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Abstract  

The order difference interval graph of a group 𝐺, denoted by 𝛤𝑂𝐷𝐼(𝐺), is a graph with 𝑉(𝛤𝑂𝐷𝐼(𝐺) = 𝐺 

and two vertices 𝑎 and 𝑏 are adjacent in 𝛤𝑂𝐷𝐼(𝐺) if and only if 𝑜(𝑎) − 𝑜(𝑏) 𝜖 [𝑜(𝑎), 𝑜(𝑏)]. Without loss of 

generality, assume that 𝑜(𝑎) ≤ 𝑜(𝑏). In this paper, we try to classify all finite abelian groups whose order 

difference interval graphs are toroidal and projective. 
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1 Introduction 

There are different ways to associate to a group a certain graph. In this context, it is interesting to ask for the 

relation between the structure of the group, given in group theoretical terms, and the structure of the graph, given in the 

language of graph theory. There are many papers on assigning a graph to a group and investigating algebraic properties of 

group using the associated graph, for instance, see [1, 2, 3]. 

Let 𝐺 be a finite group. One can associate a graph to 𝐺 in many different ways. Since the order of an element is 

one of the most basic concepts of group theory, Balakrishnan and Kala [4] defined the order difference interval graph of a 

group 𝐺 denoted by Γ𝑂𝐷𝐼(𝐺) as follows: Take 𝑉(Γ𝑂𝐷𝐼(𝐺) = 𝐺 and two vertices 𝑎 and 𝑏 are adjacent in Γ𝑂𝐷𝐼(𝐺) if and 

only if 𝑜(𝑎) − 𝑜(𝑏) 𝜖 [𝑜(𝑎), 𝑜(𝑏)]. Without loss of generality, assume that 𝑜(𝑎) ≤ 𝑜(𝑏).  Here 𝑜(𝑎) and 𝑜(𝑏) denote the 

orders of 𝑎 and 𝑏, respectively. In this paper, we try to classify all finite abeliean group 𝐺 whose order difference interval 

graph has genus at most one. 

 It is well known that any compact surface is either homeomorphic to a sphere, or to a connected sum of 𝑔 tori, or 

to a connected sum of 𝑘 projective planes (see [8, Theorem 5.1]). We denote by 𝕊𝑔 the surface formed by a connected 

sum of 𝑔 tori, and by ℕ𝑘 the one formed by a connected sum of 𝑘 projective planes. The number 𝑔 is called the genus of 

the surface 𝕊𝑔 and 𝑘 is called the crosscap of ℕ𝑘. When considering the orientability, the surfaces𝕊𝑔 and sphere are 

among the orientable class and the surfaces ℕ𝑘 are among the non-orientable one. 

 A simple graph which can be embedded in 𝕊𝑔 but not in 𝕊𝑔−1 is called a graph of genus 𝑔. Similarly, if it can be 

embedded in ℕ𝑘 but not in ℕ𝑘−1, then we call it a graph of crosscap 𝑘. The notations (G) and (G) are denoted for the 
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genus and crosscap of a graph 𝐺, respectively. It is easy to see that 𝛾(𝐻) ≤ 𝛾(𝐺) and �̅�(𝐻) ≤ �̅�(𝐺) for all subgraph 𝐻 of 

𝐺. Also a graph 𝐺 is called planar if 𝛾(𝐺) = 0, it is called toroidal if 𝛾(𝐺) = 1, and it is called projective if �̅�(𝐺) = 1. 

A remarkable characterization of planar graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says 

that a graph 𝐺 is planar if and only if it contains no subdivision of 𝐾5 or 𝐾3,3. A graph is outerplanar if it can be 

embedded into the plane so that all its vertices lie on the same face. 

Throughout this paper, we assume that 𝐺 is a finite group. We denote the group of integers addition modulo 𝑛 by 

ℤ𝑛 and the Euler function by 𝜙(𝑛). For basic definitions on groups, one may refer [7]. 

2 GENUS AND CROSSCAP OF 𝚪𝑶𝑫𝑰(𝑮) 

The main goal of this section is to determine all finite abelian groups 𝐺 whose order difference interval 

graph has genus one. 

Lemma 2.1. [4] Let 𝑎 be a generator element in group 𝐺 of order 𝑛. Then 𝑎 is adjacent to all the non-

generator elements of 𝐺 in the graph Γ𝑂𝐷𝐼(𝐺). 

In view of preceding lemma, we have the following result. 

Lemma 2.2. Let 𝐺 be a cyclic group of order 𝑛. Then Γ𝑂𝐷𝐼(𝐺) has a subgraph isomorphic to 𝐾𝜙(𝑛),𝑛−𝜙(𝑛). 

Moreover, if  𝑛 𝑖s prime, then Γ𝑂𝐷𝐼(𝐺) ≌  𝐾1,𝑛−1.  

The following characterization of outerplanner graphs was given by Chartrand and Harary [6]. Using 

this characterization, we charcterize all finite groups 𝐺 whose Γ𝑂𝐷𝐼(𝐺) is outerplanar. 

 

Theorem 2.3. [6] A graph 𝐺 is outerplanar if and only if it contains no subdivisionof 𝐾4 or 𝐾2,3.  

Theorem 2.4. Let G be a finite abelian group. Then Γ𝑂𝐷𝐼(𝐺) is outerplanar if and only if 𝐺 is isomorphic to 

ℤ𝑝
𝑛,, 𝑛 ≥  1 or ℤ4, where 𝑝 is a prime. 

Proof. Assume thatΓ𝑂𝐷𝐼(𝐺) is outerplanar. Since 𝐺 is finite, |𝐺| = 𝑝1
𝑘1𝑝2

𝑘2 ⋯ 𝑝𝑛
𝑘𝑛 , 𝑛 ≥ 1.  

Suppose 𝐺 has a cyclic subgroup of order 𝑝1𝑝2. Then by Lemma 2.2, Γ𝑂𝐷𝐼(𝐺) 

contains 𝐾2,3 as a subgraph, a contradiction. Hence 𝐺 is a 𝑝-group and so |𝐺| = 𝑝𝑛. 

Suppose 𝐺 has an element of order 𝑝𝑚, 𝑚 ≥ 3. Then 𝐺 has a cyclic subgroup 𝐻 of order 𝑝𝑚. Then by 

Lemma 2.2, Γ𝑂𝐷𝐼(𝐻)contains 𝐾4,4 as a subgraph. Therefore Γ𝑂𝐷𝐼(𝐺) has a subgraph which is isomorphic to 

𝐾4,4, a contradiction. Thus 𝐺 has elements of order at most 𝑝2. 

If order of every element of 𝐺 is 𝑝, then 𝐺 ≌ ℤ𝑝
𝑛.  

Suppose 𝐺 has an element of order 𝑝2. If 𝑝 ≥  3, then by Lemma 2.2, Γ𝑂𝐷𝐼(𝐺) contains 𝐾2,3 as a 

subgraph, which is a contradiction. Hence 𝑝 must be 2. 

Suppose 𝐺 is a cyclic 2-group, then 𝐺 ≌ ℤ4. 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 
 

IJCRT1807313 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 564 
 

Suppose 𝐺 is a non-cyclic 2-group. If 𝐺 has a subrgoup which is isomorphic to ℤ2  × ℤ4, then 

Γ𝑂𝐷𝐼(ℤ2  × ℤ4) contains 𝐾2,3 as a subgraph. Hence Γ𝑂𝐷𝐼(𝐺) contains 𝐾2,3 as a subgraph, a contradiction. 

Conversely, if 𝐺 ≌ ℤ𝑝
𝑛 , then Γ𝑂𝐷𝐼(𝐺) ≌ 𝐾1,𝑝𝑛−1.  If 𝐺 ≌ ℤ4, then Γ𝑂𝐷𝐼(𝐺) ≌ 𝐾4 − 𝑒. 

 

Theorem 2.5. Let 𝐺 be a finite abelian group. Then Γ𝑂𝐷𝐼(𝐺) is planar if and only if  𝐺 is isomorphic to ℤ𝑝
𝑛, 

𝑛 ≥  1 or ℤ4, where 𝑝 is a prime. 

Proof. Assume that Γ𝑂𝐷𝐼(𝐺) is a planar graph. Since 𝐺 is finite, |𝐺| = 𝑝1
𝑘1𝑝2

𝑘2 ⋯ 𝑝𝑛
𝑘𝑛 , 𝑛 ≥ 1. 

Case 1. Suppose 𝐺 is a 𝑝-group. Suppose 𝐺 has an element of order 𝑝𝑚, 𝑚 ≥ 3. Then 𝐺 has a cyclic subgroup 

𝐻 of order 𝑝𝑚. Then by Lemma 2.2, Γ𝑂𝐷𝐼(𝐻)  contains 𝐾4,4  as a subgraph. Therefore Γ𝑂𝐷𝐼(𝐺) has a subgraph 

which is isomorphic to 𝐾4,4, a contradiction. Thus 𝐺 has elements of order at most 𝑝2. 

If every element of 𝐺 is of order p, then 𝐺 ≌ ℤ𝑝
𝑛. 

Suppose 𝐺 has an element of order 𝑝2. Then 𝐺 has a cyclic subgroup 𝐻 of order 𝑝2. Suppose𝑝 ≥  3, 

then by Lemma 2.2, Γ𝑂𝐷𝐼(𝐻)  contains a subgraph which is isomorphic to 𝐾3,6  and so is Γ𝑂𝐷𝐼(𝐺). Hence 𝑝 =

 2. 

Suppose 𝐺 is a cyclic 2-group, then 𝐺 ≌ ℤ4. 

Suppose 𝐺 is a non-cyclic 2-group. If 𝐺 has a subrgoup which is isomorphic to ℤ2  × ℤ4, then Γ𝑂𝐷𝐼( 

ℤ2  × ℤ4)  contains 𝐾3,3 as a subgraph, Γ𝑂𝐷𝐼( ℤ2  × ℤ4) is non-planar and so is Γ𝑂𝐷𝐼(𝐺). 

Case 2. Suppose 𝐺 is not a 𝑝-group. Then |𝐺| = 𝑝1
𝑘1𝑝2

𝑘2 ⋯ 𝑝𝑛
𝑘𝑛 , 𝑛 ≥ 2. Clearly 𝐺 has a cyclic subgroup of 

order 𝑚 =  𝑝1𝑝2 ⋯ 𝑝𝑛. Consider 𝑆1 =  {𝑎𝑖  ∈  𝐺 ∶  𝑜(𝑎𝑖)  =  𝑚} ∪ {𝑒}and 𝑆2 =

 {𝑏𝑗 ≠ 𝑒 ∈  𝐺 ∶  𝑜(𝑏𝑗)|𝑚 𝑎𝑛𝑑 𝑜(𝑏𝑗) ≠ 𝑚}. It is clear that 𝑜(𝑏𝑗)  ≤  
𝑚

2
 and 𝑜(𝑎𝑖) − 𝑜(𝑏𝑗)  ≥  

𝑚

2
. Hence 𝑎𝑖 is 

adjacent to 𝑏𝑗 for all 𝑖 and 𝑗. Thus Γ𝑂𝐷𝐼(𝐺)  contains 𝐾3,3 as a subgraph, a contradiction. 

Conversely, if 𝐺 ≌ ℤ𝑝
𝑛 , then Γ𝑂𝐷𝐼(𝐺) ≌ 𝐾1,𝑝𝑛−1.  If 𝐺 ≌ ℤ4, then Γ𝑂𝐷𝐼(𝐺) ≌ 𝐾4 − 𝑒. 

For a rational number 𝑞, ⌈𝑞⌉ is the first integer number greater or equal than 𝑞. In the following lemma 

we bring some well-known formulas for genus of a graph (see [9]). 

 

Lemma 2.6. The following statements hold: 

(𝑖) 𝛾(𝐾𝑛) = ⌈
1

12
(𝑛 − 3)(𝑛 − 4)⌉ if 𝑛 ≥  3 

 (𝑖𝑖) 𝛾(𝐾𝑚, 𝑛) = ⌈
1

4
(𝑚 − 2)(𝑛 − 2)⌉ 𝑖𝑓 𝑚, 𝑛 ≥  2. 

 

In the following theorem we determine all finite groups whose Γ𝑂𝐷𝐼(𝐺) has genus one. 
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Theorem 2.7. Let 𝐺 be a finite abelian 𝑝-group. Then Γ𝑂𝐷𝐼(𝐺) if and only if 𝐺 is isomorphic to  ℤ2  × ℤ4, ℤ8 

or ℤ9. 

Proof. Assume that 𝛾(𝛤𝑂𝐷𝐼(𝐺)))  =  1. Since |𝐺| = 𝑝𝑛, by Theorem 2.5, 𝑛 ≥ 2 and 𝐺 ≇  ℤ𝑝
𝑛.  

Case 1. Supppose 𝐺 is cyclic. If 𝑛 ≥  4, then by Lemma 2.2, 𝐾8,8 is a subgraph of Γ𝑂𝐷𝐼(𝐺). Therefore by 

Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥  9, a contradiction. Thus 𝑛 ≤  3. 

 

Suppose 𝑛 =  3. If 𝑝 ≥  3, then by Lemma 2.2, Γ𝑂𝐷𝐼(𝐺) contains 𝐾18,9 as a subgraph. Hence by 

Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥ 28, which is a contradiction. Hence 𝑝 =  2 and 𝐺 ≅ ℤ8. 

Suppose 𝑛 =  2. If  𝑝 ≥  5, then by Lemma 2.2, 𝛤𝑂𝐷𝐼(𝐺) contains 𝐾20,5 as a 

subgraph. Therefore by Lemma 2.6,𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥ 14, a contradiction. Hence 𝑝 =  2, 3. By Theorem 2.5, 

𝛤𝑂𝐷𝐼(ℤ4) is planar and hence 𝐺 ≅ ℤ9. 

Case 2. Suppose 𝐺 is non-cyclic. Then 𝐺 has a subgroup which is isomorphic to ℤ𝑝 × ℤ𝑝𝑚 , 𝑚 ≥  2. Consider 

the sets 𝑆1  =  {𝑥 ∈  𝐺 ∶  |𝑥|  =  𝑝}, 𝑆2  =  {𝑦 ∈  𝐺 ∶  |𝑦|  = 𝑝𝑚}. Clearly |𝑆1|  ≥  𝑝2  −  1 and |𝑆2|  ≥

 𝑝𝑚(𝑝 −  1). If 𝑝 ≥  3, then the subgraph induced by 𝑆1 ∪ 𝑆2 contains 𝐾8,18 as a subgraph. 

Therefore𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥ 24, a contradiction. Thus 𝑝 =  2. If  𝑚 ≥  3, then 𝛤𝑂𝐷𝐼(𝐺) contains 𝐾3,8 as a 

subgraph and so 𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥ 2, a contradiction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 1 Embedding of 𝛤𝑂𝐷𝐼(ℤ8) ≌ 𝛤𝑂𝐷𝐼(ℤ2 × ℤ4)                        Fig. 2 Embedding of 𝛤𝑂𝐷𝐼(ℤ9) 

 

Suppose 𝐺 has a subgroup 𝐻 which is isomorphic to ℤ𝑝 × ℤ𝑝 × ℤ𝑝2. Then consider 𝑆1  =  {𝑎 ∈  𝐻 ∶

 |𝑎|  =  𝑝2} and 𝑆2  =  {𝑏 ∈  𝐻 ∶  |𝑏|  =  𝑝}. It is clear that |𝑆1|  ≥  8 and |𝑆2|  ≥  7. Hence the subgraph 
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induced by 𝑆1 ∪ 𝑆2 is isomorphic to 𝐾8,7. Therefore by Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐻))  ≥ 8 and so is 𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥

8, which is a contradiction. 

Suppose 𝐺 has a subgroup 𝐻 which is isomorphic to ℤ𝑝2 × ℤ𝑝2. Then it is easily seen that 𝐾4,5 as a 

subgraph of 𝛤𝑂𝐷𝐼(𝐺). Therefore by Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐻))  ≥ 2, a contradiction. Thus 𝐺 ≌ ℤ2  × ℤ4. 

Converse follows from Figs. 1, 2. 

 

Theorem 2.8. Let 𝐺 be a finite abelian non-𝑝-group. Then 𝛾(𝛤𝑂𝐷𝐼(𝐺)) = 1 if and only if 𝐺 is isomorphic to 

ℤ6. 

Proof. Assume that 𝛾(𝛤𝑂𝐷𝐼(𝐺)) = 1. Since 𝐺 is not a 𝑝-group, |𝐺| = 𝑝1
𝑘1𝑝2

𝑘2 ⋯ 𝑝𝑛
𝑘𝑛 , 𝑛 ≥ 2. 

Case 1. 𝐺 is a cyclic group.  

If 𝑛 ≥  3, then by Lemma 2.2, 𝐾8,22 as a subgraph of 𝛤𝑂𝐷𝐼(𝐺). Therefore by Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐻))  ≥

40. Thus 𝑛 =  2. Suppose 𝑘𝑖  ≥  2 for some 𝑖. Then by Lemma 2.2, 𝐾4,8 as a subgraph of 𝛤𝑂𝐷𝐼(𝐺). Hence by 

Lemma 2.6, 𝛾(𝛤𝑂𝐷𝐼(𝐺))  ≥ 3, which is a contradiction. Therefore 𝑘𝑖  =  1, 𝑖 =  1, 2 and so |𝐺|  =  𝑝1𝑝2. If 

𝑝𝑖  ≥  5, then by Lemma 2.2, 𝛤𝑂𝐷𝐼(𝐺) contains 𝐾4,6 as a subgraph, a contradiction. Therefore |𝐺|  =  6 and 

hence 𝐺 ≌ ℤ6. 

 

 

 

 

 

 

 

 

 

                                                          

                                                       Fig. 3 Embedding of  𝛤𝑂𝐷𝐼(ℤ6) 

 

Case 2. Suppose 𝐺 is not a cyclic group. Then 𝐺 has a subgroup 𝐻 which is isomorphic to ℤ𝑝1
 ×  ℤ𝑝1

 ×  ℤ𝑝2
 

. Consider 𝑆 1 =  {𝑥 ∈  𝐻 ∶  |𝑥|  =  𝑝1𝑝2} and 𝑆 2 =  {𝑦 ∈ 𝐻 ∶  |𝑦|  =  𝑝1}  ∪  {𝑒}. It is clear that, the subgraph 

induced by 𝑆1  ∪  𝑆2 contains 𝐾4,6 as a subgraph, a ontradiction. 

Converse follows from Fig. 3. 

 

In the following lemma we bring some well-known formulas for crosscap of a graph (see [9]). 
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Lemma 2.9. The following statements hold: 

(𝑖) �̅�(𝐾𝑛) = {
⌈

1

12
(𝑛 − 3)(𝑛 − 4)⌉ 𝑖𝑓 𝑛 ≥  3 𝑎𝑛𝑑 𝑛 ≠ 7

3                                                      𝑖𝑓 𝑛 = 7
 

 (𝑖𝑖) �̅�(𝐾𝑚, 𝑛) = ⌈
1

2
(𝑚 − 2)(𝑛 − 2)⌉ 𝑖𝑓 𝑚, 𝑛 ≥  2. 

By slight modifications in the proof of Theorem 2.7 and Theorem 2.8 with Lemma 2.9, one can prove 

the following theorem. 

 

Theorem 2.10. Let 𝐺 be a finite abelian group. Then �̅�(𝛤𝑂𝐷𝐼(𝐺) =1 if and only if 𝐺 is isomorphic to ℤ6. 

 

ACKNOWLEDGMENT 

The work is supported by the INSPIRE programme (IF 140700) of Department of Science and 

Technology, Government of India for the second author. 

REFERENCES 

Abdollahi, A., Akbari, S., Maimani, H. R. (2006) -  “Noncommuting graph of a group”.  J. Algebra,   298, 

468–492. 

Abdollahi. A., Mohammadi Hassanabadi, A. (2007) -  “Non-cyclic graph of a group”. Comm. Algebra, 35, 

2057–2081. 

Afkhami,  M., Farrokhi, M., Khashyarmanesh, K. (2015) – “Planar, Toroidal, and Projective 

Commuting and Noncommuting Graphs”, Comm. Algebra, 43, 2964-2970. 

Balakrishnan, P., Kala, R. (2012) - The order difference interval graph of a group, Transactions on 

combinatorics, 1 (2), 59-65. 

Bondy, J. A , Murty, U. S. R. (1976) – “Graph Theory with Applications”, American Elsevier,  New York. 

Chartrand, G., Harary, F. (1967) – “Planar permutation graphs”, Annales de l’Institut Henri Poincar B, 3:4, 

433438, MR 0227041. 

David S. Dummit, Richard M. Foote (2005) – “Abstract Algebra (Second Edition)”, John Wiley and Son, inc 

(Asia) Pvt. Ltd, Singapore. 

Massey, W. (1967) - Algebraic Topology: An Introduction, Harcourt, Brace & World, Inc., New York.  

White, A. T. (1984) - Graphs, Groups and Surfaces, North-Holland Mathematics Studies, North-Holland, 

Amsterdam, The Netherlands. 

 

http://www.ijcrt.org/

