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Abstract 

In this paper, Low power consumption and smaller area requirement are prime concern in fabrication of DSP system on FPGA. 

Modular arithmetic is core operation in cryptosystems since they are efficient when data size is large (1024 bits or greater). In this 

paper a novel architecture of radix-2, 4,8,16  Montgomery multiplier is presented and implemented on FPGA device. Simulation 

shows that our design performs faster in terms of clock frequency while it requires lower area. 
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1.  INTRODUCTION  

With the advancement in communication systems, security is a prime concern which is offered by public key cryptosystems. These 

systems offer authentication, confidentiality and privacy. Many cryptosystems including RSA, DSA and ECC systems requires 

modular multiplication for private key generation. [1] P. Montgomery developed an efficient algorithm for the calculation of (A X B) 

mod M called Montgomery Multiplication algorithm. Montgomery multiplication has been used as a fundamental operation of 

arithmetic operations in RSA-Algorithm. This paper presents FPGA implementation of scalable architecture for radix-2 Montgomery 

multiplication algorithm for 1024-bit operand.  

2.  MONTGOMERY MULTIPLICATION:- 

MONTGOMERY MULTIPLICATION In 1985 a method for modular multiplication using Residue Number System (RNS) 

representation of integers is proposed by Peter L. Montgomery. In this method, the costly division operation usually needed to 

perform modular reduction is replaced by simple shift operations by transforming the operands into the RNS domain before the 

operation and re-transforming the result after operation. A radix R is selected to be two to the power of a multiple of the word size and 

greater than the modulus, i.e. R = 2w> M. For the algorithm to work R and M need to be relatively prime i.e. must not have any 

common non-trivial divisors. With R a power of two, this requirement is easily satisfied by selecting an odd modulus. This also fits in 

nicely with the cryptographic algorithms that we are targeting, where the modulus is either a prime always odd with the exception of 

2or the product of two primes and therefore odd as well. RNS representations of integers are called M residues and are usually 

denominated as the integer variable name with a bar above it. An integer a is transformed into its corresponding M-residue �̅� by 

multiplying it by R and reducing modulo M. The back-transformation is done in an equally straight forward manner by dividing the 

residue by R modulo M.  

Thus here are the following equations as transformation rules between the integer and the RNS Domain: 

𝑎 = �̅�𝑅-1  

Montgomery Multiplication can be defined simply as the product of two M residues divided by the radix modulo M: 

 �̅� = �̅�𝑏 ̅𝑅 -1(𝑚𝑜𝑑 𝑀)  

Division by the Radix is required to make the result again an M-residue. 

 The key concepts of the Montgomery algorithm are the following: 

i) Adding a multiple of M to the intermediate result does not change the value of the final result; because the result is 

computed modulo M. M is an odd number 
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ii)  After each addition in the inner loop the least significant bit of the intermediate result is inspected. If it is 1, i.e., the 

intermediate result is odd, we add M to make it even. This even number can be divided by 2 without remainder. This 

division by 2 reduces the intermediate result to n+1 bits again.  

iii) After n steps these divisions add up to one division by 2n. 

Radix-2 Montgomery Multiplication Algorithm Let X and Y be two n-bit operands and M be any odd integer which is 

greater than zero for satisfying radix-2 operation. Montgomery multiplication involves first transformation of operands into 

Montgomery domain and then after result is re-transformed into Montgomery domain. This conversion process replaces division by 

several shift operations then Montgomery multiplication process for inputs X, Y, M and output Z is described as follows: Output to be 

obtained: Z= (X,Y) mod M Where X’=X.2n mod M Y’=Y.2n mod M Z’ = MP(X’, Y’, M) = X Y 2n mod M Hence Z’ = Z 2n mod M 

Hardware reduction of this algorithm is possible by pre-computation. The values to be added to the intermediate result within the loop 

can be pre-computed. Delay due to carry propagation must be avoided.  

Faster Montgomery Multiplier The motivation behind this optimized algorithm is that of reducing the chip area for practical 

hardware implementation. This is possible if we can pre-compute four possible values to be added to the intermediate result. These 

are the four possible scenarios:  

i) if the sum of the old values of S and C is an even number, and if the actual bit xi of X is 0, then we add 0 before we 

perform the reduction of S and C by division by 2. 

ii)  if the sum of the old values of S and C is an odd number, and if the actual bit xi of X is 0, then we must add M to make 

the intermediate result even. Afterwards, we divide S and C by 2.  

iii)  if the sum of the old values of S and C is an even number, and if the actual bit xi of X is 1, but the increment xi*Y is 

even, too, then we do not need to add M to make the intermediate result even. Thus, in the loop we add Y before we 

perform the reduction of S and C by division by 2. The same action is necessary if the sum of S and C is odd, and if the 

actual bit xi of X is 1 and Y is odd as well. In this case, S+C+Y is an even number, too.  

iv) if the sum of the old values of S and C is odd, the actual bit xi of X is 1, but the increment xi *Y is even, then we must 

add Y and M to make the intermediate result even. Thus, in the loop we add Y+M before we perform the reduction of S 

and C by division by 2. The same action is necessary if the sum of S and C is even, and the actual bit xi of X is 1, and Y 

is odd. In this case, S+C+Y+M is an even number, too.  

v) The computation of Y+M can be done prior to the loop. This saves one of the two additions which are replaced by the 

choice of the right operand to be added to the old values of S and C. Algorithm in 5.1 is a modification of Montgomery’s 

method which takes advantage of this idea. 

Algorithm for Faster Montgomery Multiplier Inputs:  

Inputs: X, Y, M with 0 ≤X, Y< M  

Output: P =(X*Y ( 2n ) -1)mod M 

 n: number of bits in X;  

xi : ith bit of X; 

 s0: LSB of S,  

c0: LSB of C,  

y0: LSB of Y;  

R: precomputed value of Y+ M;  

 S =0 ; C =0 ; 

 for (i=0 ; i <n; i++) 

{ 

 if ((s0= c0) and not xi ) then I =0; 

if ((s0≠ c0) and not xi ) then I= M 
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if (not(s0^ c0^ y0 ) and xi ) then I = Y;  

if ((s0^c0^ y0 ) and xi ) then I=R;  

S,C= S+ C+ I; S : S div ;  

C= C div 2 ; 

                           } 

 P= S+ C; 

 if (P≥ M) then P =P-M; 

The advantage of Algorithm in Montgomery Multiplier in comparison to Algorithm in Radix-2 Montgomery Multiplication 

can be seen in the implementation of the loop of Algorithm in Montgomery Multiplier. The possible values of I are stored in a lookup-

table, which is addressed by the actual values of xi, y0, s0 and c0. The operations in the loop are now reduced to one table lookup and 

one carry save addition. Both these activities can be performed concurrently. Note that the shift right operations that implement the 

division by 2 can be done by routing. 

 

Figure:1  Representing Montgomery Multiplication Block Diagram 

3. MONTGOMERY MULTIPLIER ARCHITECTURE  

The detailed architecture of the Montgomery multiplier is given in Figure 2.   

 The first Multiplexer MUX21 passes 0 or content of register B depending on bit a0. MUX22 passes 0 or  contents register M 

depending on r0   

 ADDER1 delivers the sum R + ai × B while ADDER2 gives R +M.  

 SHIFT REGISTER1 provides bit ai and is right shifted for each I so that a0 =ai. 

 Controller synchronizes the shifting and loading operations of shift registers. 
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 A major design concern in multiplication units in cryptography is the large no. of input bits which lead to complex systems. 

Many implementations of the Montgomery algorithm. But all these were for fixed precision of operands that is; once 

hardware is designed for n bits it cannot work with more no. of bits. For improved performance many high radix designs were 

also proposed but due to their increased complexity, low radix designs still remain an attractive choice for hardware 

implementation of Montgomery Multiplier. 

  

Figure:2  Montgomery Multiplier Architecture 

Design Evaluation 

 Faster Montgomery consumes less area and also less power. Delay analysis of Montgomery multiplier and faster Montgomery 

Multiplier using Xilinx 14.2 gives the following result: 

Multiplier Area Delay 

Normal Montgomery Multiplier 

Number of slice registers used : 69 41.702ns 

Number of slice LUTs : 270  

Number of bonded IOBs : 195  

Faster Montgomery Multiplier 

Number of slice registers used : 81 32.55ns 

Number of slice LUTs : 227  

Number of bonded IOBs : 131  

Table 1.Area and Delay Analysis 
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4. SIMULATION RESULTS:- 

Simulation of the veri-log code for a Faster Montgomery Multiplier using Xilinx gave the following results 

 

 

4.1  Comparison with Previous Techniques :- 

Various techniques available for performing modular multiplication have been compared. The time consuming division 

operation has been replaced. It is seen that a Montgomery multiplier performs faster modular multiplication. Also the power 

consumption is lower in a Montgomery multiplier. The new method has a simple structure and requires a small amount of 

precomputation and storage. It reduces the number of necessary additions. The possible values are stored in a lookup-table. 

5. CONCLUSION: 

The estimated total circuit area and critical path delay of the modular multiplier based algorithm show that it can be 

implemented in much smaller hardware than that necessary to implement multiplier and divider separately. We conclude that, among 

the various algorithms proposed in literature for calculating modular multiplication, the Montgomery modular multiplication 

algorithm seem to be the suitable one to be combined. This paper presented an efficient algorithm to reduce the energy consumption 

and enhance the throughput of Montgomery modular multipliers simultaneously. The work can be further extended to modular 

exponentiation and squaring. A reversible architecture can be implemented for lower power consumption 
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