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Abstract 

In this paper removes a limitation of Imprecise Data Envelopment Analysis (IDEA) and 

Assurance Region – Data Envelopment Analysis ( AR- IDEA) which requires access to actually attained 

maximum values in the data. This is accomplished by introducing a dummy variable that supplies needed 

normalizations on maximal values and this is done in a way that continues to provide linear programming 

equivalents to the original problems. This dummy variable can be regarded as a new Decision Making Unit 

(DMU), referred to as a Column Maximum DMU (CMD). The models and methods used are directed to 

deterministic uses of DEA. They are not intended to cover stochastic approaches to DEA as in the chance 

constrained programming formulations of Olesen and Petersen  or the statistical characterizations provided by 

Banker . They are also not directed to potential data imprecisions such as are associated with the sensitivity of 

DEA results to data variations as in Seiford and Zhu . It is important to note that the nonlinear representations 

according to DEA in IDEA and AR-IDEA models are transformed into linear programming equivalents. In this 

paper, we have reviewed in brief the plan of IDEA and AR-IDEA given by Cooper, Park and Yu. A general and 

rigorously established form has been given to compute this paper. 

Keywords: - Imprecise Data Envelopment Analysis (IDEA) , Assurance Region – Data Envelopment Analysis 

( AR- IDEA) , linear programming. 

1.0 Introduction 

Imprecise Data Envelopment Analysis (IDEA) extends DEA so it can simultaneously treat exact 

and imprecise data where the latter are known only to obey ordinal relations or to lie within prescribed bounds. 

AR-IDEA extends this further to include Assurance Region (AR) and the like approaches to constraints on the 

variables. In order to provide one unified approach, a further extension also includes cone-ratio envelopment 

approaches to simultaneous transformations of the data and constraints on the variables. The present paper 

removes a limitation of IDEA and AR-IDEA which requires access to actually attained maximum values in the 

data. This is accomplished by introducing a dummy variable that supplies needed normalizations on maximal 

values and this is done in a way that continues to provide linear programming equivalents to the original 
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problems. This dummy variable can be regarded as a new Decision Making Unit (DMU), referred to as a 

Column Maximum DMU (CMD). 

Cooper, Park and Yu [7] showed how DEA could be extended to treat not only exact data but 

also data that are known only ordinally or within prescribed bounds. The transformationsused make it possible 

to apply DEA to any combination of exact, ordinal or bounded data. It was also shown how conditions on the 

variables as well as the data could be treated in this same manner. This included (i) Assurance Region (AR) 

conditions on the variables, as in Thompson et.al. [12, 13] and (ii) the combined variable-data transformations 

employed in the cone-ratio envelopment of Charnes et al. [4] See also Brockett et.al. [2]. The resulting 

approaches are referred to as IDEA and AR-IDEA. A further extension was effected to treat strict, as well as 

weakly ordered, data in order to deal with applications of these ideas to the Korean mobile telecommunication 

company that is reported in Cooper, Park and Yu [8]. 

The models and methods used are directed to deterministic uses of DEA. They are not intended 

to cover stochastic approaches to DEA as in the chance constrained programming formulations of Olesen and 

Petersen [9, 10] or the statistical characterizations provided by Banker [1]. They are also not directed to 

potential data imprecisions such as are associated with the sensitivity of DEA results to data variations as in 

Seiford and Zhu [11]. 

It is important to note that the nonlinear representations accorded to DEA in IDEA and AR-

IDEA models are transformed into linear programming equivalents. This is accomplished by rescaling the data 

and employing a variable alteration technique. In these variable alterations and rescalings, it is assumed that 

there exists at least one DMU which has a value that is maximal in the corresponding input or output data 

column. 

Thrall, who served as a referee of Cooper, Park and Yu [7], called attention to the need for 

making this assumption explicit in order to display it as a possible limitation to potential uses of the approaches 

described in Cooper, Park and Yu [7]. It was felt (at least by us) that resolution of this problem might lead to 

nonlinear formulations analogous to those encountered in the attempt to extend AR approaches for treating 

linked-cone DEA assurance region approaches to the treatment of profit ratios like those described in 

Thompson, Dharmapala and Thrall [12]. However, as we shall show in this paper, it is possible to introduce a 

dummy variable in a way that makes it possible to obtain a linear programming equivalent in the manner 

described for IDEA and AR-IDEA in the original Cooper, Park and Yu formulations. 
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The plan of development is as follows. First, IDEA and AR-IDEA as given in Cooper, Park and 

Yu [7] are reviewed in brief. We then present a numerical example to show what is needed in concrete detail. 

We use this same example to show how the needed development can be accomplished by the simple expedient 

of introducing a dummy variable which we associate with a new DMU. The final section then puts this in a 

general and rigorously established form to complete this paper. 

1.1 AR-IDEA model 

Our present focus is on the AR-IDEA model which we write in the following form: 

0 0

1

1 1

0

1

max

s.t. 0, 1,...,

1

s

r r

r

s m

r rj r ij

r i

m

i i

i

y

y x j n

x

 

 





 




 





   




 




 



 (1.1a) 

 

 

1,...,

1,...,

r rj r

i ij r

y y D r s

x x D i m





  


  


 (1.1b) 

 

 

r

i

A

A

 

 





 


  

 (1.1c) 

Here, yrj, xij, respectively, represent the observed or recorded amounts of the rth output (r = 1, 

…, s) and the ith input        (i = 1, …, m) for each DMUj (j = 1, …, n). The yr0, xi0 data represent the outputs and 

inputs for DMU0, the DMUj to be evaluated. 
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Now suppose that the data are not known exactly, so the sets rD
, rD

 in (1.1b) represent 

imprecise data for the vector of output variables yr = (yrj) = (yr1, …, yrn) and input variables xi = (xij) = (xi1, …, 

xin). As examples, for rD
we could have 

bounded data:   ( ) : ( ) , 1,...,  r rj rj rj rjD y y y y j n        (1.2a) 

ordinal data:   1( ) : , 1,..., 1r rj rj rjD y y y j n

     (1.2b) 

where rjy
, rjy

 are positive constants. iD
are defined in an analogous manner for inputs. 

Turning to variables, the sets A+, A- in (1c) represent AR bounds on the multipliers  = (r),  = 

(i). An example is 

 1( ) : / , 1,..., 1r r r r rA B B r s    

      (1.3) 

where rB
, rB

 represent fixed lower and upper bounds for these output multipliers. A applies similarly to 

input multipliers. (Note that (1.1) is referred to as an IDEA model as in Cooper, Park and Yu [7] when (1.1c) is 

replaced with ,   . Here,  represents a positive non-Archimedean element.) The AR bounds in the form of 

(1.3) are also intended to ensure positivity. Thus, throughout this chapter, we assume that all multipliers are to 

be positive. 

1.2 Transformation to linear programming equivalents 

We initiate our discussions of the transformations to be used by defining column maxima  

o

ry , 
o

ix  via 

 max max[ : ( ) ] , 1,...,o o

r j rj rj rj ry y y y D r s      

 max max[ : ( ) ] , 1,..., .o o

i j ij ij ij ix x x x D i m     (1.4) 
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Thus,  1max ,..., ,...,o o o o

r r rj rny y y y  with components 

max[ : ( ) ], 1,...,o

rj rj rj ry y y D j n   . Analogous treatments apply to the input data used to define 

o

ix . 

Such column maxima are readily identified for bounded data as in (1.2a). Trouble can be 

encountered, however, in the case of ordinal data as in (1.2b), where no maximum value is prescribed and such 

a column maximum may go to infinity. This would be possible in some of the semi-infinite programming 

formulations for DEA. See, for instance, Charnes, Cooper and Wei [6]. Here, however, we are confining our 

attention to 
n

rD L  , so we can assume a column maximum is present in L, a space of labels with an 

inherent ordinal ordering. Alternatively, we can choose an arbitrary positive real number for this column 

maximum without disturbing the indicated ordinal relations. In either case the problem associated with the need 

for having column maxima is eliminated from the transformations that we describe below. 

To reduce the AR-IDEA model in (1.1) to an ordinary linear programming problem, we first 

rescale all data by means of the following formula: 

ˆ / , 1,...,
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where we have employed ̂ , ̂  in place of the ,  in (1.1). The following theorem then establishes the 

relationships between (1.1) and (1.1) that justify our use of (1.1) in the subsequent developments. 

Theorem 1.1. (i) The optimal objective values of both (1.1) and (1.1) are equal, and (ii) 

ˆ ˆˆ ˆ , .r r r i i iy r x i         

Proof. By virtue of the column rule of linear programming as given in Charnes and Cooper [3, p 29], it is clear 

that the optimal objective value of (1.1) is equal to the optimal objective in the modified model (1.1). It 

therefore follows that ˆ ˆ
rj r rj ry y  and ˆˆ

ij i ij ix x   and using (1.5) completes this proof. For a 

statement and proof of the column rule of the column rule of linear programming is stated as interpreted in 

Charnes and Cooper [3] (p. 29), not proved by them, we here establish the following : 

Column rule : The coefficients in any column of a linear programming problem (including the criterion 

elements) may all be multiplied or divided by a positive number without changing the optimal value of the 

objective. 

Proof. Our proof is developed for the general linear programming problem which we formulate as follows: 
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  (1.6) 

We assume that this problem has a finite optimum which we represent by 
* 0, 1,...,j j n   . 

Now suppose that each of the columns is divided by a positive constant dj > 0 which replaces 

(1.6) by 

1

1

ˆmax
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  (1.7) 

where ˆ /j j jc c d  and ˆ /ij ij ja a d  for all i and j with dj = 1 for those columns which are not to be 

changed. 

Evidently 
*ˆ , 1,...,j j jd j n    is a solution to (1.6), which it reproduces. Moreover, this 

solution is optimal for (1.7). For suppose we could have a solution 
p

j  for which 
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    and thereby contradict the optimality of the 

*

j  values for 

(1.6). 

Remark. There is an associated row rule given in Charnes and Cooper [3] ( p. 29) which states that 

multiplication or division of any row of a linear programming problem by a positive constant does not change 

the solution set. This row rule can be joined with the duality theory of linear programming to provide an 

alternative (simpler) proof. The direct route used in the above proof, however, is better suited for this chapter. 

For instance, the condition 
*ˆˆ ˆ

ij j ij ja a  , as used in the above proof, specializes to the equations 

ˆ ˆ
rj r rj ry y   and ˆˆ

ij i ij ix x   given in the proof of Theorem 1.1. 

We now use the index jr, r = 1, …, s and js+i, i = 1, …, m to mean that DMUjr has only the 

column maximum at unity for the rescaled data column corresponding to output r, and DMU
s ij 

 has only the 

column maximum at unity for the rescaled data column corresponding to input i. In other words, the index jr is 

identified as j such that ˆˆ ˆmin[ : ( ) ] 1, 1,...,rj rj ry y D j n    and js+i is identified as j such that 

ˆˆ ˆmin[ : ( ) ] 1, 1,...,rj rj rx x D j n   . We hereafter refer to DMUjr, DMU
s ij 

 as column maximum 

DMUs for each r and i. For brevity we symbolize these column maximum DMUs as CMDs. 

As already noted, Cooper, Park and Yu [7] assumed that there exists at least one CMD for each r 

and i-viz, DMUjr, 1  jr  n and DMU
s ij 

, 1  js+i  n, which means that we can specify jr, js+i from among 

the j = 1, ..., n available DMUs. Proceeding on this assumption, the nonlinear version of the AR-IDEA model in 

(1.1) can be transformed into a linear programming equivalent as follows. 
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New variables Yrj and Xij are introduced: 
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 (1.10) 

for each r and i. The output variable 
rrjy  on the right represents the CMD and, by assumption, the index jr is 

specified by j + 1 in  1 1 1
ˆ ˆ ˆ ˆ ˆmax ,..., , ,...,p p p p p

rj r rj rj rny y y y y  . The input variable 
s iijX


 follows similarly. 

Based on the above definitions, we obtain the following results: Lemma 1 below provides rules 

for the data transformations for treating (1.2). Lemma 1.2 is directed to the AR transformations for treating 

(1.3). Finally, Theorem 1.2 summarizes all transformations and transforms the nonlinear programming model 

given by (1.1) into an ordinary linear programming problem. For the proofs of all the lemmas and theorem, see 

Cooper, Park and Yu. [7, 8] 

Lemma 1.1 The sets of constraints on the data in (1.2a) and (1.2b) can be replaced with the following new sets: 

bounded data :   ˆ ˆ: ,      
r rr rj rj rj rj rj rj rB y y y y y y j j  (1.11a) 

ordinal data :   1: , 1,..., 1

   r rj rj rjB y y y j n  (3.11b) 

where ˆ ˆ,rj rjy y 
 are the rescaled data, using (1.5) for the ˆ ˆ,rj rjy y 

 given in (1.2a).  

Lemma 1.2 The set of constraints on multipliers in (1.3) can be converted into the following new set: 
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Theorem 1.2. Model (1.1) can be transformed into the following linear programming problem: 

0 0

1

1 1

0

1

ˆmax

s.t. 0, 1,...,

1




 




 





   




 




 



s

r

r

s m

rj ij

r i

m

i

i

y

y x j n

x

 (1.12a) 

 

 

ˆˆ ˆ 1,...,

ˆˆ ˆ 1,...,

r rj r

i ij r

y y D r s

x x D i m





  


  


 (1.12b) 

 

 

ˆˆ ˆ

ˆˆ ˆ

r

i

A

A

 

 





  


  

 (1.12c) 

where all variables xij; yrj are non-negative. 

Extension 

An example 

Before proceeding further, we provide a numerical example via Table 1.1 to make things more 

concrete. This table portrays four DMUs that produce two outputs using a single input. Here there exists a 

CMD in the column under ‘Input’ - viz, 
3

DMU DMU
s ij j
 . We can thus specify 

1sijx for i = 1 by x11 and 

use Lemma 1.1 to obtain the set 1B
, as in (1.12b), which is here accorded the following formulation: 
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1 11 14 11 12 13 14{( ,..., ) : }.    B x x x x x x  

Table 1.1 : Data matrix with imprecise data 

DMU 

J 

Input Output 

Ordinal 

x1j 

Fixed-bound 

y1j 

Ratio-bound 

y2j 

1 4 [9, 15] [0.9, 1.2] 

2 3 [6, 12] 1 

3 2 [6, 9] [0.6, 0.9] 

4 1 [3, 6] [0.3, 0.6] 

Rankings (4  highest rank; …  lowest rank), viz. x21  x22  x23  24. 

Turning from inputs to outputs, we now note that no CMD exists in the last two columns. For 

instance, let us consider the output data column under ‘Fixed-bound’, and write 

1 11 14 11 14
ˆ ˆ ˆ ˆ ˆ{( ,..., ) : 0.6 1,...,0.2 0.4}D y y y y       

which is obtained by using (1.5) - viz, normalizing the original data on the column maximum, 
0

1 15y  , as in 

(1.4). In 1D
, there exists no DMU that has only the value at unity such that 

1

0

1 1 1
ˆ ˆ 1,1 4.jy y j     This 

implies that we cannot identify an index j1 among the existing four DMUs, j = 1, …, 4 for use as in (1.10). 

Hence we cannot use (1.11a) in Lemma 1.1 to obtain the linear programming equivalent of (1.13) in the form of 

(1.12). 

To deal with this problem, we introduce a new dummy variable with its value at unity – viz., we 

introduce 
15

ˆ 1y   in 1D
 and obtain 

1 11 15 11 15 14 15 15
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{( ,..., ) : 0.6 / 1,...,0.2 / 0.4, 1}D y y y y y y y       . 

These data are rescaled relative to the unity assigned to the dummy variable. Thus the 

permissible values for 11 15
ˆ ˆ{( ,..., )y y  in 1D̂

 and 
'

1D̂
 are identical. Moreover, we have the CMD in 

'

1D̂
 and 

can hence unambiguously identify j1 = 5. 
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We can now use Lemma 1.1 - viz, using 
11 15jy y  in (1.11a). We therefore obtain the 

following set for 1B
 as in (1.12b): 

1 11 15 15 11 15 15 14 15{( ,..., ) :0.6 ,...,0.2 0.4 }.      B y y y y y y y y  

It should be noted that the new variable 15 11 1 1
ˆ ˆ ˆ( )  y y  is positive so the constraints in 

1B
 preserve the original data structure. We also note that y15 is not related to a new DMU to be used in the 

constraints as in (1.12a) but is used only to represent the output multiplier as 15 1̂y . Thus y15 can be used in 

transforming the AR bound 
1A

, if available, into the new set 
1B

 by using 
11 15jy y  in Lemma 1.2. 

Turning to the data for the ratio bounds in the last column of Table 1.1, we first obtain the set of 

rescaled data, 2D̂
 by normalizing y2j on the column maximum 

0

2 1.2y  . We then introduce a dummy 

'

1 21 25 21 25 22 25
ˆ ˆ ˆ ˆ ˆ ˆ ˆ{( ,..., ) : 0.75 / 1, / 0.83,D y y y y y y      

23 25 24 25 25
ˆ ˆ ˆ ˆ ˆ0.5 / 0.75,0.25 / 0.5, 1}y y y y y     . Next, using 

22 25jy y  in (3.8a) of Lemma 1.1, 

we obtain 

1 21 25 25 21 25 22 25

25 23 25 24 25

{( ,..., ) : 0.75 , 0.83 ,

0.5 0.25 0.5 }.

     

   

B y y y y y y y

y y y y y

 

Generalization 

We now generalize the above example. As can be seen in Table 1.1, a CMD is absent for the 

bounded data. We thus focus on treatments of the bounded data for our generalization. For simplicity, we deal 

only with output data variables because a comparable development applies for input data variables. 

For this purpose, we recall (1.2a) to write 1{( ,..., ), , 1,..., }r r rn rj rj rjD y y y y y j n      . 

Using the column maximum, which is given simply by  0 maxr j rjy y , we rescale these original data via 

(1.5) to obtain 
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1
ˆ ˆ ˆ{( ,..., ), 1,..., }r r rjD y y j n    (1.13) 

It is assumed that there does not exist DMUjr, 1  jr  n, that has only unity in this column r such 

that ˆ 1
rrjy   to require ˆ ˆ 1

r rrj rjy y   . 

We introduce a dummy variable into (10) with its value at unity, 
, 1

ˆ 1r ny   , and obtain 

1 , 1 , 1

, 1

ˆ ˆ ˆ ˆ ˆ ˆ{( ,..., ) : / ,

ˆ 1; 1,..., }.

r r r n rj rj r n rj

r n

D y y y y y y

y j n

  

 



  

 

 (1.10) 

It is clear that the permissible values for the variables 1
ˆ ˆ( ,..., )r rny y  in ˆ

rD
 of (1.13) and ˆ

rD

 of (1.13) are 

identical. In (1.13), moreover, we have 
1 , 1

ˆ ˆ,..., 1r r ny y    as a CMD in this column which is augmented by the 

dummy value at unity. 

We can now use the methods presented in Cooper, Park and Yu [7] to achieve a linear 

programming equivalent as in (1.12). This is done with the following slight modifications. Let us define 

ˆ ˆ , 1,..., ; 1,..., 1rj rj ry y r s j n     (1.14) 

and, further, 

 0 1

1,..., 1
ˆˆ ˆ ˆ ˆmax min[ : ( ) ] 

    
r

p

r r j n rj rj rj r rjy y y y D y  (1.15) 

for each r = 1, …, s. 

We then denote    1,..., 1 , 1
ˆ ˆ ˆ ˆmax max ,...,p p p p

rj j n rj rj r ny y y y    . It follows that 

0

, 1
ˆ ˆ 1p

r r ny y    and , 1
rrj r ny y  represent the CMD. We thus have 

0 0

, 1
ˆ ˆ , 1,...,   r r r r ny y y r s  (1.16) 

http://www.ijcrt.org/


www.ijcrt.org                                         © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1812002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 34 

 

and, further, by (1.14) and (1.16), 

, 1
ˆ / , 1,..., ; 1,..., .  rj rj r ny y y r s j n  (1.17) 

To complete the transformation to a linear programming equivalent, we employ the following 

lemmas: 

Lemma 1.3 The set ˆ
rD

 in (1.13) is replaced by 

1 1 , 1 , 1 , 1
ˆ ˆ{( ,..., ) : , 1,..., }  

     r r n rj r n rj rj r nB y y y y y y y j n Proof. This follows directly 

from (1.17) with ˆ 0r   and hence 
, 1 0 r ny . 

Lemma 1.4 Assume that column r + 1 has a maximum 
1

DMU
rj 

 while this is not the case for column r. 

Then, the set A+ in (1.3) can be converted into 

 
1 1

0 0

1, , 1 1,0 0

1 1

ˆ : , 1,..., 1 .
 

  

  

 

 
     
 

r r r

r r
rj r r j r n r r j

r r

y y
B y B y y B y r s

y y
 

Proof. This follows from Theorem 1.1(ii) and noting 
11 1,̂
 

rr r jy and 
, 1̂ r r ny .  

1.3 Conclusion and discussion 

This gives us all we require to achieve the transformation to the linear programming equivalent 

given by (1.12) in the presence and/or the absence of CMDs. In particular, all of the sets ˆ ,r iB B 
 and ˆ ˆ,B B 

 

that represent constraints in (1.12) are defined in Lemmas 1.1 and 1.2 for the case when CMDs are present and 

in Lemmas 1.3 and 1.4 for the case when they are absent. 

A point we want to note is that the bounds on the multiplier variables, as in the AR approach, are 

translated into constraints on the variables associated with the data in the approach of Cooper, Park and Yu. [7] 

This implies that the incorporation of AR bounds into DEA affects the transformation of the data used in DEA 

(like those described in the cone-ratio envelopment of Charnes et al, [4] and also Charnes et al. [13] and Brockett et 

al. [2]). This same intent is continued into the present chapter and an extension is made such that the 
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introduction of dummy variables with data enables us to transform multiplier variables to data variables when 

CMDs are absent in the imprecisely known data matrix. 

However, there may be other ways besides introducing dummy variables, if we want to 

concentrate only on translating nonlinear versions of IDEA and AR-IDEA into linear programming equivalents. 

Thus, it is possible to do this by using only the employment of new variables as in (1.9). 

To make things more concrete, we consider the following IDEA model in which the data are 

rescaled using (1.5): 

0 0

1

1 1

0

1

ˆ ˆ ˆmax

ˆˆ ˆ ˆ. 0

ˆ ˆ 1

s

r r

r

s m

r rj i ij j

r i

m

i i

i

y

s t y x

x

 

 





 




 




   



 




 



 (1.18a) 

ˆˆ ˆ ˆ ˆ ˆ{( ) : , }

ˆ ˆ ˆ ˆ{( ) : , , ; }

r r rj rj rj rj j r

i r ij ij ik j i

y D y y y y

x D x x x k j k

  



     


      

 (1.18b) 

ˆˆ , ,r i r i     (1.18c) 

Here, as shown in (1.18b), we assume that all output values lie within prescribed bounds and all 

input values are known to satisfy (weak) ordinal relations. The index k is used to represent DMUs, k = 1, …, n. 

Now using (1.9) - viz, ˆˆ ˆ ˆ, , , ,rj rj r ij i ry y x i j    - in (1.18), we have 
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0 0

1

1 1

0

1

ˆmax

ˆ. 0,

ˆ 1

s

r

r

s m

rj ij j

r i

m

i

i

y

s t y x

x




 




 




   



 




 



 (1.19a) 

ˆ ˆ ˆ ˆ ˆ{( ) : , }

{( ) : , , ; }

r r rj rj r rj rj r j r

i r ij ij ik j i

y B y y y y

x B x x x k j k

   



      


      

 (1.19b) 

ˆˆ , , ,r i r i     (1.19c) 

Thus, we more simply achieve the linear programming equivalent to (1.18) without introducing 

dummy variables, as was done in the ‘Extension’ section, when CMDs are absent. (Note that this method can 

also be applied when CMDs are present.) 

We know that the latter approach (i.e., moving from (1.18) to (1.19)) is simpler than our 

previous development for transforming the nonlinear problem (1.18) into the linear programming equivalent 

(1.19). There are, however, advantages to our approach. For instance, our approach enables us to directly see 

what relations obtain between multiplier variables and data variables. As an example, from (1.15) and (1.16), 

we know that 1,...
ˆ max {( : ) } 

   i j n ij ij i ij s ix x B x . Thus, (1.15) and (1.16) are needed to reduce the 

number of variables used in the linear programming problems if CMDs are present.  
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