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Abstract 

In this paper we discuss about the lower and upper bounds on Chromatic number of S(n,m) graphs. We have also 

discussed about the Chromatic number of S(n,m) for n ≥ 2m+2, odd m ≥ 3, S(n,2) and S(n,4) graphs.  
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1. Introduction 
In this paper we consider the graph S (n,m) which is a quartic graph and also both Eulerian and Hamiltonian. 

The graph S (n, m)[1] consists of n vertices denoted as v1, v2, ……. vn. The edges are defined as follows: 

i) vi is adjacent to vi+1 and vn is adjacent to v1. 

ii) vi is adjacent to vi+m if i+m ≤ n. 

iii) vi is adjacent to vi+m-n if i+m  n. 

 Definition 1.1.  A k-vertex coloring or k-coloring for short, of a graph G is an assignment of one of k available 

colors to each vertex ‘x’ of G such that adjacent vertices receive different colors. The smallest k for which a 

graph G admits a k-coloring is called the Chromatic Number of G and is denoted by 𝜒(G). 

Definition 1.2. The matrix Q = A + D, where A is the Adjacent matrix of graph G and D is the diagonal matrix 

whose main entries are the degrees in G, is called the Signless Laplacian of  G. 

2. BOUNDS ON CHROMATIC NUMBER OF S(n,m) GRAPHS (n ≥ 2m+2) 

Theorem 2. 1:The Chromatic number χ [S(n, m)] , n ≥ 2m + 2 satisfies   1+ [
4

4−𝛿𝑛
] ≤ χ [S(n, m)] ≤ 5 , where 𝛿n is 

the eigenvalue of Signless Laplacian of S(n, m).   

Proof . In 2011 Lima, Oliveira, Abreu and Nikiforov [2, 3] proved that χ[G] ≥ 1+[
2𝑞

2𝑞−𝑝𝛿𝑝
] , where G is a graph 

with q edges and p vertices. 𝛿p is the eigenvalue of Signless Laplacian of G which satisfies 𝛿1 ≥ 𝛿2 ≥ …. 𝛿p ≥ 0. 

In S(n, m) graphs, the number of edges is twice the number of vertices.  i.e., Number of edges = 2n.  This is 

illustrated by Fig.1. 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 
 

IJCRT1807311 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 551 
 

 

So,  χ [S(n,m)]  1+[
2(2𝑛)

2(2𝑛)−𝑛𝛿𝑛
] . i.e., χ [S(n,m)]  1+[

4𝑛

4𝑛−𝑛𝛿𝑛
]. i.e., χ [S(n,m)]  1+[

4

4−𝛿𝑛
]. 

By Greedy Coloring Theorem, χ( G) ≤ d+1, where d is the largest degree of the vertex. In S(n,m) graphs the 

degree of each vertex is 4 [ FIG.1]and so χ [S(n,m)] ≤ 5. Therefore, 1+[
4

4−𝛿𝑛
] ≤ χ [S(n,m)] ≤ 5. In particular, 

since, 𝛿n ≥ 0, 
4

4−𝛿𝑛
 ≥1 and so 1+[

4

4−𝛿𝑛
] ≥ 2. So, 2 ≤ χ [S(n,m)] ≤ 5. 

 

3. CHROMATIC NUMBER OF S(n,m) GRAPHS 

Theorem 3.1. The chromatic number χ [S(n,m)] is , (i). 2 for even n ≥ 2m+2 and odd m ≥ 3 (ii) 4 for odd  n ≥ 

2m+2 and odd m ≥ 3. 

Proof . Let v1, v2, ……. vn be the vertices of the graph S(n,m) and its edges be denoted by (vivi+1),(vivi+m),(vivi+n-m) 

for i= 1,2,3….. and (vnv1). Let the coloring set of S(n,m) be {1,2,3,….}. We define the function f from the vertex 

set of S(n,m) to the coloring set {1,2,3,..}as follows: 

Case (i) : Even n ≥ 2m+2 and odd m ≥ 3. 

f (vi)  = {
1, i – odd 1 ≤  i ≤  n

2, i − even 1 ≤  i ≤  n.
  

Using the above pattern the graph S(n,m) for even n ≥ 2m+2 and odd m ≥ 3 admits   

vertex coloring. The chromatic number χ [S(n,m)] = 2. 

Case (ii) : Odd n ≥ 2m+2 and odd m ≥ 3. 

f ( vi ) = {

1, i – odd ,                       1 ≤  i ≤  n − m
2, i − even ,                    1 ≤  i ≤  n − m
3, i – odd ,          n − (m − 1)  ≤  i ≤  n

4, i −  even ,         n − (m − 1)  ≤  i ≤  n.

 

   Using the above pattern S(n,m) for odd n ≥ 2m+2 and odd m ≥ 3, admits vertex   coloring. The chromatic 

number χ [S(n,m)] = 4. 

Theorem 3.2.  The chromatic number of  S(n,2) for n ≥ 6 is 

(i) 3 for n ≡ 0 (mod 6) and n ≡ 3 ( mod 6) 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 
 

IJCRT1807311 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 552 
 

(ii) 4 for n ≡ 1 (mod 6) and n ≡ 4 ( mod 6) 

(iii) 5 for n ≡ 2 (mod 6) and n ≡ 5 ( mod 6). 

Proof.  Let v1, v2, ……. vn be the vertices of the graph S(n,2) and its edges be denoted by (vivi+1),(vivi+2),(vivi+n-2) 

for i= 1,2,3….. and (vnv1). Let f be a function that maps vertex set of S(n,2) to the coloring set {1,2,3….}. 

Case (i): n ≡ 0 (mod 6) and n ≡ 3 ( mod 6) 

      f (vi) =  {

1,        for all i ≡  1(mod 3) 1 ≤  i ≤ n  
2,        for all i ≡  2(mod 3) 1 ≤  i ≤  n
3,        for all i ≡  0(mod 3) 1 ≤  i ≤  n

 

     By using above pattern S(n,2) admits vertex coloring. The chromatic number χ [S(n,2)] = 3. 

Case (ii) : n ≡ 1 (mod 6) and n ≡ 4 ( mod 6) 

  f (vi) =  {

1,         for all i ≡  1(mod 3) 1 ≤  i ≤  n − 1
2,         for all i ≡  2(mod 3) 1 ≤  i ≤  n − 1
3,         for all i ≡  0(mod 3) 1 ≤  i ≤  n − 1.

 

        f(vn) = 4. Using the above pattern S(n,2) admits vertex coloring. The chromatic number  χ [S(n,2)] = 4. 

Case (iii) : n ≡ 2 (mod 6) and n ≡ 5 ( mod 6). 

  f (vi) =  {

1,         for all i ≡  1(mod 3) 1 ≤  i ≤  n − 2
2,         for all i ≡  2(mod 3) 1 ≤  i ≤  n − 2
3,         for all i ≡  0(mod 3) 1 ≤  i ≤  n − 2.

 

f (vn-1) = 4 and  f (vn)   = 5. Using the above pattern S(n,2) admits vertex coloring. The chromatic number  χ 

[S(n,2)] = 5. 

Theorem 3.3. The chromatic number of S(n,4), n ≥ 10 is 3 for  n ≡ 0 (mod 3), n ≡ 2 (mod 3)                                

and n ≡ 1 (mod 3). 

Proof.  Let v1, v2, ……. vn be the vertices of the graph S(n,4) and its edges be denoted by (vi vi+1),(vi vi+4),(vivi+n-

4) for i= 1,2,3….. and (vnv1).  Let f be a function that maps vertex set of S(n,4) to the coloring set {1,2,3….}. 

Case (i) : n ≡ 0 (mod 3) and n ≡ 2 (mod 3).  

      f (vi) =  {

1,        for all i ≡  1(mod 3) 1 ≤  i ≤ n  
2,        for all i ≡  2(mod 3) 1 ≤  i ≤  n
3,        for all i ≡  0(mod 3) 1 ≤  i ≤  n

 

Using the above pattern S(n,4) admits vertex coloring. The chromatic number  χ [S(n,4)] = 3. 

Case (ii) : n ≡ 1 (mod 3) 

      f (vi) =  {

1,        for all i ≡  1(mod 3)1 ≤  i ≤ n − 4  
2,        for all i ≡  2(mod 3)1 ≤  i ≤  n − 4
3,        for all i ≡  0(mod 3)1 ≤  i ≤  n − 4
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f(vn-3) = 2,   f(vn-2) = 3,   f(vn-1)= 1 and f(vn) = 2. Using the above pattern S(n,4) admits vertex coloring. The 

chromatic number χ [S(n,4)] = 3. 

4. Conclusion.  We have found the lower and upper bounds on chromatic number of  S(n,m),n≥2m+2. In general χ 

[S(n,m)],n≥2m+2 satisfies 2≤ χ [S(n,m)] ≤ 5. The chromatic number of S(n,m),n≥2m+2,  

when m = 2,3,4 are also discussed. 
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