algorithms leads to very ineffective distributed operations and to a high number of joins. In order to overcome problem A new 

technique is used to retrieve the data from the cloud through duplication of cloud in order to secure the data which cannot be modified 

in the cloud, then with the help of Diplocloud cloud we are clustering the file to generate an Index through Diplocloud.  Here, we 

describe Proficient well organized and scalable RDF data  management in DiploCloud system for the cloud.  Contrary to previous 

approaches, Our system depends on three key structures; RDF particle clusters, design records with a successful key document in dual 

clouds. It regularly concentrate information from a web information source with less measure of time. 
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1. INTRODUCTION 

 

Cloud computing is a recent trend in IT that moves computing and data away from desktop and portable PCs into large data 

centers.  It refers to applications delivered as services over the Internet as well as to the actual cloud organization with the recent 

advances in cloud computing which typically contains a significant pool of resources which could be rearranged to different purposes 

within a short time frames.  Often, the task at hand can be easily split into a large series of subtasks to be run independently and 

concurrently.  Such operations are commonly called embarrassingly  parallel.  Embarrassingly parallel problems can be relatively 

easily scaled out in the cloud by launching new processes on new commodity machines.  There are however many processes that are 

much more difficult to parallelize, typically because they consist of sequential processes (e.g., processes based on numerical methods 

such as Newton’s method). Such processes are called inherently sequential as their running time cannot be sped up significantly 

regardless of the number of processors or machines used.  Some problems, finally, are not inherently sequential per se but are difficult 

to parallelize in practice because of the profusion of inter-process traffic they generate. 

 

In addition to this we describe Diplocloud to secure the data safely for the future use and the data can be dispersed easily.  As 

in a single node RDF system the data cannot be partitioned easily and it cannot be modified and retrieved by others.  For storing the 

data and implement in-memory RDF engine in graph form leads to bidirectional graph to overcome we form a key index which can 

have similar data and can be found easily.  In this a storage model is presented which proficiently and effectively partitions RDF 

graph and physically co-locates related instance data research proposes the most prominent standards are Resource. 

 

Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL). RDF is the standard for 

storing and representing data and SPARQL is a query language to retrieve data from an RDF store. 

 

Scaling out structured data processing often falls in the third category.  Traditionally, relational data processing is scaled out 

by partitioning the relations and rewriting the query plans to reorder operations and use distributed versions of the operators enabling 

intra-operator parallelism.  While some operations are easy to parallelize (e.g., large scale, distributed counts), many operations, such 

as distributed joins, are more complex to parallelize because of the resulting traffic they potentially generate.  While much more 

recent than relational data management, RDF data management has borrowed many relational techniques; Many RDF systems rely on 

hash-partitioning (on triple or property tables) and on distributed selections, projections, and joins.  Our own Grid-Vine system was 

one of the first systems to do so in the context of large scale decentralized RDF management. 

 

Hash partitioning has many advantages, including simplicity and effective load-balancing. However, it also generates much 

inter-process traffic, given that related triples (e.g., that must be selected and then joined) end up being scattered on all machines.  In 

this articles, we propose DiploCloud, an efficient,  distributed and scalable RDF data processing system for distributed and cloud 
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environments.  Contrary to many distributed systems, DiploCloud uses a resolutely non-relational storage format, where semantically 

related data patterns are mined both from the instance-level and the schema-level data and get co-located to minimize inter-node 

operations. 

 

The main contributions of this article are: 

 

 A new hybrid storage model that efficiently and effectively partitions an RDF graph and physically co-locates related instance 

data; a new system architecture for handling fine-grained RDF partitions in large-scale; 

 

 Novel data placement techniques to co-locate semantically related pieces of data; new data loading and query execution strategies 

taking advantage of our system’s data partitions and indices; 

 

 An extensive experimental evaluation showing that our system is often two orders of magnitude faster than state-of-the-art 

systems on standard workloads. DiploCloud builds on our previous approach diplodocus ½ RDF, an efficient single node triple 

store. The system was also extended in TripleProv to support storing, tracking, and querying provenance in RDF query processing. 

 

II.  RELATED WORK 

 

(1) Since RDF data can be seen as sets of subject predicate- object triples, many early approaches used a giant triple table to store all 

data.  Hexastore suggests to index RDF data using six possible indices, one for each permutation of the set of columns in the 

triple table. RDF-3X and YARS follow a similar approach.  BitMat maintains a three-dimensional bit-cube where each cell 

represents a unique triple and the cell value denotes presence or absence of the triple. Various techniques propose to speed-up 

RDF query processing by considering structures clustering RDF data based on their properties. Wilkinson et al. propose the use 

of two types of property tables: one containing clusters of values for properties that are often co-accessed together, and one is 

exploiting the type property of subjects to cluster similar sets of subjects together in the same table. 

  

(2) Owens et al. propose to store data in three B+-tree indexes. They use SPO, POS, and OSP permutations, where each index 

contains all elements of all triples. They divide a query to basic graph patterns which are then matched to the stored RDF data.  

A number of further approaches propose to store RDF data by taking advantage of its graph structure.  Yan et al. suggest to 

divide the RDF graph into sub graphs and to build secondary indices (e.g., Bloom filters) to quickly detect whether some 

information can be found inside an RDF sub graph or not. 

 

(3) Ding et al. suggest to split RDF data into sub graphs (molecules) to more easily track provenance data  by inspecting  blank 

nodes and taking advantage of a background ontology and functional properties. Das et al. in their system called gStore organize 

data in adjacency list tables. Each vertex is represented as an entry in the table with a list of its outgoing edges and neighbors. To 

index vertices, they build an S-tree in their adjacency list table to reduce the search space. 

 

(4) Brocheler et al. propose a balanced binary tree where each node containing a sub graph is located on one disk page. Distributed 

RDF query processing is an active field of research. Beyond SPARQL federations approaches (which are outside of the scope of 

this paper), we cite a few popular approaches below. Like an increasing number of recent systems, The Hadoop Distributed. 

 

(5) RDF Store (HDRS) uses Map Reduce to process distributed RDF data. RAPID+ extends Apache Pig and enables more efficient 

SPARQL query processing on Map Reduce using alternative query algebra.  Their storage model is a nested hash-map. Data is 

grouped around a subject which is a first level key in the map i.e. the data is co-located for a shared subject which is a hash value 

in the map. The nested element is a hash map with predicate as a key and object as a value. 

 

(6) Sempala builds on top of Impala stores data in a wide unified property tables keeping one star-like shape per row. The authors 

split SPARQL queries to simple Basic Graph Patterns and rewrite them to SQL, following they compute a natural join if needed. 

Jen HBase2 uses the HBase popular wide-table system to implement both triple-table and property-table distributed storage. Its 

data model is a column oriented, sparse, multi-dimensional sorted map. Columns are grouped into column families and 

timestamps add an additional dimension to each cell. Cumulus RDF3 uses Cassandra and hash-partitioning to distribute the RDF 

tiples. It stores data as four indices (SPO, PSO, OSP, CSPO) to support a complete index on triples and lookups on named 

graphs (contexts). We recently worked on an empirical evaluation to determine the extent to which such noSQL systems can be 

used to manage RDF data in the cloud4.  Our previous Grid Vine system uses a triple-table storage approach and hash-

partititoning to distribute RDF data over decentralized P2P networks. 

 

(7) YARS 2,5 Virtuoso6,  4 store, and SHARD hash partition triples across multiple machines and parallelize the query processing.  

Virtuoso by Erlin et al. stores data as RDF quads consisting of the following elements: graph, subject, predicate, and object. All 

the quads are persisted in one table and the data is partitioned based on the subject. Virtuoso implements two indexes.  The 
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default index (set as a primary key) is GSPO (Graph, Subject, Predicate, Object) and an auxiliary bitmap index (OPGS). A 

similar approach is proposed by Harris et al., where they apply a simple storage model storing quads of (model, subject, 

predicate, object). Data is partitioned as non overlapping sets of records among segments of equal subjects; segments are then 

distributed among nodes with a round-robin algorithm.  They maintain a hash table of graphs where each entry points to a list of 

triples in the graph. Additionally, for each predicate, two radix tries are used where the key is either subject or object, and 

respectively object or subject and graph are stored as entries (they hence can be seen as traditional P:OS and P:SO indices). 

Literals are indexed in a separate hash table and they are represented as (S, P, O/Literal). SHARD keeps data on HDFS as star-

like shape centering on a subject and all edges from this node.  It introduces a clause iteration algorithm the main idea of which 

is to iterate over all clauses and  incrementally bind  variables and satisfy constrains. 

 

(8) Huang et al. deploy a single-node RDF systems (RDF-3X) on multiple machines, partition the RDF graph using standard graph 

partitioning algorithms (METIS7), and use the Hadoop framework to synchronize query execution. Their approach collocates 

triples forming a subgraph (a star-like structure) on particular nodes. They aim to reduce the number of inter-node joins, and 

thus, the amount of data that is transferred over the network for intermediate results. Warp is a recent approach extending [29] 

and using workload-aware partial replication of triples across partitions. Queries are decomposed into chunks executed in 

parallel and then reconstructed with MapReduce. The authors push of most of query processing to the triplestore while only the 

simplest part of query execution is processed through Hadoop. 

 

III. EXISTING SYSTEM 

 

The cheaply provision computing resources, for example to advent of cloud computing enables to easily and test a new application 

or to scale a current software installation elastically.  The complexity of scaling out an application in the cloud (i.e., adding new 

computing nodes to accommodate the growth of some process) very much depends on the process to be scaled.  Often, the task at 

hand can be easily split into a large series of subtasks to be run independently and concurrently. Such operations are commonly called 

embarrassingly parallel. Embarrassingly parallel problems can be relatively easily scaled out in the cloud by launching new processes 

on new commodity machines.  There are however many processes that are much more difficult to parallelize, typically because they 

consist of sequential processes (e.g., processes based on numerical methods such as Newton’s method). Such processes are called 

inherently sequential as their running time cannot be sped up significantly regardless of the number of processors or machines used.  

Some problems, finally, are not inherently sequential but are difficult to parallelize in practice because of the profusion of inter-

process traffic they generate.  Scaling out structured data processing often falls in the third category. 

 

Traditionally, relational data processing is scaled out by partitioning the relations and rewriting the query plans to reorder 

operations and use distributed versions of the operators enabling intra-operator parallelism. While some operations are easy to 

parallelize (e.g., large-scale, distributed counts), many operations, such as distributed joins, are more complex to parallelize because 

of the resulting traffic they potentially generate.  While much more recent than relational data management, RDF data management 

has borrowed many relational techniques; Many RDF systems rely on hash-partitioning (on triple or property tables, see below 

Section 2) and on distributed selections, projections, and joins. Our own Grid Vine system was one of the first systems to do so in the 

context of large-scale decentralized RDF management. Hash partitioning has many advantages, including simplicity and effective 

load balancing. However, it also generates much inter-process traffic, given that related triples (e.g., that must be selected and then 

joined) end up being scattered on all machines. 

 

IV.  PROPOSED SYSTEM 

 

Cloud computing is the use of computing resources (hardware and software) that are delivered as a service over a network 

(typically the Internet). The cloud computing uses networks of large groups of servers typically running low-cost consumer PC 

technology with specialized connections to spread data processing chores across them. Consumer-oriented applications such as 

financial portfolios to deliver personalized information, to provide data storage. Speculate that large scale data analysis tasks, decision 

support systems, and application specific data marks are more likely to take advantage of cloud computing platforms than operation. 

 

A distributed system is a model in which components located on networked computers communicate and coordinate their 

actions by passing messages. Efficient RDF data management is one of the cornerstones in realizing the Semantic Web vision. In the 

past, different RDF storage advanced techniques like clustering or vertical partitioning on the predicates. RDF actually encodes rich 

and complex graphs mixing both instance and schema-level data.  Sharing such data using classical techniques or partitioning the 

graph using traditional min-cut algorithms leads to very inefficient distributed operations and to a high number of joins.  So we 

describe DiploCloud, an efficient and scalable distributed RDF data management system for the cloud.  Contrary to previous 

approaches, DiploCloud runs a physiological analysis of both instance and schema information prior to partitioning the data.  Here we 

describe the architecture of DiploCloud, its main data structures, as well as the new algorithms we use to partition and distribute data.  

We also present an extensive evaluation of DiploCloud showing that our system is often two orders of magnitude faster than state-of-

the-art systems on standard workloads. 
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Advantages- Low computation require for hashing, template list, key index.  Trinity does not require training set for processing 

of web data.  Routinely extract data from a web data source with less amount of time. 

 

Our storage system in DiploCloud can be seen as a hybrid structure extending several of the ideas from above.  In addition, we 

introduce a unique combination of physical structures to handle RDF data both horizontally (to flexibly co-locate entities or values 

related to a given instance) as well as vertically (to collocate series of entities or values attached to similar instances). Molecule 

clusters are used in two ways in our system: to logically group sets of related URIs and literals in the hash table (thus, pre-computing 

joins), and to physically co-locate information relating to a given object on disk and in main memory to reduce disk and CPU cache 

latencies. Template lists are mainly used for analytics and aggregate queries, as they allow to process long lists of literals efficiently. 

 

We have three main modules 

1. Cloud. 

2. Diplocloud 

3. Data user. 

 

4.2  Module Description 

 

1. Cloud 

This collects and store the data in the encrypted so that no other user can modify the data for the security purpose the data is saved 

first in the cloud then in the Diplocloud. In case the data will be lost in the Diplocloud the data is present in the cloud. 

 

2. Diplocloud 

In this the user can retrieve the data in two ways by key indexing or by searching template list while retrieving user will get the 

key to their respective mail-id by using that key the file can be retrieved. 

 

3. DataUser 

User uploads and extracts the data from this module with the help of key indexing or template list. For the security of both user 

and data the cloud server is provided a secret key to the user by using that key the user should login into the cloud. 

 

 
Fig. 1. System overview of diplocloud 

 

4.2.1 Master Node 

 

The Master node is composed of three main subcomponents: a key index, in charge of encoding URIs and literals into 

compact system identifiers and of translating them back, a partition manager, responsible for partitioning the RDF data into recurring 

subgraphs, and a distributed query executor (c.f. Section 6.3), responsible for parsing the incoming query, rewriting the query plans 

for the Workers, collecting and finally returning the results to the client. Note that the Master node can be replicated whenever 

necessary to insure proper query load balancing and fault-tolerance. The Master can also be duplicated to scale out the key index for 

extremely large datasets, or to replicate the dataset on the Workers using different partitioning schemes (in that case, each new 

instance of the Master is responsible for one partitioning scheme). 

 

4.2.2 Worker Nodes 

 

The Worker nodes hold the partitioned data and its corresponding local indices, and are responsible for running subqueries 

and sending results back to the Master node. Conceptually, the Workers are much simpler than the Master node and are built on three 

main data structures: 
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i) A type index, clustering all keys based on their types: 

ii) A series of RDF molecules, storing RDF data as very compact subgraphs, and 

iii) A molecule index, storing for each key the list of molecules where the key can be found. 

 

V. CONCLUSION 

 

It strikes an optimal balance between intra-operator parallelism and data co-locating the storage model proficiently partitions 

the data and effectively co-locate the data.  After storing of file in the cloud it clusters the file and generates a key index and it 

automatically clusters the data from both at schema level and instance level. DiploCloud is an efficient and scalable system for 

managing RDF data in the cloud. From our perspective, it strikes an optimal balance between intra-operator parallelism and data co-

location by considering recurring, fine-grained physiological RDF partitions and distributed data allocation schemes, leading however 

to potentially bigger data (redundancy introduced by higher scopes or adaptive molecules) and to more complex inserts and updates.  

DiploCloud is particularly suited to clusters of commodity machines and cloud environments where network latencies can be high, 

since it systematically tries to avoid all complex and distributed operations for query execution. Our experimental evaluation showed 

that it very favorably compares to the state-of-the art systems in such environments.  We plan to continue developing DiploCloud in 

several directions: First, we plan to include some further compression mechanisms (e.g., like in RDF-3X or HDT). We plan to work 

on an automatic templates discovery based on frequent patterns and untyped elements. Also, we plan to work on integrating an 

inference engine into DiploCloud to      

support a larger set of semantic constraints and queries natively.  Finally, we are currently testing and extending our system with 

several partners in order to manage extremely-large scale, distributed RDF datasets in the context of bioinformatics applications. 

 

VI. Future Enhancement 

 

Many RDF systems rely on hash-partitioning and on distributed selections, projections, and joins. Our own Grid Vine system 

was one of the first systems to do so in the context of large-scale decentralized RDF management. 
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