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Abstract :  In this study the nonlinear analysis of 2 DOF vibration system with weakly nonlinear spring is studied. Different from 

conventional way, the DVA damper  is connected  between the absorber mass and the ground. A simple Ground hook damped DVA 

is thus employed to suppress the nonlinear vibrations of forced nonlinear system for the primary resonance conditions. The effects of 

the linked spring, the damper and the attached mass on the reduction of nonlinear vibration are being studied with the help of 

frequency response curves, time plots and phase planes.  

 

IndexTerms –Degrees of Freedom, Dynamic Vibration Absorber. 

 

I. INTRODUCTION 

 

The nonlinear analysis becomes necessary whenever finite amplitudes of motion are encountered. In a SDOF nonlinear structure 

subjected to external excitation, a small amplitude excitation may produce a relatively large amplitude response under primary 

resonance conditions. A simple mass- spring-damper [1] vibration absorber is thus employed to suppress the nonlinear vibrations. Kefu 

Liu and Gianmarc Coppola [2] proposed an optimum design of damped DVA for effectively reducing vibrations. They designed an 

absorber in which damper is connected directly to the ground instead of primary mass. The characteristics of the nonlinear system 

attached by the linear absorber change only slightly in terms of the values of its new linearized natural frequency, damping coefficient 

and frequency interval. Studying a system with nonlinear spring will reduce the vibration amplitude that can be obtained by selecting 

the parameters proposed by J C Ji and N Zhang [3]. Various methods of solving the nonlinear vibration problems are Lindstedt’s 

perturbation method, the iterative method and the Ritz- Galerkin method. One of the perturbation methods known as straightforward 

expansion is used to obtain the first order approximate solutions to primary resonance vibrations of the forced nonlinear structure. 

 

Our main aim in this paper  is to analyze the nonlinearity of a vibration system with weakly nonlinear spring. The approximate 

analytical solution for nonlinear system with nonlinear spring is carried out. The time plots with displacement are also plotted. A 

comparison of plots is made with the computer generated solution obtained from MATLAB to ensure the validation of the solution.  

 

Abbreviations  

 

DOF- Degrees of freedom 

DVA- Dynamic Vibration Absorber 

 

 

II. RESEARCH  METHODOLOGY 

 

2.1 Mathematical Modeling Using Nonlinear Spring 

 

 It is assumed here that a 1dof weakly nonlinear system may be described as one which consists of a mass subjected to a 

periodic excitation. A significantly lighter mass ma (in comparison with the primary mass M), which will be referred as a small 

attachment, connected to the nonlinear system through a massless spring. The secondary system referred as the damped vibration 

absorber. It is noted that the mass less damper is connected directly to the ground. Hence the damped DVA is sometimes called 

ground hook damped DVA. The addition of the absorber mass to the nonlinear primary system results in a new 2dof nonlinear system. 

The mass M is attached to a rigid boundary through a viscous damper and a spring of linear plus nonlinear characteristic, as shown in 

Figure 2.1. 
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Fig.2.1 System with Nonlinear spring 

 

The displacement of the nonlinear primary system & the linear absorber system are denoted by x & xa respectively. By 

applying Newton’s second law of motion, two equations of motion for the new system composed of the nonlinear primary system 

incorporated by a linear absorber system may be written as 

 

Mẍ + Kx + k1x3 − ka(xa − x) + Cẋ = F0cosωt  

maẍa + ka(xa − x) + caẋa = 0   

 

Where M, K, k1, C and ma,ka, ca are the system parameters for primary nonlinear system and secondary absorber system  

respectively. Dividing M on both sides of Eq.1 & dividing ma on both sides of Eq.2 & then rewriting the resultant equations yields the 

following equations. 

 

ẍ + (
K+ka

M
) x + (

k1

M
) x3 − (

ka

M
) xa + (

C

M
) ẋ = (

F0

M
) cosωt 

ẍa + (
ka

ma
) (xa − x) + (

ca

ma
) ẋa = 0    



ẍ + ω1
2x + ϵx3 − mωa

2xa + µ1ẋ = Fcosωt   

ẍa + ωa
2(xa − x) + µ2ẋa = 0    

 

 

The solution x of our problem is a function of the independent variable t and the parameter, ϵ i.e. x = x(t;ϵ). One of the 

perturbation method known as the straight forward expansion is used to expand the above equations to determine the analytical 

solution. The straight forward expansion in the form of a power series in ϵ is given by 

 

x(t; ϵ) = x0(t) + ϵx1(t) + ϵ2x2(t) + ϵ3x3(t) + ⋯  

 

http://www.ijcrt.org/


www.ijcrt.org                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1812442 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 192 

 

Here only the first term in the correction series is considered and neglecting the higher order terms, so that the approximate 

solution in the form 



x(t; ϵ) = x0(t) + ϵx1(t)     



Even if Eq.6 looks like linear, it may have the effect of non-linearity due to the nonlinearity of primary system. So that both 

of these equations Eq.5 and Eq.6 are to be expanded simultaneously with straight forward expansion. 

Substituting Eq.8 into Eq.5 & Eq.6, 

 

(ẍ0 + ϵẍ1 + ⋯ ) + ω1
2(x0 + ϵx1 + ⋯ ) + ϵ(x0 + ϵx1 + ⋯ )3 

 

+µ1(ẋ0 + ϵẋ1 + ⋯ ) = Fcosωt + mωa
2(xa0 + ϵxa1 + ⋯ ) 



(ẍa0 + ϵẍa1 + ⋯ ) + ωa
2(xa0 + ϵxa1 + ⋯ ) + µ2(ẋa0 + ϵẋa1 + ⋯ )



= ωa
2(x0 + ϵx1 + ⋯ )     



Equating each of the coefficients of ϵ0 & ϵ1 to zero 

 

ẍ0 + ω1
2x0 + µ1ẋ0 = Fcosωt + mωa

2xa0   

ẍ1 + ω1
2x1 + x0

3 + µ1ẋ1 = mωa
2xa1   

ẍa0 + ωa
2xa0 + µ2ẋa0 = ωa

2x0    

ẍa1 + ωa
2xa1 + µ2ẋa1 = ωa

2x1    


Since Eq.11 is inhomogeneous, its general solution can be obtained as the sum of a homogeneous solution and any particular 

solution. It is observed that Eq.11 & Eq.13 are linear equations, so that the homogeneous solution can be expressed as  

 

x0 = X0 cos(ωt − ϕ)  &   xa0 = Xa0 cos(ωt − ϕ)  



Using trigonometric relations,  cos(ωt − ϕ) = cosωt cosϕ + sinωt sinϕ & 
sin(ωt − ϕ) = sinωt cosϕ − cosωt sinϕ   


Substituting Eq.15 & using Eq.16 in Eq.11 & Eq.13 & equating the coefficients of cos(ωt) & sin(ωt), the amplitude can be 

determined as  

 

X0 =
F

[{(ω1
2−ω2) − 

1

ωa
2−ω2mωa

4}
2

 +µ1
2ω2]

1
2

    



The particular solution is also expected to be harmonic, therefore the steady state solution is 

 

xp(t) =
F

[{(ω1
2−ω2) − 

1

ωa
2−ω2mωa

4}
2

 +µ1
2ω2]

1
2

cos(ωt − ϕ)  
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& the phase angle,  ϕ = tan−1[
µ1ω

{(ω1
2−ω2) − 

1

ωa
2−ω2mωa

4}
]  

 

The steady state vibration of the system is shown in Figure 2.2. The complete solution is given by   x0(t) = xh(t) + xp(t). 

For an underdamped system xh(t) is given by 

  
xh(t) = Ae(−ξω1t) cos(ωdt − ψ)    

       Fig.2.2 

Steady state solution 

 

x0(t) = xh(t) + xp(t)

x0(t) = Ae(−ξω1t) cos(ωdt − ψ) + X0 cos(ωt − ϕ)  

A = √A1 + A
2
 

X0 & ϕ are given by Eq.17 & Eq.19 respectively, A, A1, A2 & ψ can be determined from the initial conditions, x(t = 0) =
x0 & ẋ(t = 0) = ẋ0.   

A1 = x0  &  A2 =
ẋ0+ξω1x0

√1−ξ2ω1
    

ψ = tan−1 (
A2

A1
)       

The motion described by Eq.20 is a damped harmonic motion of angular frequency √1 − ξ2ω1, but because of the factor 

e(−ξω1t), the amplitude decreases exponentially with time as shown in Figure 2.3. The quantity√1 − ξ2ω1, is called the frequency of 

damped vibration. It can be seen that the frequency of damped vibration ωd is always less than ω1.The under-damped case is very 

important in the study of mechanical vibrations, as it is the only case that leads to an oscillatory motion.  
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Fig.2.3 Response of Complementary function 

 

To find x1(t), solve for unknowns x1 & xa1. Eq.12 & Eq.14 on rearranging gives 

 

ẍ1 + ω1
2x1 + µ1ẋ1 − mωa

2xa1 = −(x0
3)   

ẍa1 + ωa
2xa1 + µ2ẋa1 − ωa

2x1 = 0    

(D2 + ω1
2 + Dµ1)x1 − mωa

2xa1 = −(x0
3)   

(D2 + ωa
2 + Dµ2)xa1 − ωa

2x1 = 0    



In order to find the solution of x1 & xa1 from the above Eq..26 & Eq.27, multiply Eq.26 by ωa
2 & Eq.27 by (D2 + ω1

2 + Dµ1) 

and then adding the resulting equations. will give 

(D2 + ω1
2 + Dµ1)(D2 + ωa

2 + Dµ2)xa1 −  mωa
4xa1 = −(x0

3)ωa
2

(D4 + D2(ωa
2 + ω1

2 + µ1µ2) + D3(µ1 + µ2) + D(µ1ωa
2 + µ2ω1

2) + ω1
2ωa

2 − mωa
4)xa1 = −(x0

3)ωa
2

(D4 + C1D3 + C2D2 + C3D + C4)xa1 = −(X0
3 cos3(ωt − ϕ)) ωa

2

(D4 + C1D3 + C2D2 + C3D + C4)xa1 = C5 cos3(ωt − ϕ) 

Using trigonometric relation 

cos3(ωt − ϕ) =
3

4
cos(ωt − ϕ) +

1

4
cos 3(ωt − ϕ)  

Substituting Eq.30 into Eq.29, will give 

xa1 =
1

(D4+C1D3+C2D2+C3D+C4)
(

3C5

4
cos(ωt − ϕ) +

C5

4
cos3(ωt − ϕ)

xa1p =
1

(D4+C1D3+C2D2+C3D+C4)
(C6 cos(ωt − ϕ) + C7cos3(ωt − ϕ)

xa1p = PI1 + PI2     
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PI1 =
1

(D4+C1D3+C2D2+C3D+C4)
(C6 cos(ωt − ϕ))  

Put D2 = -ω2            

PI1 =
1

(ω4 − C2ω2 + C4 + (C3 − C1ω2)D)
(C6 cos(ωt − ϕ) 

PI1 =
1

(C8 + C9D)
(C6 cos(ωt − ϕ) 

Multiply both numerator and denominator by the conjugate of  (C8 + C9D) & on solving gives 

PI1 =
1

(C8
2+C9

2ω2)
(ωC6C9sin(ωt − ϕ) + C6C8cos(ωt − ϕ)) 

PI2 =
1

(D4+C1D3+C2D2+C3D+C4)
(C7 cos 3(ωt − ϕ))  

Put D2 = -9ω2 

PI2 =
1

(81ω4 − 9C2ω2 + C4 + (C3 − 9C1ω2)D)
(C7 cos 3(ωt − ϕ)) 

PI2 =
1

(C10+C11D)
(C7 cos 3(ωt − ϕ))   

Multiply both numerator and denominator by the conjugate of (C10 + C11D) & on solving gives 

PI2 =
1

(C10
2 +9C11

2 ω2)
(C7C10 cos 3(ωt − ϕ) + 3ωC7C11 sin 3(ωt − ϕ)) 

xa1p =
1

(C8
2+C9

2ω2)
(ωC6C9sin(ωt − ϕ) + C6C8cos(ωt − ϕ)) +

1

(C10
2 +9C11

2 ω2)
(C7C10 cos 3(ωt − ϕ) + 3ωC7C11 sin 3(ωt − ϕ))

       

xa1p = C12sin(ωt − ϕ) + C13cos(ωt − ϕ) + C14cos3(ωt − ϕ) + C15sin3(ωt − ϕ) 

Substitute Eq.39 into Eq.27 & on solving gives  

x1p(t) =
ω2

ωa
2 (−C12 sin(ωt − ϕ) − C13cos(ωt − ϕ) − 9C14cos3(ωt − ϕ) − 9C15sin3(ωt − ϕ) + (C12sin(ωt − ϕ) + C13cos(ωt −

ϕ) + C14cos3(ωt − ϕ) + C15sin3(ωt − ϕ)) +
µ2ω

ωa
2 (C12cos(ωt − ϕ) −  C13sin(ωt − ϕ) − 3C14sin3(ωt − ϕ) + 3C15cos3(ωt − ϕ)

     



The complete solution is given by x1(t) = x1h(t) + x1p(t). For an underdamped system x1h(t) is given by  

 

x1h(t) = Ae(−ξω1t) cos(ωdt − ψ)    



Thus the approximate solution can be obtained by substituting Eq.21, Eq.40  & Eq.41 into Eq.8 



x(t; ϵ) = x0(t) + ϵx1(t) + ⋯ 

 

= Ae(−ξω1t) cos(ωdt − ψ) +  
F

[{(ω1
2−ω2) −

1

ωa
2−ω2mωa

4}
2

 +µ1
2ω2]

1
2

cos(ωt − ϕ) + ϵ [
ω2

ωa
2 (−C12 sin(ωt − ϕ) − C13 cos(ωt − ϕ) −

9C14cos3(ωt − ϕ) − 9C15sin3(ωt − ϕ) + (C12 sin(ωt − ϕ) + C13 cos(ωt       − ϕ) + C14cos3(ωt − ϕ) + C15sin3(ωt − ϕ)) +

µ2ω

ωa
2 (C12 cos(ωt − ϕ) −  C13 sin(ωt − ϕ) −    3C14sin3(ωt − ϕ) + 3C15cos3(ωt − ϕ))) +  Ae(−ξω1t) cos(ωdt − ψ)]

     



http://www.ijcrt.org/


www.ijcrt.org                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1812442 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 196 

 

III. VALIDITY OF THE SOLUTION 

 

3.1 Analytical Solution 

 

 This section deals with the comparison of the time plots obtained from analytical solution with the plot directly obtained from the mat 

lab, so that the validity of the solution can be assessed. The time plots obtained from the analytical solutions for the system 

parameters M=10kg, ma=0.8kg, K=15N/m, ka=10N/m, C=0.15Ns/m, ca=0.03Ns/m, k1=8N/m3, c1=0.1Ns/m3, F0=5.5 are shown below 



 

Fig.3.1 Response of the system with nonlinear spring 

 





3.2. MAT-LAB Solution 

In equations of motion, take  x = y(1),  ẋ = 𝑦(2), xa = 𝑦(3) &  ẋ𝑎 = 𝑦(4), so that the derivatives of y(1), y(2), y(3) & y(4) 

are  y(2), ẍ, y(4) & ẍ𝑎. For obtaining the time plots, y(2), ẍ, y(4) & ẍ𝑎 are taken as  functions  f(1), f(2), f(3) & f(4) respectively. By 

using these functions different time plots with displacement, velocity, acceleration of the system can be plotted. 

 

For the system with nonlinear spring, say 

f(1) = y(2),

f(2) =
F0

M
cos ωt −

K + Ka

M
y(1) −

k1

M
y(1)3 +

ka

M
y(3) −

C

M
y(2),

f(3) = y(4),

f(4) = −
ka

ma

(y(3) − y(1)) −
ca

ma

y(4)
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The time plot obtained from these functions using the same system parameters as shown in Figure 3.2. 

 

 

Fig.3.2 Response of the system with nonlinear spring 

 

It is seen that the plots are almost identical in various situations which ensures the validity of the analytical solutions. The 

slight discrepancy seen in the graphs are due to the approximations that already taken earlier in Eq.8. 

 

 

IV. RESULTS AND DISCUSSION 
 

4.1. Numerical Simulations 

This section presents illustrative examples to show the effectiveness of the linear vibration absorber for suppressing the 

nonlinear vibrations of the nonlinear oscillator under primary resonance conditions. The effects of the linked spring and damper and 

the attached mass on the reduction of nonlinear vibration will be interpreted by the frequency –response curves, time plots and phase 

plane. 

Numerical simulations have been performed under the following values of the system parameters shown in Table 4.1. This 

combination of system parameters indicates that the mass ratio, m=0.06(i.e., ma/M).This set of system parameters confirms a small 

mass attachment to the nonlinear primary system. The linearized natural frequencies of the nonlinear primary system before and after 

being attached by the vibration absorber are found to be approximately, ω10=2.098 rad/sec, ω1=2.280 rad/sec and natural frequency of 

the absorber be ωa=3.651 rad/sec. 

The selection of the parameters of the linear vibration absorber made in the present paper is thus distinct from the one for 

controlling the linear vibrations of linear systems in the sense that for controlling linear vibrations, the natural frequencies of the 

resulting system composed of the linear system attached by vibration absorber are designed to be away from the excitation frequency. 

For the nonlinear system considered in the present paper, due to its distinct nature in primary resonances from the dynamics of linear 

system, there is no need to shift the linearized natural frequency of the nonlinear primary system away from the excitation frequency. 
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The nonlinear vibrations of the nonlinear oscillator under primary resonance conditions can be significantly reduced by adding a small 

attachment, which is expected to be feasible in practical applications. 

 

Table 4.1 System parameter values 

Primary 

mass, 

M 

(kg) 

Absorber 

mass, ma 

 

(kg) 

Linear 

stiffness, 

K 

(N/m) 

Absorber  

stiffness, 

ka 

(N/m) 

Primary 

damping, 

C 

(Ns/m) 

Absorber 

damping, 

ca 

(Ns/m) 

Nonlinear 

stiffness, 

k1 

(N/m3) 

External 

Excitation, 

F0 

(N) 

10 0.6 44 8 0.1 0.08 2 4.5 

 

 

Using the system parameters given above, the displacements of the primary system for different time period have been 

plotted as shown in Figure 4.1.1. It is observed that for a small value of damping the amplitude goes on decreasing with time. For 

time t=450s, the amplitude almost reaches zero. 

 
 Fig.4.1.1 Response of the nonlinear system at k1=2  

 

 

The response of the nonlinear system for the same system parameters without absorber is shown in Figure 4.1.2. It is 

observed that addition of vibration absorber will suppress the vibration of the primary nonlinear system to a great extent. 
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Fig. 4.1.2 Response of the 1dof system 

 

 

The response of the system for different values of k1 = 0, 8, 15, 30 are shown in Figure 4.1.3. When k1=30N/m3, the 

amplitude decreases. So it is clear from the plot that increasing the nonlinear stiffness values will gradually reduce the amplitude of 

the system and hence the vibration can be reduced with the effect of nonlinear spring. 

 

 
 

Fig.4.1.3 Response of the nonlinear system at k1=0, 8, 15 & 30 
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4.2. Stability of the system 

 

Graphical methods can be used to obtain qualitative information about the behaviour of the linear or nonlinear system and also 

to integrate the equations of motion. For any degree of freedom system, two parameters are needed to describe the state of motion 

completely. These parameters are usually taken as the displacement and velocity of the system. When the parameters are used as 

coordinate axes, the resulting graphical representation of the motion is called the phase plane representation. Thus each point in the 

phase plane represents a possible state of the system. As time changes, the state of the system changes. A typical point in the phase 

moves and traces a curve known as the trajectory. The trajectory shows how the solution of the system varies with time. Chaos 

represents the behaviour of a system that is inherently unpredictable. In other words, chaos refers to the dynamic behaviour of a 

system whose response, although described by a deterministic equation, becomes unpredictable because the nonlinearities in the 

equation enormously amplify the errors in the initial conditions of the system.  

The Figure 4.2.1 shows a computer generated solution in the phase plane for a nonlinear system without absorber. 

 

 

 
 

 

Fig. 4.2.1 Phase plane for the nonlinear system without absorber 

 

 

 

The trajectory is a slowly elliptical spiral; it takes many cycles for the amplitude to decrease substantially. When the 

nonlinear system is attached with linear absorber, the no of cycles required for the amplitude to decrease substantially becomes 

reduced as shown in Figure 4.2.2. The amplitude of oscillation decreases gradually due to the damping of the system, which means 

that the system loses part of its energy in each cycle and eventually comes to a rest position. This shows that all the trajectories tend to 

the origin as t →infinity and hence the origin is called a stable node and the system behaviour is stable. 
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Fig. 4.2.2  Phase plane for the nonlinear system with k1=2 
 
 

But when the nonlinear stiffness coefficient is increased, the system remains stable & tuned with some chaos as shown in 

Figure 4.2.3. 
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Fig. 4.2.3 Phase plane for the nonlinear system with k1=50. 

 

 

 

4.3. Frequency Response Curves 

 

The amplitude spectrum for the system with nonlinear spring with the function of frequency as shown in Figure 4.3.1.The 

amplitude spectrum for the nonlinear system without absorber is also plotted in Figure 4.3.2. It is seen that the amplitude of nonlinear 

vibrations of the nonlinear primary oscillator has been greatly suppressed by adding the linear vibration absorber. The amplitude of 

the nonlinear system with absorber is not zero, but its amplitude is very small in comparing with the amplitude of vibrations of the 

nonlinear oscillator alone. 
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Fig. 4.3.1 Single-sided Amplitude spectrum of x(t) (Nonlinear spring) 

 

 

 It is seen that a small amplitude peak is observed. This is because the proposed nonlinear system is a 2DOF system so that 

the system has two linearized natural frequencies. 
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Fig4.3.2. Single-sided Amplitude spectrum of x(t) (without absorber) 

 

 

It is noted that for a given set of system parameters, increase of absorber mass results in decrease in amplitude of the primary 

frequency as well as an increase in amplitude in the neighborhood of primary resonance frequencies. The two peaks in amplitude shift 

to the left is due to the increase in absorber mass as shown in Figure 4.3.3. This is because the natural frequency of the absorber 

decreases with an increase of absorber mass. 
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Fig. 4.3.3 Single-sided Amplitude spectrum of x(t) for ma=1 

V. CONCLUSION 
 

In this paper, the nonlinear analysis of a vibration system with weakly non-linear spring is studied. A linear vibration absorber 

is attached to the nonlinear system which results in a new 2DOF weakly nonlinear system. One of the perturbation methods known as 

straight forward expansion is used to find the first order approximate solutions to primary resonance vibrations of the forced nonlinear 

structure. 

Neglecting the higher order terms in the expansion, the approximate analytical solution for the proposed model is derived. The 

time plots with displacement are also plotted. A comparison of plots is made with the computer generated solution obtained from mat 

lab. It is found that the plots are almost identical in various situations which ensures the validity of the analytical solutions. The slight 

discrepancy seen in the graphs are due to the approximations that already taken earlier in Eq.8.  

The effects of the linked spring and damper and the attached mass on the reduction of nonlinear vibration have been studied 

with the help of time plots, phase plane and frequency response curves. It is found that the nonlinear system with nonlinear spring will 

reduce the amplitude of the primary system in comparison with that of the linear system.  

The stability and the response of the system is also studied with the help of phase plane. It is found that all the trajectory in the 

phase plane approaches to zero due to damping & the system is stable and also some dynamic chaos are seen on higher values of the 

nonlinear parameters. It is also found that the amplitude of nonlinear vibrations of the nonlinear primary oscillator has been greatly 

suppressed by adding the linear vibration absorber. 
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