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Abstract 

Let 𝑅 be a commutative ring with identity and 𝑘 > 2 a fixed integer.  Let 𝒩(R, k)  be the set of all k-nil ideals of 𝑅. The 

𝑘-nil hypergraph of ideals of 𝑅, denoted by ℋ𝑘(𝑅)  is a hypergraph with vertex set 𝒩(R, k) and for distinct ideals 

{𝐼1, 𝐼2, … , 𝐼𝑘} in 𝒩(R, k), the set {𝐼1, 𝐼2, … , 𝐼𝑘}  is an edge in ℋ𝑘(𝑅) if and only if ∏ 𝐼𝑖
𝑘
𝑖=1 ⊆ 𝑁𝑖𝑙(R) and the product of ideals 

of no (𝑘 − 1) subset of {𝐼1, 𝐼2, … , 𝐼𝑘} is contained in 𝑁𝑖𝑙(R). The main goal of this paper is to study the domination number 

of ℋ3(𝑅). 
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1. Introduction 

Mathematical study of domination in graphs began around 1960. This concept have received extensive attention by many 

researchers. Perhaps the fastest growing area within graph theory is the study of domination and related subset problems. 

Claude  Berge [2] wrote a book on graph theory, in which he introduced the coefficient of external stability, which is now 

known as the domination number of a graph. Oystein Ore [7] introduced the terms dominating set and domination number 

in his book on graph theory which was published in 1962. An excellent treatment of fundamentals of domination is given 

in the book by Haynes et.al[3]. The concept of domination in graphs has been somewhat sparsely studied for hypergraphs. 

B. D. Acharya was the pioneer of domination in hypergraphs [1]. Shaveisi et al.,[6] introduced the nil-graph of ideals of  𝑅. 

Recently in [5], Selvakumar et al., extended the concept of nil-graph of ideals of a commutative ring  𝑅 to 𝑘-nil hypergraph 

of ideals of a commutative ring . We state the definition here. Let 𝑅 be a commutative ring with identity and 𝑘 > 2 a fixed 

integer.  Let 𝒩(R, k)  be the set of all 𝑘 -nil ideals of 𝑅. The 𝑘 -nil hypergraph of ideals of 𝑅, denoted by ℋ𝑘(𝑅)  is a 

hypergraph with vertex set 𝒩(R, k) and for distinct ideals {𝐼1, 𝐼2, … , 𝐼𝑘} in 𝒩(R, k) the set {𝐼1, 𝐼2, … , 𝐼𝑘}  is an edge in 

ℋ𝑘(𝑅) if and only if ∏ 𝐼𝑖
𝑘
𝑖=1 ⊆ 𝑁𝑖𝑙(R) and the product of ideals of no (𝑘 − 1) subset of {𝐼1, 𝐼2, … , 𝐼𝑘} is contained in 𝑁𝑖𝑙(R).  

2. Preliminaries 
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In this section, we first recall the definition of  hypergraph and domination. We also summarize some basic definitions.   

A hypergraph ℋ is an ordered pair  (𝑋, Ɛ) where 𝑋 is a non empty finite set and Ɛ is a subset of the power set 2𝑋 of  𝑋, viz., 

the set of all subsets of 𝑋 such that 𝐸 ∈ Ɛ ⇒ 𝐸 ≠ ∅ and ⋃ 𝐸 = 𝑋.𝐸∈Ɛ The elements of  𝑋 are called vertices of ℋ and those 

of Ɛ edges of ℋ. The hypergraph ℋ is called 𝑘 -uniform if every edge 𝑒 of  ℋ is of size 𝑘. For all terminology and notation 

in hypergraph theory not specifically defined here the reader can refer to C.Berge [2].  

A set D ⊆ X  is a dominating set of ℋ if for every 𝑣 ∈ 𝑋 − D  there exists 𝑢 ∈ 𝐷 such that 𝑢 and 𝑣 are adjacent in ℋ; that 

is, if there exists 𝐸 ∈ Ɛ  such that 𝑢, 𝑣 ∈ 𝐸. A dominating set 𝐷 is a minimal dominating set if no proper subset of 𝐷 is a 

dominating set. The domination number (of ℋ), denoted  𝛾(ℋ), is the minimum cardinality taken over all minimal 

dominating sets. A set I ⊆ X  is an independent set (of ℋ), if N (u) ∩  N{v}  =  ∅ for all 𝑢, 𝑣 ∈ 𝐼.  A set I ⊆ X is an 

independent domination set (of  ℋ) if 𝐼 is both an independent and dominating set. The minimum cardinality of an 

independent dominating set is called the independent domination number of  ℋ and is denoted by 𝛾𝑖(ℋ). Let 𝐷 be a 

minimum dominating set in a graph  𝐺 = (𝑉, 𝐸). If  𝑉 − 𝐷 contains a dominating set 𝐷 of 𝐺, then 𝐷 is called an inverse 

dominating set with respect to 𝐷. The inverse domination number 𝛾−1(𝐺) of 𝐺 is the cardinality of a smallest inverse 

dominating set of 𝐺. A comprehensive listing of the known domination related parameters has been produced in [2].  

In this paper, we study domination in 𝑘 −nil hypergraph of ideals. We first study domination, connected domination and 

inverse domination in 𝑘-nil hypergraph of ideals. Finally, we discuss about the independent domination number of ℋ3(𝑅) 

and hyperdomination in 𝑘 −nil hypergraph of ideals. 

 

3. Domination in 𝒌 −nil hypergraph of ideals 

In this section we explore many domination parameters which are obtained by combining domination with another 

graph theoretical property and provide some examples. We begin this section with the following example . 

Example 3.1. For 𝑅 = ℤ4 × ℤ9 × ℤ2, 𝒩(R, 3) = {𝑥1 = ℤ4 × ℤ9 × (0), 𝑥2 = ℤ4 × (3) × ℤ2,  𝑥3 = ℤ4 × (0) ×

ℤ2, 𝑥4 = (0) × ℤ9 × ℤ2, 𝑥5 =  (2) × ℤ9 × ℤ2}. Then 𝑒1 ={𝑥1, 𝑥3, 𝑥4}, 

𝑒2 ={𝑥1, 𝑥2, 𝑥4},  𝑒3 ={𝑥1, 𝑥3, 𝑥5},  𝑒4 ={𝑥1, 𝑥2, 𝑥5}.  Here 𝐷 = {𝑥1}. 
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Fig. 1 ℋ3(ℤ4 × ℤ9 × ℤ2)  

Throughout this paper, let 𝑉𝑖 = {∏ 𝑅𝑠 ×𝑛−𝑖 ∏ 𝐼𝑡: 𝑖 𝐼𝑡 is proper ideal in 𝑅𝑡} for i =  1, 2, . . .,  

n −  2. Then 𝒩(R, k) = ⋃ Vi
n−2
i=1  and Vi ∩ Vj = ∅ for all 𝑖 ≠ 𝑗. 

Lemma 3.2. Let 𝑅 = 𝑅1 × ⋯ × 𝑅𝑛, n ≥  4  be a ring. For each 𝑋 ∈ 𝑉𝑖,1 ≤ i ≤ n−2,  there exists  𝑌 ∈ 𝒩(R, 3) such that 

𝑋, 𝑌 ∈  E,   for all edge E in ℋ3(𝑅). 

Proof. Let for each 1 ≤ i ≤ n−2, 𝑋𝑖 ∈ 𝑉𝑖.  Define Ω = {m|𝐼𝑚 ⊂ 𝑅𝑚  in X}. If 𝑋 ∈ 𝑉1, then there exists a vertex 𝑌 = 𝐼𝑠 ×

𝐼𝑡 × ∏ 𝑅𝑢𝑛−2 ∈ 𝒩(R, 3), s ∈  Ω,  such that 𝑋, 𝑌 ∉  E for all edge E in ℋ3(𝑅). If 𝑋 ∈ 𝑉𝑖, 2 ≤  i ≤  n −  2, then there 

exists a vertex 𝑌 = ∏ 𝐼𝑚𝑚∈ Ω𝑐 × ∏ 𝑅𝑛 ∈ 𝒩(R, 3)𝑛∈Ω  such that 𝑋, 𝑌 ⊆ Nil(R), which implies 𝑋, 𝑌 ∉  E  for all edge  E in 

ℋ3(𝑅). 

Lemma 3.3. Let 𝑅 = 𝑅1 × 𝑅2 × 𝑅3, where 𝑅1 and 𝑅2 are local rings but not a field, 𝑅3 is a field. Then there exists 𝑋 ∈

𝒩(R, 3) such that 𝑋 ∈  E for all edge E in ℋ3(𝑅). 

Proof. Let 𝑅 = 𝑅1 × 𝑅2 × (0) ∈ 𝒩(R, 3). It is evident that 𝑋 dominates all the vertices of ℋ3(𝑅), which completes the 

proof. 

Now we pose the following question: Which of the following types of rings have domination number one ? The following 

theorem answers our question. 

Theorem 3.4. Let 𝑅 = 𝑅1 × ⋯ × 𝑅𝑛 be a ring, where each (𝑅𝑖, 𝑚𝑖) is a local ring. Then 𝛾(ℋ3(𝑅) )=1 if and only if 𝑅 ≅

𝑅1 × 𝑅2 × 𝑅3, at most two 𝑅𝑖 is local with 𝑚𝑖 ≠ (0). 

Proof. Assume that 𝛾(ℋ3(𝑅) )=1. Then there exists a vertex 𝑋 ∈ 𝒩(R, 3) such that 𝐷 = {X}  is a dominating set of ℋ3(𝑅), 

where X ∈ 𝑉𝑖 for some 𝑖. Define Ω = {m|𝐼𝑚 ⊂ 𝑅𝑚 in X }. Suppose 𝑛 ≥ 4. By Lemma 3.2, there exists 𝑌 ∈ 𝒩(R, 3) such 

that 𝑋, 𝑌 ∉  E, for all edge E in ℋ3(𝑅). Therefore 𝑛 = 3 and hence 𝑅 ≅ 𝑅1 × 𝑅2 × 𝑅3 and 𝒩(R, 3) = 𝑉1. Suppose 𝑅𝑖 is 

local with 𝑚𝑖 ≠ (0)  for all 𝑖. Then there exists a vertex 𝑌 = 𝐼𝑠 × ∏ 𝑅𝑡2 ∈ V1, s ∈  Ω such that 𝑋, 𝑌 ∉  E for all edge E in 

ℋ3(𝑅), a contradiction. Hence at most two 𝑅𝑖 is local with 𝑚𝑖 ≠ (0)  . 

 

𝑒 1  

𝑒2 

 

𝑒3 

 
𝑒4 

 𝑥1 

 

 

𝑥2 

 
𝑥3 

 

𝑥4 

 

𝑥5 
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             On the other hand, assume  𝑅 ≅ 𝑅1 × 𝑅2 × 𝑅3, at most two 𝑅𝑖 is local with 𝑚𝑖 ≠ (0). By Lemma 3.3, there exits 

a vertex 𝑋 = 𝑅1 × 𝑅2 × (0) ∈ 𝒩(R, 3), which dominates all the vertices of ℋ3(𝑅). 

 

Example 3.5. Let 𝑅 = 𝐹1 × 𝐹2 × 𝐹3 × 𝐹4  be a ring, where each 𝐹𝑖  is a field and 𝐷 = 𝐹1 × 𝐹2 × (0) × (0), 𝐹1 × 𝐹2 ×

𝐹3 × (0)}.   It is easy to see that D is a dominating set and therefore 𝛾(ℋ3(𝑅)) = 2. 

Example 3.6. Consider Let 𝑅 = 𝐹1 × ⋯ × 𝐹6, where each 𝐹𝑖 is a field and  

𝐷 = 𝐹1 × (0) × 𝐹3 × (0) × 𝐹5 × (0), (0) × 𝐹2 × 𝐹3 × 𝐹4 × (0) × (0), (0) × (0) × (0) × 𝐹4 × 𝐹5 × 𝐹6}. Then D is a 

dominating set and so 𝛾(ℋ3(𝑅)) = 3. 

In view of example 3.3 and example 3.4, if 𝑅 = ∏ 𝐹𝑖
4
𝑖=1 , then 𝛾(ℋ3(𝑅)) = 2 = 𝑛 − 2 

and 𝛾(ℋ3(𝑅)) = 3 = 𝑛 − 3 when 𝑅 = ∏ 𝐹𝑖
6
𝑖=1 , the domination number of graph does not vary uniformly. Based on the 

value of 𝑛, the domination number of ℋ3(𝑅) where 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛 splits into two cases. 

In the following theorem, we determine domination number of 3-nil hypergraph of ideals of reduced ring with the 

number of maximal ideals is at least six.  

Theorem 3.7. Let 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛, 𝑛 ≥ 6  be a ring where each 𝐹𝑖 is a field. Then 𝛾(ℋ3(𝑅)) =  n −  3.  Moreover, 

 𝛾(ℋ3(𝑅)) =  γ−1(ℋ3(𝑅)) = 𝛾𝑐(ℋ3(𝑅)).  

Proof.  Let 𝐷 = {𝑋1, … , 𝑋𝑛−3}, where 𝑋𝑖 ∈ 𝑉𝑛−3, 1 ≤  i ≤  n −  3. Consider 𝑋𝑙 = ∏ 𝐼𝑖𝑛−3 × ∏ 𝐹𝑗3 ∈ 𝐷 and define Ω𝑙  = 

{α : 𝐼𝛼 ⊂ 𝐹𝛼  in 𝑋𝑙 }. For each 1 ≤  𝑙 ≤  𝑛 −  3, 𝑋𝑙  dominates all the vertices of the form I𝑖 × ∏ 𝐹𝑗𝑛−1 ∈ 𝑉1  where  𝑖 ∉ Ω𝑙, 

∏ I𝑖2 × ∏ 𝐹𝑗𝑛−2 ∈ 𝑉2  where  𝑖 ∉ Ω𝑙, I𝑖 × 𝐼𝑠 × ∏ 𝐹𝑗𝑛−2 ∈ 𝑉2  where 𝑖 ∈ Ω𝑙, ∏ 𝐼𝑖2𝑖∈𝛺𝑙
𝑐 × 𝐼𝑠 × ∏ 𝐹𝑗𝑛−3 , 𝑠 ∈ Ω𝑙 , 𝐼𝑡 ×

∏ 𝐼𝑖2𝑖∈Ω𝑙
× ∏ 𝐹𝑗𝑛−3 ∈ 𝑉3, ∏ 𝐼𝑖2𝑖∈Ω𝑙

× ∏ 𝐼𝑗2𝑗∉Ω𝑙
× ∏ 𝐹𝑙𝑛−4 ∈ 𝑉4, … , ∏ 𝐼𝑖𝑛−4𝑖∈Ω𝑙

× ∏ 𝐼𝑗2𝑠∈𝛺𝑙
𝑐 × ∏ 𝐹𝑗2 ∈ 𝑉𝑛−2. Hence 𝐷 is a 

dominating set of ℋ3(𝑅) and so 𝛾(ℋ3(𝑅)) ≤ n − 3. 

                         Suppose 𝑆 = {𝑌1, … , 𝑌𝑛−4} is a dominating set of ℋ3(𝑅). Suppose 𝑌𝑖  ∈ V1 

for all 𝑖 and define Ω𝑖= {α : 𝐼𝛼 ⊂ 𝐹𝛼  in 𝑌𝑖}. Let Ω = ⋃ Ω𝑖
4
𝑖=1 . It is clear that | Ω| = n − 4 . Then there exists a vertex 𝑌 =

∏ 𝐼𝑖𝑖∈𝛺 × ∏ 𝐹𝑗4  which is not dominated by any vertex of S. Suppose 𝑌𝑖 ∈ 𝑉𝑗  for all 𝑖, 2 ≤  𝑗 ≤  𝑛 −  2 or S ∩ 𝑉𝑗 ≠ ∅ for 

at least two 𝑗 . The following two cases are to be considered. 

Case 1. Suppose ∩𝑌𝑖 = {0} for all 𝑌𝑖 ∈  S. Then there exists a vertex  𝑍 = ∏ 𝐼𝑖𝑛−2 × ∏ 𝐹𝑗2  

 which is not dominated by any vertex of 𝑆. 

Case 2. Suppose ∩𝑌𝑖 ≠ {0}  for all 𝑌𝑖 ∈  S.  Let  𝐿 =∩ 𝑌𝑖. Define Ω = {α : 𝐼𝛼 = 𝐹𝛼 in 𝐿}. Then there exists a vertex 𝑌 =

∏ 𝐼𝑖𝑖∈𝛺 × ∏ 𝐼𝑗 × ∏ 𝐹𝑙 𝑛−4 which is not dominated by any vertex of 𝑆. We conclude, therefore, that  𝛾(ℋ3(𝑅)) = 𝑛 − 3. 

The moreover condition is clear. 

 

Theorem 3.8. Let 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛 be a ring with identity where each 𝐹𝑖 is a field. Then γ ℋ3(𝑅)) = n − 2 = γ−1(ℋ3(𝑅)) 

if and only if n = 4 or 5. 
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Proof. Assume that 𝑛 =  4 or 5. Let 𝐷 = {𝑋1, ⋯ , 𝑋𝑛−2},  where 𝑋𝑖 ∈𝑉𝑖, 1 ≤  𝑖 ≤ 𝑛 −  2. We claim that 𝐷 is a γ -set of 

ℋ3(𝑅). We consider the following two cases. 

Case 1. Suppose 𝑛 =  4. Then 𝑉 = ⋃ V𝑖
2
𝑖=1 . Consider 𝐷 = {𝑋1, 𝑋2},  where 𝑋1 ∈ 𝑉1  

and  𝑋2 ∈ 𝑉2.  Define Ω𝑖= { m : 𝐼𝑚 ⊂ 𝐹𝑚  in 𝑋𝑖 ∈ 𝐷}, where 𝑖 =  1, 2. Clearly 𝑋1 dominates all the vertices of the form 

I𝑖 × ∏ 𝐹𝑙 ∈ 𝑉1𝑛−1  and 𝑋2 dominates all the remaining vertices of the form I𝑗 × I𝑙 × ∏ 𝐹𝑡 ∈ 𝑉2𝑛−2 , 𝑗 ∈ 𝛺1. Therefore, 𝐷 is 

a dominating set and hence γ (ℋ3(𝑅)) ≤ 2. 

Suppose 𝑆 is a dominating set with |𝑆|  =  1. Consider  𝑆 =  {𝑋}. If 𝑋 ∈ 𝑉1, then there exists a vertex 𝑌1 = I𝑖 × I𝑙 ×

∏ 𝐹𝑗 𝑛−2 , 𝑖 ∈ 𝛺1 which does not form an edge with 𝑋.  If  𝑋 ∈ 𝑉2 , then there exists a vertex  𝑌2 = I𝑖 × ∏ 𝐹𝑗 𝑛−1 , 𝑖 ∈

𝛺1 which is not dominated by 𝑋. 

Case 2. Suppose 𝑛 =  5. Then 𝑉 = ⋃ V𝑖
3
𝑖=1 . Let 𝐷 = {𝑋1, 𝑋2, 𝑋3}, where 𝑋1 ∈ 𝑉1, 𝑋2 ∈ 𝑉2 and 𝑋3 ∈ 𝑉3. Define Ω𝑖= { 

m : 𝐼𝑚 ⊂ 𝐹𝑚  in 𝑋𝑖 ∈ 𝐷}, where 𝑖 =  1, 2, 3. Clearly 𝑋1 and 𝑋2 forms an edge with all the vertices of  𝑉1 and 

𝑉2 respectively. Also 𝑋3 forms an edge with all the vertices of 𝑉3 except the vertices of the form. This forms an edge with 

either 𝑋1 or 𝑋2. 

Suppose S is a dominating set with |𝑆|  ≤  2. Without loss of generality assume that |𝑆|  =  2. Consider 𝑆 = {𝑋1, 𝑋2}. If 

𝑋1, 𝑋2 ∈ 𝑉1, then there exists a vertex of the form which does not form an edge with any vertex in S. Suppose 𝑋1, 𝑋2 ∈  

𝑉2or 𝑉3or S ∩ 𝑉𝑖 ≠ ∅ or S ∩ 𝑉𝑗 ≠ ∅, 𝑖 ≠  𝑗 . Proof follows from case 1 and case 2 of Theorem 3.7. We conclude, therefore, 

that 𝛾 (ℋ3(𝑅))  =  𝑛 −  2. 

Reverse inclusion follows from Theorem 3.7. 

 

For connected domination number of ℋ3(𝑅) we consider separately the cases when n = 4 and n = 5. The proof of the next 

result is dual to the above proof, we left the details here. 

Theorem 3.9. Let 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛 be a ring where each 𝐹𝑖 is a field. Then  𝛾𝑐(ℋ3(𝑅)) =  𝑛 −  2 if and only if 𝑛 =

 5. 

Theorem 3.10. Let 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛 be a ring where each 𝐹𝑖 is a field. Then 𝛾𝑐(ℋ3(𝑅)) =  𝑛 –  1 if and only if 𝑛 =

 4. 

Proof. Suppose 𝑛 =  4. Then  𝑉 = ⋃ V𝑗
2
𝑗=1 . Consider D = {𝑋1, 𝑋2, 𝑋3} where 𝑋𝑖 ∈ 𝑉1 for all 𝑖. Notice that 𝑋𝑖 dominates 

all vertices of 𝑉1 and 𝑉2. Hence it is a connected dominating set with 𝛾𝑐(ℋ3(𝑅)) ≤  3.  
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Suppose 𝑆 is a connected dominating set with |𝑆|  <  3. Without loss of generality assume that |𝑆|  =  2. Consider 𝐷 =

{𝑋1, 𝑋2},. Define Ω𝑖= { α : 𝐼α ⊂ 𝐹α  in 𝑋𝑖 ∈ S}, 𝑖 =  1, 2. If 𝑋1, 𝑋2 ∈ 𝑉1, then there exists a vertex of the form I, j ∈ which 

does not form an edge with any vertex in S. Suppose 𝑋1, 𝑋2 ∈ 𝑉2 or 𝑋1 ∈ 𝑉1, 𝑋2 ∈ 𝑉2. Proof follows from case 1 and case 

2 of Theorem 3.7, which completes the proof. 

Reverse inclusion follows from Theorem 3.9 and Theorem 3.7. 

In the following Theorem, we show that if 𝑅 is a product of local ring with 𝑚𝑖 ≠ ∅, then 𝛾(ℋ3(𝑅)) =  𝑛 −  2. 

Theorem 3.11. 𝑅 = 𝑅1 × ⋯ × 𝑅𝑛, n ≥  5  be a ring where each (𝑅𝑖, 𝑚𝑖) is a local ring, 𝑚𝑖 ≠ ∅. Then 𝛾(ℋ3(𝑅)) =

 𝑛 −  2. Further, γ (ℋ3(𝑅)) = 𝛾𝑐(ℋ3(𝑅))  = γ−1(ℋ3(𝑅)). 

Proof. Let for each 𝑖 =  1, 2, . . . , 𝑛 −  2, 𝑋𝑖 ∈ 𝑉𝑖 and 𝐷 = {𝑋1, … , 𝑋𝑛−2}, In order to complete the proof, it suffices to show 

that 𝐷 is a dominating set for ℋ3(𝑅). Let 𝑋𝑙 =∏ 𝐼𝑖 𝑙 × ∏ 𝑅𝑗 𝑛−𝑙  ∈ 𝐷. Define Ω1= { α : 𝐼α ⊂ 𝐹α  in 𝑋𝑙}. Then 𝑋𝑙 forms an 

edge with vertices of the form 𝐼𝑖 × ∏ 𝐹𝑗 ∈𝑛−1 𝑉1 where  𝑖 ∉ Ω1, ∏ 𝐼𝑖 2 × ∏ 𝐹𝑗 𝑛−2 , where 𝑖 ∉ Ω𝑙, 𝐼𝑖 × 𝐼𝑙 × ∏ 𝐹𝑗𝑛−2 ∈ 𝑉2 

where 𝑖 ∈ Ω𝑙, ∏ 𝐼𝑖 × 𝐼𝑠 ×2𝑖∈𝛺𝑙
𝑐 ∏ 𝐹𝑗 , 𝑠𝑛−3 ∈ Ω𝑙, 𝐼𝑖 × ∏ 𝐼𝑖 ×2𝑖∈𝛺𝑙

∏ 𝐹𝑗 ∈𝑛−3 𝑉3, 

∏ 𝐼𝑖 ×2𝑖∈𝛺𝑙
∏ 𝐼𝑗 ×2𝑗∉𝛺𝑙

∏ 𝐹𝑠 ∈𝑛−4 𝑉4, … , ∏ 𝐼𝑖 ×2𝑖∈𝛺𝑙
∏ 𝐼𝑗 ×2𝑗∉𝛺𝑙

∏ 𝐹𝑠 ∈𝑛−4 𝑉4, … , ∏ 𝐼𝑖 × ∏ 𝐼𝑙 ×2𝑖∈𝛺𝑙
𝑐𝑛−4𝑖∈𝛺𝑙

∏ 𝐹𝑗 ∈2 𝑉𝑛−2. 

Clearly 𝐷 is a dominating set and hence 𝛾 (ℋ3(𝑅)) ≤ n − 2. 

Suppose 𝐷 = {𝑋1, … , 𝑋𝑚}, is a dominating set with m < n − 2. Suppose 𝑋𝑖 ∈ 𝑉1 for all i. Define Ω= { α : 𝐼α ⊂ 𝐹α  in 𝑋𝑖 ∈

S}. Then there exists a vertex Fj which is not dominated by any vertex of S. Suppose 𝑋𝑖 ∈ 𝑉𝑗 for all 𝑖, 2 ≤ j ≤ n − 2 or S ∩

𝑉𝑖 ≠ ∅  for at least two j . Proof follows from case 1 

and case 2 of Theorem 3.7, which completes the proof. 

Theorem 3.12. Let 𝑅 = 𝑅1 × ⋯ × 𝑅𝑛 be a commutative ring with identity where each (𝑅𝑖 , 𝑚𝑖) is a local ring, 𝑚𝑖 ≠ ∅. 

Then γ (ℋ3(𝑅)) = n − 1 = 𝛾𝑐(ℋ3(𝑅)) =γ−1 (ℋ3(𝑅)) if and only if 𝑛 =  3, 4. 

Proof. Assume that 𝑛 =  3 or 4. Consider 𝐷 = {𝑋1, … , 𝑋𝑛−1},  where 𝑋𝑖 = 𝐼𝑠 × ∏ 𝑅𝑡𝑛−1  ∈ 𝑉1 . We claim that 𝐷 is a γ -

set of ℋ3(𝑅) with |𝐷|  =  𝑛 −  1. Define Ω𝒊= { m : 𝐼m ⊂ 𝐹m in 𝑋𝑖  ∈  D}. Then 𝑋𝑖 forms an edge with vertices of the 

form 𝐼𝛼 × ∏ 𝑅𝛽𝑛−1  ∈ 𝑉1, ∏ 𝐼𝛼2 × ∏ 𝑅𝛽𝑛−2  ∈ 𝑉2, … , ∏ 𝐼𝛼𝑛−2 × ∏ 𝑅𝛽2 ∈ 𝑉n−2 , where 𝛼 ∉  Ω𝒊. Hence γ (ℋ3(𝑅)) ≤ n − 1. 

Suppose 𝑆 = {𝑋1, … , 𝑋𝑚} is a dominating set with |𝑆|  <  𝑛 −  1. Without loss of generality assume that |𝑆|  =  𝑛 −  2. 

Let 𝑋𝑖 ∈ 𝑉1. Define Ω = ∪ Ω𝑖 Then 𝑋𝑖 cannot cover vertices of the form ∏ 𝐼𝑖𝑖∈𝛺𝑛−2
× ∏ 𝑅𝑗2 . Thus  |𝑆|  ≥  𝑛 −  1, which 

completes the proof. 

Reverse inclusion follows from Theorem 3.12. 

4. Independent Domination number of  𝓗𝟑(𝑹). 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 
 

IJCRT1807312 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 560 
 

This section is devoted to the study of independent domination in 3-nil hypergraph of ideals. 

Consider next the class of all independent dominating sets in a hypergraph. For example, let 𝑅 = 𝐹1 × 𝐹2 × 𝐹3 ×

𝐹4 be a ring, where each 𝐹𝑖 is a field. Then 𝑋1 = 𝐹1 × 𝐹2 × 𝐹3 × (0), 𝑋2 = 𝐹1 × 𝐹2 × (0) × 𝐹4, 𝑋3 = 𝐹1 × (0) × 𝐹3 ×

𝐹4, 𝑋4 = (0) × 𝐹2 × 𝐹3 × 𝐹4, 𝑋5 = 𝐹1 × 𝐹2 × (0) × (0), 𝑋6 = 𝐹1 × (0) × 𝐹3 × (0), 𝑋7 = 𝐹1 × (0) × (0) ×

𝐹4, 𝑋8 = (0) × 𝐹2 × 𝐹3 × (0), 𝑋9 = (0) × 𝐹2 × (0) × 𝐹4, 𝑋10 = (0) × (0) × 𝐹3 × 𝐹4. Here 𝐷 = {𝑋1, 𝑋5} and hence 

𝛾𝑖( ℋ3(𝑅)) = 2. 

In the following, we determine the independent domination number of the 3-nil hypergraph of ideals of a 

ring. 

Theorem 4.1.  Let 𝑅 = 𝑅1 × ⋯ × 𝑅𝑛, 𝑛 ≥ 3 be a commutative ring where each (𝑅𝑖, 𝑚𝑖)  is a local ring and 𝛼𝑖′𝑠 be the 

number of proper ideals of 𝑅𝑖 such that 𝛼1 ≥  𝛼2 ≥ ⋯ ≥  𝛼𝑛 . Then 𝛾𝑖( ℋ3(𝑅)) = ∑  (𝛼𝑖
𝑛
𝑖=3  𝛼𝑖+1 ⋯  𝛼𝑛). 

Proof.  Let D =  {X1, ⋯ , Xm} where 𝑚 = ∑  (𝛼
𝑖

𝑛
𝑖=3  𝛼𝑖+1 ⋯  𝛼𝑛) and each Xi ϵ Vj such that  Xi = ∏ Il

j
l=1 × ∏ Rsn−j , 1 ≤

j ≤ n − 2.  For m >j, Xi covers vertices of the form ∏ 𝐼𝑚𝑛−𝑗−1𝑚>𝑗
× ∏ 𝑅𝑙𝑗+1 , ∏ 𝐼𝑚𝑛−𝑗−1𝑚>𝑗

× ∏ 𝐼𝑠𝑙<𝑗 ×

∏ 𝑅𝑡𝑛−𝑗−𝑙−1 , 𝑠ϵ{1, ⋯ , j − 1}. Clearly Xi cannot form an edge with vertices of the form  ∏ Il
j
l=1 × ∏ Rtn−j  . Hence D must 

contain this type of vertices in the dominating set. Clearly D is an independent set and it contains  

 𝛼𝑗+1 𝛼𝑗+2 ⋯  𝛼𝑛 elements from each Vj, 1 ≤ j ≤ n − 2. Therefore, D is an independent dominating set. 

Suppose |𝑆| < 𝑚. Without loss of generality assume that |𝑆| = 𝑚 − 1. Since 𝑆 is independent, every vertex of 𝑆 is of the 

form Xi = ∏ Ilj × ∏ Rt,n−j  1 ≤ j ≤ n − 2 such that  ⋂ Xi = 𝐼𝑙 × ∏ Rj,n−1   . Then Xi cannot cover vertex of the form ∏ Isj ×

∏ Rm,n−j  1 ≤ j ≤ n − 2, a contradiction. 

The following corollary is nearly immediate in light of the theorem. One can prove the following corollary in 

analogous to the above. 

Corollary 4.2. Let 𝑅 = 𝐹1 × 𝐹2 × 𝐹3 × 𝐹4, n≥ 4  be a commutative ring where each 𝐹𝑖 is a field. Then 

 𝛾𝑖( ℋ3(𝑅)) =   n −  2. 

To this end, we recall the definition of hyperdomination. Let ℋ = (𝑋, 𝐸) be a hypergraph. A set 𝐷 ⊆  X  is 

called a hyperdominating set if for each ∈  X −  D , there exists an edge 𝐸 ∈ Ɛ such that 𝐸 − 𝑣 ⊆ D. The minimum 

cardinality of all hyperdominating sets is called the hyperdomination number of ℋ and is denoted by  𝛾ℎ(ℋ). 

For example, if 𝑅 = 𝐹1 × 𝐹2 × 𝐹3, then  𝛾ℎ ( ℋ3(𝑅)) = 2. Suppose 𝑅 = 𝐹1 × ⋯ × 𝐹𝑛, where n = 4 and 5, then 

 𝛾ℎ ( ℋ3(𝑅))  = 4 and 7 respectively. We conclude this section by posing a question on the hyperdomination number 

of 3-nil hypergraph of ideals. 

Question 4.3. Can we find the hyperdomination number of 3-nil hypergraph of ideals? 
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