
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 234

AN EFFICIENT VLSI ARCHITECTURE FOR

RECURSIVE KARATSUBA-OFMAN MULTIPLIER

G.Sreelakshmi, K.Ramya Prathima B.Harika Devi,

Associate Professor, B.Tech IVthyear, B.TechIVthyear,

ECE,Geethanjali College of Engineering and Technology,Hyderabad.

Abstract: Among the four arithmetic operations multiplication is one of the basic operations. It can be explained as a repeated

addition of multiplicand as the value of the multiplier. The finite field multiplication is the basicoperation in all cryptographic

applications. It can be performedby using Conventional, Booth, Montgomery and Karatsuba-Ofman’sdivide-and-conquer technique.

The Karatsuba-Ofman multiplierreplaces a multiplication by three ones of half-length operandswhich are performed in parallel. Area,

power and delay computation of the proposed multipliers are improved.

If ‘n’ is four or more, the three multiplications in Karatsuba's basic step involve operands with fewer than n digits. Therefore,

those products can be computed by recursive calls of the Karatsuba algorithm. The recursion can be applied until the numbers are so

small that they can (or must) be computed directly.In this proposed project the recursive Karatsuba algorithm, is implemented using

cadence digital encounter tools TSMC 0.18 use symbol micrometer technology for 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit and the

results are compared with the existing multiplication algorithms – conventional multiplier and Booth’s multiplier algorithm.

Keywords: Conventional, Booth, Recursive Karatsuba-Ofman Multipliers

I. INTRODUCTION

In this section, we introduce the fundamental recursive KOA which can successfully be applied to polynomial multiplication.

The fundamental Karatsuba-Ofman multiplication is a recursive ‘divide-and-conquer’ technique. It is considered as one of the fastest

way to multiply long numbers. For polynomial multiplication with original Karatsuba method both operands have to be divided into

two equal parts. If the length of operands is odd, they have to be padded with leading ‘0’. Therefore, the KOA becomes recursive. A

straightforward application of the KOA requires log2 (n) iteration steps for polynomials of the degree (n-1).

First the n-digit number is split into two (the first part of the number multiplied with some base and addedwith the second part).

With the help of intermediate products and base number final result is arrived. AnatolyKaratsuba further reduced the number of

multiplication steps by modifying one of the intermediate products wherethe number of multiplication steps can be reduced with the

added complexity of addition operations. The complexity ofaddition operations is usually less than the complexity of multiplication

operations. Thus the usage of Karatsuba algorithm increased in several advanced fields.

II. EXISTING ARCHITECTURES

1. CONVENTIONAL MULTIPLICATION

Conventional multiplication is much simpler as there is no table of multiplication to remember: just shifts and adds. This

method is mathematically correct and has the advantage that a small CPU may perform the multiplication by using the shift and add

features of its arithmetic logic unit rather than a specialized circuit.

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Recursion

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 235

The method is slow, however, as it involves many intermediate additions. These additions take a lot of time. Faster

multipliers may be engineered in order to do fewer additions; a modern processor can multiply two 64-bit numbers with 6 additions

(rather than 64), and can do several steps in parallel.

Example:

1001 (9 in binary)

x 1010 (10 in binary)

 =======

 0000

 1001

 0000

 + 1001

 ==========

01011010 (90 in binary)

 ==========

2. BOOTH MULTIPLICATION

Booth's multiplication algorithm was invented by Andrew Donald Booth in 1950. This multiplication algorithmmultiplies two

signed binary numbers in two's complement notation. Radix-4 booth multiplier algorithm is a modified booth multiplier is used to

perform high-speed multiplications using modified booth algorithm. This modified booth multiplier’s computation time and the

logarithm of the word length of operands are proportional to each other. We can reduce half the number of partial product.

Radix-4 booth algorithm used here increases the speed of multiplier and reduces the area of multiplier circuit. In this algorithm,

every second column is taken and multiplied by 0 or +1 or +2 or -1 or -2 instead of multiplying with 0 or 1 after shifting and adding of

every column of the booth multiplier. Thus, half of the partial product can be reduced using this booth algorithm. Based on the

multiplier bits, the process of encoding the multiplicand is performed by radix-4 booth encoder.

fig1: grouping of bits using radix-4 booth multiplier

The table below shows the functional operation of the radix-4 booth encoder that consists of eight different types of states.

table1: radix-4 booth multiplication

SELECT LINE(ENCODING) PARTIAL PRODUCTS(OPERATION)

000 Add 0

001 Add multiplicand

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Andrew_Donald_Booth
https://en.wikipedia.org/wiki/Base_2
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 236

010 Add multiplicand

011 Add 2*multiplicand

100 Subtract 2*multiplicand

101 Subtract multiplicand

110 Subtract multiplicand

111 Subtract 0

 STEPS FOR RADIX-4 BOOTH MULTIPIER ALGORITHM

1. Extend the sign bit 1 position if necessary to ensure that n is even.

2. Append a 0 to the right of the least significant bit of the booth multiplier.

3. According to the value of each vector, each partial product will be 0, +y, -y, +2y or -2y.

fig 2: booth encoder

III. PROPOSED ARCHITECTURE

1. KARATSUBA MULTIPLICATION

Let A,B be two elements then, both elements can be represented in polynomial basis as,

𝐴 = ∑ 𝑎
𝑖
𝑥𝑖 =

𝑚−1

𝑖=0

∑ 𝑎
𝑖
𝑥𝑖 +

𝑚−1

𝑖=𝑛

∑ 𝑎
𝑖
𝑥𝑖 =

𝑛−1

𝑖=0

𝑥
𝑛

∑ 𝑎
𝑖 + 𝑛

𝑥
𝑖

+

𝑛−2

𝑖=0

∑ 𝑎
𝑖
𝑥𝑖 =

𝑛−1

𝑖=0

𝑥
𝑛

𝐴
𝐻

+ 𝐴
𝐿

𝐵 = ∑ 𝑏
𝑖
𝑥𝑖 =

𝑚−1

𝑖=0

∑ 𝑏
𝑖
𝑥𝑖 +

𝑚−1

𝑖=𝑛

∑ 𝑏
𝑖
𝑥𝑖 =

𝑛−1

𝑖=0

𝑥
𝑛

∑ 𝑏
𝑖 + 𝑛

𝑥
𝑖

+

𝑛−2

𝑖=0

∑ 𝑏
𝑖
𝑥𝑖 =

𝑛−1

𝑖=0

𝑥
𝑛

𝐵
𝐻

+ 𝐵
𝐿

The Karatsuba-Ofman Multiplier (KOM) is based on the observation thatthe polynomial product C = A · B can be written as,

C = x2nAHBH+(AHBL+ALBH)xn+ALBL

=x2nAHBH+ALBL+[(AH+AL)(BL+BH)-(AHBH+AHBH)] xn

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 237

With the computational cost of three n-polynomial multiplications and 4 additions/ subtractions, By applying this strategy

recursively, in the every iteration eachdegree polynomial multiplication is transformed into three polynomial multiplications with

their degrees reduced to about half of its previous value.

2. RECURSIVE KARATSUBA MULTIPLICATION

In a simplified manner,

Let X, Y are the n-digit integers.

Desired output is T=X*Y.

STEP 1: X =10^n/2.X1 + X2; Y =10^n/2.Y1 + Y2.

 (X1, X2, Y1, Y2 each have n/2 digits)

STEP 2: Let U = product of (X1, Y1).

STEP 3: Let V = product of (X2, Y2).

STEP 4: LetW = product of [(X1 + X2),(Y1 + Y2)].

STEP 5: Let Z= W-U-V.

STEP 6: Then T = 10^n.U + 10^n/2.Z + V

Thus T gives the Karatsuba multiplied result of X and Y.

If n isfour or more, the three multiplications in Karatsuba's basic step involve operands with fewer than n digits. Therefore,

those products can be computed by recursive calls of the Karatsuba algorithm. The recursion can be applied until the numbers are so

small that they can (or must) be computed directly.

2.1 Theoretical Example

 (Of Recursive Karatsuba-Ofman Multiplication)

Compute 1234*4321

Sub-problems:

a1=12*43, d1=34*21

e1=(12+34)*(43+21)–a1–d1=46*64–a1–d1

need to recurse……………………………….

First sub-problem:

a1=(12*43)

 Sub-sub-problems:

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 238

 a2=1*4=4, d2=2*3=6

e2=((1+2)(4+3))–a2–d2=11

Answer:4*102 + 11*10 + 6=516

Second sub-problem:

d1=(34*21)

 Sub-sub-problems:

 a2=3*2=6, d2=4*1=4

e2=((3+4)(2+1))–a2–d2=11

 Answer:6*102 + 11*10 + 4=714

Third sub-problem:

e1=(46)*(64)–a1–d1

 Sub-sub-problems:

 a2=4*6=24,d2=6*4=24

e2=((4+6)(6+4))–a2–d2=52

Answer:24*102 + 52*10 + 24-714-516=1714

Final Answer: (1234)*(4321)

=(516)*(104)+(1714)*(102)+714

=5,332,114

IV. SIMULATION RESULTS:

1. Conventional Multiplier

fig.3: conventional multiplier 64 x 64 bit simulation result

The above figure is simulated using cadence tool. It has two 64bit inputs, which are represented as a and b. One 128bit

product represented as c.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 239

fig.4: conventional multiplier 64 x 64 bit rtl schematic

The above figure is the result obtained when 64bit conventional code has been synthesized using cadence tool.

2. Booth Multiplier

fig 5: booth multiplier 64 x 64 bit simulation result

The above figure is simulated using cadence tool. It has two 64 bit inputs, which are represented as m and n. One 128 bit

product represented as q.

fig. 6: booth multiplier 64 x 64 bit rtl schematic

The above figure is the result obtained when 64 bit booth code has been synthesized using cadence tool.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 240

3. RECURSIVE KARATSUBA-OFMAN MULTIPLIER

fig. 7: karatsuba-ofman multiplier 64 x 64 bit simulation result

The above figure is simulated using cadence tool. It has two 64 bit inputs, which are represented as m and n. One 64 bit

product represented as q.

fig. 8: karatsuba-ofman multiplier 64 x 64 bit rtl schematic

The above figure is the result obtained when 64 bit recursive Karatsuba-ofman code has been synthesized using cadence tool.

V. SYNTHESIS REPORT:

(For 64 Bit*64 Bit Multiplication)

 table 2: synthesis report comparison table

PARAMETERS
CONVENTIONAL

MULTIPLIER

BOOTH

MULTIPLIER

RECURSIVE

KARATSUBA-

OFMAN

POWER (nW) 133652552.198 87856664.115 87560553.919

 AREA (um2) 289610 387559 491662

TIMING (ps) 16404 28987 30297

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1812029 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 241

VI. CONCLUSION:

Recursive Karatsuba-Ofman multiplier reduces the multiplication of two ndigit numbers to at most single-digit

multiplicationsRecursive Karatsuba-Ofman multiplier can successfully be applied to long integers multiplication step.

 The purpose of the proposed approaches is to obtain a

1. Small Area occupation of the circuit due to the fact that partial

2. Polynomial multiplications can be applied serially.

 The second purpose is to obtain a high speed computation by performing Parallel multiplication.

 The main purpose is to reduce the power consumption of recursive Karatsuba multiplier than that of the conventional

multiplier

http://www.ijcrt.org/

