STUDY OF THE ENUMERATION OF TWELVE CLINICAL IMPORTANT BACTERIAL POPULATIONS AT 0.5 MCFARLAND STANDARD

E. Gayathiri¹*, Bharathi B², Priya K³

2. Department of Plant Biology and Plant Biotechnology Loganatha Narayanaamy Govt. college (Autonomous)
3. Department of Biotechnology St.Joseph Arts and Science College, kovur, Chennai

ABSTRACT:

McFarland standard is a specific scale for the concentration of bacteria /ml. It is used to approximate the number of microbial cells in the liquid suspension. The aim of the present study is to evaluate some clinically important bacterial inoculums with that compared to 0.5 McFarland standard and the bacterial inoculums were serially diluted by 10 fold dilution and spread plated and enumerating the number of colonies by help of colony counter and size of the organisms also been measured by micrometry. The results were read. As per McFarland rule there should be 15 colonies in the 7th dilution but all the species vary 15 times to three hundred times more than the expected value because of the size and volume of the organisms the time for the division also yield across amount in the suspension so the colony dilution may differ in each setup. The present study enumerated for 12 bacterial study has brought into light that the number bacterium in given sample could not be calculated by comparing it with McFarland standard because of varying number of population from 20-324 any for the maintained bacteria.
KEYWORDS:

McFarland, Serial Dilution, Colony Count, Bacteria

1. INTRODUCTION:-

McFarland turbidity standards are used as a reference standard to approximate the number of microbial cells in a liquid suspension. One of the earliest uses of turbidity for the estimation of bacterial populations was in the preparation of vaccines.[1]. BaSO₄ standards [11].

By challenging identification or susceptibility testing procedure with standardized inoculums reproducible and meaningful results can be obtained. It is by use of these standardized inoculums values that the National committee for clinical laboratory standards (NCCLS) has standardized expected results with a give ATTC Microorganisms. The bacterial suspensions are visually compared to the McFarland standards estimating the bacterial density. For *E. coli*, a 0.5 McFarland standard corresponds to 1.5×10^8 CFU/ml [2].

McFarland scale is a scale numbered from 1-10 which represent concentration of bacterial/ml. Though it is originally designed to be used for estimating the concentration of gram negative bacteria like *E. coli* which are much smaller in size and difficult to count with hemocytometer method, now McFarland standard scale is widely adopted for gram positive bacteria for making a inoculum of uniform concentration of bacteria in *In vitro* anti susceptibility protocols.[3]

Currently, McFarland Turbidity Standards consist of uniform polystyrene microparticles, which allow longer shelf life and comparable absorbance values to the original BaSO₄ standards [4] [5].

The discovery of sulfonamide and penicillin are some drug was been susceptible to most of the organisms. So resistance organism is been tested by *In vitro* against anti microbial agents for many types of susceptibility testing a standardized inoculums of bacteria must be used so McFarland standards were devised to correspond to approximate cell densities as required by the method of antimicrobial testing[6]. Hence the aim of the present study is to evaluate some clinically important bacterial inoculums with that compared to 0.5 McFarland standard and the bacterial inoculums were serially diluted by 10 fold dilution and spread plated and enumerating the number of colonies by help of colony counter and size of the organisms also been measured by micrometry.
2. MATERIALS AND METHODS:-

1907, McFarland developed a series of barium sulfate solutions to approximate the numbers of bacteria in solutions of equal turbidity, as determined by plate counts. (Table- 1, Figure-1)[7] [8]

Table 1

McFarland standard scale value

<table>
<thead>
<tr>
<th>MFU</th>
<th>Approximate cell density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 MFU</td>
<td>1.5x10^8 Cells/ ml</td>
</tr>
<tr>
<td>1 MFU</td>
<td>3.0 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>2 MFU</td>
<td>6.0 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>3 MFU</td>
<td>9.0 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>4 MFU</td>
<td>12 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>5 MFU</td>
<td>15 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>6 MFU</td>
<td>18 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>7 MFU</td>
<td>21 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>8 MFU</td>
<td>24 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>9 MFU</td>
<td>27 x 10^8 Cells/ ml</td>
</tr>
<tr>
<td>10 MFU</td>
<td>30 x 10^8 Cells/ ml</td>
</tr>
</tbody>
</table>

*MFU- McFarland Standard

Fig:1 - McFarland Standard (0.5)

PREPERATION OF MCFARLAND STANDARD:-

A. Barium chloride 1.175 grams
Distilled water 100 ml

B. Sulphuric acid(0.36 N) 1.0 ml

Distilled water 100 ml

0.5 ml of solution A was added to 99.5 ml of Solution B and mixed well. It is mixed well with magnetic stirrer then distributed in test tubes with a screw cap of the same size as those containing the bacterial culture, the turbidity of which must be evaluated.

The cap was closed tightly to avoid evaporation of flame sealed. It is agitated vigorously in a vortex before using it.

STORAGE OF MCFARLAND STANDARD:

The prepared McFarland standard solution was stored at 2°-30°C in the dark standards. After opening there is a reduced shelf life depending upon storage and contaminations.

METHOD OF USING MCFARLAND:-

Susceptibility testing requires the use of standardized inocula. The 0.5 McFarland standard is recommended for use in the preparation of inocula for performing the antimicrobial disk diffusion susceptibility test.[9]. The inoculums for primary sensitivity testing was usually prepared from a broth that had been incubated for 4-6 hours, when growth was said to in logarithmic phase then density of the suspension was adjusted by adding the bacterial suspension to a sterile saline test tube to match the density of desired standard.

QUANTITATION OF BACTERIA:

Micro organisms used for screening

The pure clinical bacterial isolates were obtained from the Department of ALMPGBMS, Taramani Campus

GRAM POSITIVE BACTERIA:

1. *Staphylococcus aureus*

2. *Staphylococcus epidermidis*

3. *Enterococcus faecalis*

GRAM NEGATIVE BACTERIA:

4. *Escherichia coli*

5. *Salmonella typhi*

6. *Vibrio cholera*
7. Shigella sonneii
8. Proteus vulgaris
9. Proteus mirabilis
10. Pseudomonas aeruginosa

ATCC Standard:

11. Staphylococcus aureus ATCC 25923
12. Escherichia coli ATCC 25922.

MATERIALS NEEDED FOR THE QUANTITATION OF MICROORGANISMS:

- Nutrient agar, Nutrient broth, Saline, Petriplates, Micropipettes, Tips, L-rod
- Vortex rotator, Ethanol

METHOD FOR QUANTITATION OF BACTERIA:

A standard bacterial were inoculated in nutrient broth. Then it was incubated for 2-4 hrs at 37°c. Later it was compared with McFarland standard. Quantization method was performed by ten-fold dilution method. Estimate the concentration of a broth culture by spread plate technique.

COMPARING WITH MCFARLAND STANDARD:

Inoculating a known concentration of bacteria into the solution and incubate for 4 hours. Then adjusted the turbidity with that of bacterial suspension. The tubes for the suspension should be the same diameter as the McFarland standard tube. Visually compare this using adequate light and reading the tubes against white card with contrasting black lines. Then adjusted the turbidity with that of bacterial suspension. The tubes for the suspension should be the same diameter as the McFarland standard tube. Visually compare these using adequate lights and reading the tubes against white card with contrasting black lines.

ENUMERATION TECHNIQUE:

Set Ten tubes 12X100 nm in the rack

- Pipette 0.9µl of sterile saline into each tube using sterile disposable tip
- Using sterile tip transfer 0.1µl of culture suspension into the 1st tube and mix well transfer 0.1 µl to the 2nd tube
Discard the tip into the discarding jar and new tip were changed for every dilution, the dilution is carried out till the 9th tube and transfer 0.1µl > from the 9th tube to the discarding charge.

10th tubes were made as control

SPREAD PLATE TECHNIQUE:

Sterile nutrient agar plates were dried and to that 0.1µl of suspension from the 6th tubes is transferred to the plate

Gently rotate plate with L-Rod

Similarly transfer 0.1 µl suspension to the plate labeled upto 9th dilution

Incubate at 37º c for 24 hrs

Count the number of colonies present in all the plated by using colony counter

Formula:- Number of Colonies X Dilution

3. RESULT & DISCUSSION:

McFarland standard is adopted as an easy method to know approximate number of bacteria from a given broth samples. This was initially adopted to enumerate the gram positive. However this method has been widely adopted to use an inoculum of approximate uniform number of bacteria in inoculums meant for In Vitro susceptibility test. The NCCLS methods present 0.2 µl of 0.5 McFarland standard inoculum for antimicrobial susceptibility test for bacteria.

The present study was aimed to know the number of bacteria in 1 ml of 0.5 McFarland inoculums of twelve clinically important species of bacteria and the enumeration study has taken into consideration that no. of bacteria in 1 ml of 0.5 McFarland standard broth standard inoculum would have 150 million bacteria. As the present study had used 0.1ml for the enumeration purpose, so 15 million bacteria would present in it. As this number is uncountable by colony counter the McFarland standard compared broth inoculum was diluted tenfold in a serial manner and was found that single digit number of bacteria is expected at eight dilution but however
the results obtained her at the 8th dilution for each species are varying for 15 times to 300 times more than the value expected for McFarland standards.

The term approximate the number differ to a small variability in the number of population namely 5 times higher or lower value. Hence however none of the test bacterium had population number around 10 at 8th dilution. The nearest number was for *Proteus mirabilis* and the number was 22 following *Enterococci faecalis* which has 37. All the other bacteria had a population between 75 to 325. (Table :2).

The result show highly variable number of bacterial population among the twelve bacterial chosen for study. Hence a given volume inoculum compound with the McFarland standard may not be true for bacteria of different species. As far as the *In Vitro* anti microbial susceptibility is concerned this may not affect the result because species transferred to dilution of serial tubes will be same.

However it should be make clear to the colony forming unit for any number of McFarland standard inoculums will be highly varying for different species of bacterium as we have inferred for our results.

Correlation was attempted to know whether the volume of the cell has anything to do with variation in the number of microbial in given volume of inoculum. It is so larger bacterium will have fewer number and smaller bacterium will have more number of population. Ironically the results obtained may depends upon the growth of the organisms.

Although used universally, McFarland turbidity Standards become uncertain with other organisms as different species of bacteria differ in size and shape as do yeast and mould [10]. We hypothesize that the difference found is due to subjectivity of the visual determination of bacterial densities when working with McFarland turbidity Standards.

Table : 2

ENUMERATION OF GRAM POSITIVE BACTERIA IN 0.1 ML OF BROTH AT 0.5 MCFARLAND STANDARD

<table>
<thead>
<tr>
<th>S.NO</th>
<th>GRAM POSITIVE ORGANISMS</th>
<th>DILUTION</th>
<th>10^7</th>
<th>10^8</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Staphylococcus aureus</td>
<td></td>
<td>461</td>
<td>234</td>
<td>120</td>
</tr>
<tr>
<td>2.</td>
<td>Staphylococcus aureus atcc</td>
<td></td>
<td>470</td>
<td>234</td>
<td>120</td>
</tr>
<tr>
<td>S.NO</td>
<td>GRAM NEGATIVE ORGANISMS</td>
<td>DILUTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^7</td>
<td>10^8</td>
<td>10^9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Escherichia coli</td>
<td>640</td>
<td>325</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Salmonella typhi</td>
<td>232</td>
<td>148</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Proteus vulgaris</td>
<td>42</td>
<td>22</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Shigella sonnei</td>
<td>147</td>
<td>75</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pseudomonas aeruginosa</td>
<td>162</td>
<td>77</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Vibrio cholerae</td>
<td>640</td>
<td>39</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Escherichia coli ATCC</td>
<td>410</td>
<td>214</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Fig 2: Comparison of *Staphylococcus aureus* with 234 colonies in 8th dilution

Fig 3: Comparison of *Staphylococcus aureus* with 0.5 McFarland shows 0.5 McFarland shows 120 colonies in 9th dilution
Fig 4: Comparison of *Staphylococcus aureus* ATCC with 0.5 McFarland shows 120 colonies in 7th dilution.

Fig 5: Comparison of *Staphylococcus aureus* ATCC with 0.5 McFarland shows 240 colonies in 8th dilution.

Fig 6: Comparison of *Enterococcus faecalis* with 0.5 McFarland shows 37 colonies in 8th dilution.

Fig 7: Comparison of *Staphylococcus epidermidis* with 0.5 McFarland shows 117 colonies in 8th dilution.

Fig 8: Comparison of *Staphylococcus epidermidis* with 0.5 McFarland shows 48 colonies in 9th dilution.
Fig 9: Comparison of *Escherichia coli* with colonies in 8th dilution

Fig 10: Comparison of *Escherichia coli* with 0.5 McFarland shows 325 colonies in 8th dilution

0.5 McFarland shows 142 colonies in 9th dilution

Fig 11: Comparison of *Salmonella typhi* with 148 colonies in 8th dilution

Fig 12: Comparison of *Salmonella typhi* with 0.5 McFarland shows 84 colonies in 9th dilution

Fig 13: Comparison of *Proteus mirabilis* with 42 colonies in 8th dilution

Comparison of *Proteus mirabilis* with 0.5 McFarland shows 22 colonies

in 9th dilution

Fig 14: 0.5 McFarland shows 22 colonies
Fig 15: Comparison of *Proteus vulgaris* with 0.5 McFarland shows 140 colonies in 8th dilution

Fig 16: Comparison of *Proteus vulgaris* with 0.5 McFarland shows 82 colonies in 9th dilution

Fig 17: Comparison of *Shigella sonnei* with 0.5 McFarland shows 75 colonies in 8th dilution

Fig 18: Comparison of *Shigella sonnei* with 0.5 McFarland shows 40 colonies in 9th dilution

Fig 19: Comparison of *Pseudomonas aeruginosa* with 0.5 McFarland shows 77 colonies in 8th dilution

Fig 20: Comparison of *Pseudomonas aeruginosa* with 0.5 McFarland shows 44 colonies in 9th dilution
Fig 21: Comparison of *Vibrio cholerae* with 0.5 McFarland shows 2077 colonies in 9th dilution

Fig 22: Comparison of *Escherichia coli* with 0.5 McFarland shows 214 colonies in 8th dilution

Fig 23: Comparison of *Escherichia coli* with 0.5 McFarland shows 96 colonies in 9th dilution

Flow chart:

As per McFarland rule the 0.5 ml of McFarland standard when compared to 1 ml of bacterial suspension should contain 1.5 x 10^7 CFU/ml

So 1st tube 0.1 ml of dilution must contain 15,00,000 CFU/ml

So 2nd tube 0.1 ml of dilution must contain 15,00,000 CFU/ml

3rd tube of 0.1 ml of dilution must contain 1,50,000 CFU/ml

4th tube of 0.1 ml of dilution must contain 1,50,000 CFU/ml
5nd tube of 0.1 ml of dilution must contain 1,50,0 CFU/ml

6nd tube of 0.1 ml of dilution must contain 1,50 CFU/ml

7nd tube of 0.1 ml of dilution must contain 15 CFU/ml

8nd tube of 0.1 ml of dilution must contain 1.5 CFU/ml

9nd tube of 0.1 ml of dilution must contain 0.15 CFU/ml

4. SUMMARY:

McFarland standard is a specific scale for the concentration of bacteria/ml. It is used to approximate the number of microbial cells in the liquid suspension.

It is devised to count individual cells and are designed to correspond to approximate cell densities as required by the method of antimicrobial testing. Bacterial suspension in 1 ml of Nutrient broth in incubated for 4 hrs and adjust with the turbidity with McFarland standard and spread plated and counted using colony counter and the size of the microorganisms as measured by micrometry. The results were readed.

5. CONCLUSION:-

As per McFarland rule there should 15 colonies in the 7th dilution but all the species vary 15 times to three hundred times more than the expected value because of the size and volume of the organisms the time for the division also yield across amount in the suspension so the colony dilution may differ in each setup. The present study enumerated for 12 bacterial study has brought into light that the number bacterium in given sample could not be calculated by comparing it with McFarland standard because of varying number of population From 20-324 any for the maintained bacteria.

6.REFERENCE:

3. Preparation of McFarland Turbidity Standards. Microbe online

