Upper And Lower Bounds On The Chromatic Number Of S (n, m) Graphs.

R. Ganapathy Raman ${ }^{1}$ and S.Gayathri ${ }^{2}$
${ }^{1}$ Department of Mathematics, Pachaiyappa's College, Aminjakarai, Chennai - 600030.
${ }^{2}$ Department of Mathematics, Pachaiyappa's College, Aminjakarai, Chennai - 600030.
\section*{E-mail : gaaya3s@yahoo.com}

Abstract

In this paper we discuss about the lower and upper bounds on Chromatic number of $S(n, m)$ graphs. We have also discussed about the Chromatic number of $S(n, m)$ for $n \geq 2 m+2$, odd $m \geq 3, S(n, 2)$ and $S(n, 4)$ graphs.

Keywords: Lower and Upper bounds, Chromatic number of $S(n, m)$ graphs.

1. Introduction

In this paper we consider the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ which is a quartic graph and also both Eulerian and Hamiltonian.
The graph $S(n, m)[1]$ consists of n vertices denoted as $v_{1}, v_{2}, \ldots \ldots . v_{n}$. The edges are defined as follows:
i) $\quad v_{i}$ is adjacent to v_{i+1} and v_{n} is adjacent to v_{1}.
ii) $\quad v_{i}$ is adjacent to v_{i+m} if $i+m \leq n$.
iii) $\quad v_{i}$ is adjacent to v_{i+m-n} if $i+m>n$.

Definition 1.1. A k-vertex coloring or k-coloring for short, of a graph G is an assignment of one of k available colors to each vertex ' x ' of G such that adjacent vertices receive different colors. The smallest k for which a graph G admits a k-coloring is called the Chromatic Number of G and is denoted by $\mathcal{X}(G)$.

Definition 1.2. The matrix $Q=A+D$, where A is the Adjacent matrix of graph G and D is the diagonal matrix whose main entries are the degrees in G, is called the Signless Laplacian of G.

2. BOUNDS ON CHROMATIC NUMBER OF $S(n, m)$ GRAPHS ($\mathrm{n} \geq \mathbf{2 m + 2}$)

Theorem 2. 1:The Chromatic number $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})], \mathrm{n} \geq 2 \mathrm{~m}+2$ satisfies $\quad 1+\left[\frac{4}{4-\delta_{n}}\right] \leq \chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \leq 5$, where δ_{n} is the eigenvalue of Signless Laplacian of $\mathrm{S}(\mathrm{n}, \mathrm{m})$.

Proof . In 2011 Lima, Oliveira, Abreu and Nikiforov [2, 3] proved that $\chi[\mathrm{G}] \geq 1+\left[\frac{2 q}{2 q-p \delta_{p}}\right]$, where G is a graph with q edges and p vertices. δ_{p} is the eigenvalue of Signless Laplacian of G which satisfies $\delta_{1} \geq \delta_{2} \geq \ldots . \delta_{\mathrm{p}} \geq 0$.

In $\mathrm{S}(\mathrm{n}, \mathrm{m})$ graphs, the number of edges is twice the number of vertices. i.e., Number of edges $=2 \mathrm{n}$. This is illustrated by Fig.1.

No. of vertices $=n=6$
No. of edges $=12$

FIG. $1: \mathrm{S}(6,2)$ graph
So, $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \geq 1+\left[\frac{2(2 n)}{2(2 n)-n \delta_{n}}\right]$. i.e., $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \geq 1+\left[\frac{4 n}{4 n-n \delta_{n}}\right]$.i.e., $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \geq 1+\left[\frac{4}{4-\delta_{n}}\right]$.
By Greedy Coloring Theorem, $\chi(\mathrm{G}) \leq \mathrm{d}+1$, where d is the largest degree of the vertex. In $\mathrm{S}(\mathrm{n}, \mathrm{m})$ graphs the degree of each vertex is 4 [FIG.1] and so $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \leq 5$. Therefore, $1+\left[\frac{4}{4-\delta_{n}}\right] \leq \chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \leq 5$. In particular, since, $\delta_{\mathrm{n}} \geq 0, \frac{4}{4-\delta_{n}} \geq 1$ and so $1+\left[\frac{4}{4-\delta_{n}}\right] \geq 2$. So, $2 \leq \chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \leq 5$.

3. CHROMATIC NUMBER OF $S(n, m)$ GRAPHS

Theorem 3.1. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})]$ is, (i). 2 for even $\mathrm{n} \geq 2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$ (ii) 4 for odd $\mathrm{n} \geq$ $2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$.

Proof. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . \mathrm{v}_{\mathrm{n}}$ be the vertices of the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ and its edges be denoted by $\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+\mathrm{m}}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+\mathrm{n}-\mathrm{m}}\right)$ for $\mathrm{i}=1,2,3 \ldots \ldots$ and $\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)$. Let the coloring set of $\mathrm{S}(\mathrm{n}, \mathrm{m})$ be $\{1,2,3, \ldots\}$. We define the function f from the vertex set of $S(n, m)$ to the coloring set $\{1,2,3, .$.$\} as follows:$

Case (i): Even $\mathrm{n} \geq 2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$.

$$
f(\mathrm{vi})=\left\{\begin{array}{c}
1, \mathrm{i}-\text { odd } 1 \leq i \leq n \\
2, i-\text { even } 1 \leq i \leq n .
\end{array}\right.
$$

Using the above pattern the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ for even $\mathrm{n} \geq 2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$ admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})]=2$.

Case (ii): Odd $\mathrm{n} \geq 2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$.

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{lr}
1, \mathrm{i}-\text { odd }, & 1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m} \\
2, \mathrm{i}-\text { even }, & 1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m} \\
3, \mathrm{i}-\text { odd, }, & \mathrm{n}-(\mathrm{m}-1) \leq \mathrm{i} \leq \mathrm{n} \\
4, \mathrm{i}-\text { even }, & \mathrm{n}-(\mathrm{m}-1) \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right.
$$

Using the above pattern $\mathrm{S}(\mathrm{n}, \mathrm{m})$ for odd $\mathrm{n} \geq 2 \mathrm{~m}+2$ and odd $\mathrm{m} \geq 3$, admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, \mathrm{m})]=4$.

Theorem 3.2. The chromatic number of $S(n, 2)$ for $n \geq 6$ is
(i) 3 for $\mathrm{n} \equiv 0(\bmod 6)$ and $\mathrm{n} \equiv 3(\bmod 6)$
(ii) 4 for $\mathrm{n} \equiv 1(\bmod 6)$ and $\mathrm{n} \equiv 4(\bmod 6)$
(iii) 5 for $\mathrm{n} \equiv 2(\bmod 6)$ and $\mathrm{n} \equiv 5(\bmod 6)$.

Proof. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . \mathrm{v}_{\mathrm{n}}$ be the vertices of the graph $\mathrm{S}(\mathrm{n}, 2)$ and its edges be denoted by $\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+\mathrm{n}-2}\right)$ for $\mathrm{i}=1,2,3 \ldots$. and $\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)$. Let f be a function that maps vertex set of $\mathrm{S}(\mathrm{n}, 2)$ to the coloring set $\{1,2,3 \ldots\}$.

Case (i): $\mathrm{n} \equiv 0(\bmod 6)$ and $\mathrm{n} \equiv 3(\bmod 6)$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { for all } \mathrm{i} \equiv 1(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n} \\ 2, & \text { for all } \mathrm{i} \equiv 2(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n} \\ 3, & \text { for all } \mathrm{i} \equiv 0(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}\end{cases}
$$

By using above pattern $\mathrm{S}(\mathrm{n}, 2)$ admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, 2)]=3$.
Case (ii) : $\mathrm{n} \equiv 1(\bmod 6)$ and $\mathrm{n} \equiv 4(\bmod 6)$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { for all } \mathrm{i} \equiv 1(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\ 2, & \text { for all } i \equiv 2(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\ 3, & \text { for all } \mathrm{i} \equiv 0(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-1\end{cases}
$$

$f\left(\mathrm{v}_{\mathrm{n}}\right)=4$. Using the above pattern $\mathrm{S}(\mathrm{n}, 2)$ admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, 2)]=4$.
Case (iii) : $\mathrm{n} \equiv 2(\bmod 6)$ and $\mathrm{n} \equiv 5(\bmod 6)$.

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { for all } \mathrm{i}=1(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\ 2, & \text { for all } \mathrm{i} \equiv 2(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\ 3, & \text { for all } \mathrm{i} \equiv 0(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-2\end{cases}
$$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)=4$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=5$. Using the above pattern $\mathrm{S}(\mathrm{n}, 2)$ admits vertex coloring. The chromatic number χ $[\mathrm{S}(\mathrm{n}, 2)]=5$.

Theorem 3.3. The chromatic number of $S(n, 4), n \geq 10$ is 3 for $n=0(\bmod 3), n \equiv 2(\bmod 3)$ and $\mathrm{n} \equiv 1(\bmod 3)$.

Proof. Let $v_{1}, v_{2}, \ldots \ldots v_{n}$ be the vertices of the graph $S(n, 4)$ and its edges be denoted by $\left(v_{i} v_{i+1}\right),\left(v_{i} v_{i+4}\right),\left(v_{i} v_{i+n}\right.$ 4) for $\mathrm{i}=1,2,3 \ldots$ and $\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)$. Let f be a function that maps vertex set of $\mathrm{S}(\mathrm{n}, 4)$ to the coloring set $\{1,2,3 \ldots$.$\} .$

Case (i) : $\mathrm{n} \equiv 0(\bmod 3)$ and $\mathrm{n} \equiv 2(\bmod 3)$.

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { for all } \mathrm{i} \equiv 1(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n} \\ 2, & \text { for all } \mathrm{i} \equiv 2(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n} \\ 3, & \text { for all } \mathrm{i} \equiv 0(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}\end{cases}
$$

Using the above pattern $\mathrm{S}(\mathrm{n}, 4)$ admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, 4)]=3$.
Case (ii) : $\mathrm{n} \equiv 1(\bmod 3)$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { for all } \mathrm{i} \equiv 1(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-4 \\ 2, & \text { for all } \mathrm{i} \equiv 2(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-4 \\ 3, & \text { for all } \mathrm{i} \equiv 0(\bmod 3) 1 \leq \mathrm{i} \leq \mathrm{n}-4\end{cases}
$$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}\right)=2, \quad \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}\right)=3, \quad \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)=1$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=2$. Using the above pattern $\mathrm{S}(\mathrm{n}, 4)$ admits vertex coloring. The chromatic number $\chi[\mathrm{S}(\mathrm{n}, 4)]=3$.
4. Conclusion. We have found the lower and upper bounds on chromatic number of $S(n, m), n \geq 2 m+2$. In general χ $[\mathrm{S}(\mathrm{n}, \mathrm{m})], \mathrm{n} \geq 2 \mathrm{~m}+2$ satisfies $2 \leq \chi[\mathrm{S}(\mathrm{n}, \mathrm{m})] \leq 5$. The chromatic number of $\mathrm{S}(\mathrm{n}, \mathrm{m}), \mathrm{n} \geq 2 \mathrm{~m}+2$, when $\mathrm{m}=2,3,4$ are also discussed.

5. References

1. Sudha S., Manikandan K., Total coloring of S(n. m) graph., International Journal of Scientific and Innovative Mathematical Research, 2(1) (2014), 16-22.
2. Clive Elphick, Pawel Wocjan, Unified spectral bounds on the chromatic number, arXiv:1210.7844v5 [math.CO] 29 Oct 2014.
3. L. S. de Lima, C. S. Oliveira, N. M. M. de Abreu, V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra and its Applications, vol. 435, issue 10, (2011), 2570-2584.
