# Upper And Lower Bounds On The Chromatic Number Of S (n, m) Graphs.

R. Ganapathy Raman<sup>1</sup> and S.Gayathri<sup>2</sup>

<sup>1</sup>Department of Mathematics, Pachaiyappa's College, Aminjakarai, Chennai – 600030.

<sup>2</sup>Department of Mathematics, Pachaiyappa's College, Aminjakarai, Chennai – 600030.

#### E-mail:gaaya3s@yahoo.com

#### Abstract

In this paper we discuss about the lower and upper bounds on Chromatic number of S(n,m) graphs. We have also discussed about the Chromatic number of S(n,m) for  $n \ge 2m+2$ , odd  $m \ge 3$ , S(n,2) and S(n,4) graphs.

*Keywords* : *Lower and Upper bounds, Chromatic number of S(n,m) graphs.* 

#### 1. Introduction

In this paper we consider the graph S (n,m) which is a quartic graph and also both Eulerian and Hamiltonian.

The graph S (n, m)[1] consists of n vertices denoted as  $v_1, v_2, \ldots, v_n$ . The edges are defined as follows:

- i)  $v_i$  is adjacent to  $v_{i+1}$  and  $v_n$  is adjacent to  $v_1$ .
- ii)  $v_i$  is adjacent to  $v_{i+m}$  if  $i+m \le n$ .
- iii)  $v_i$  is adjacent to  $v_{i+m-n}$  if i+m > n.

**Definition 1.1.** A k-vertex coloring or k-coloring for short, of a graph G is an assignment of one of k available colors to each vertex 'x' of G such that adjacent vertices receive different colors. The smallest k for which a graph G admits a k-coloring is called the Chromatic Number of G and is denoted by  $\chi(G)$ .

**Definition 1.2.** The matrix Q = A + D, where A is the Adjacent matrix of graph G and D is the diagonal matrix whose main entries are the degrees in G, is called the Signless Laplacian of G.

## **2.** BOUNDS ON CHROMATIC NUMBER OF S(n,m) GRAPHS $(n \ge 2m+2)$

**Theorem 2. 1**:The Chromatic number  $\chi[S(n, m)]$ ,  $n \ge 2m + 2$  satisfies  $1 + [\frac{4}{4-\delta_n}] \le \chi[S(n, m)] \le 5$ , where  $\delta_n$  is the eigenvalue of Signless Laplacian of S(n, m).

**Proof**. In 2011 Lima, Oliveira, Abreu and Nikiforov [2, 3] proved that  $\chi[G] \ge 1 + [\frac{2q}{2q - p\delta_p}]$ , where G is a graph with q edges and p vertices.  $\delta_p$  is the eigenvalue of Signless Laplacian of G which satisfies  $\delta_1 \ge \delta_2 \ge \dots \delta_p \ge 0$ .

In S(n, m) graphs, the number of edges is twice the number of vertices. i.e., Number of edges = 2n. This is illustrated by Fig.1.



So,  $\chi[S(n,m)] \ge 1 + [\frac{2(2n)}{2(2n) - n\delta_n}]$ . i.e.,  $\chi[S(n,m)] \ge 1 + [\frac{4n}{4n - n\delta_n}]$ . i.e.,  $\chi[S(n,m)] \ge 1 + [\frac{4}{4 - \delta_n}]$ .

By Greedy Coloring Theorem,  $\chi(G) \le d+1$ , where d is the largest degree of the vertex. In S(n,m) graphs the degree of each vertex is 4 [FIG.1]and so  $\chi[S(n,m)] \le 5$ . Therefore,  $1 + [\frac{4}{4-\delta_n}] \le \chi[S(n,m)] \le 5$ . In particular, since,  $\delta_n \ge 0, \frac{4}{4-\delta_n} \ge 1$  and so  $1 + [\frac{4}{4-\delta_n}] \ge 2$ . So,  $2 \le \chi[S(n,m)] \le 5$ .

### 3. CHROMATIC NUMBER OF S(n,m) GRAPHS

**Theorem 3.1.** The chromatic number  $\chi$  [S(n,m)] is , (i). 2 for even  $n \ge 2m+2$  and odd  $m \ge 3$  (ii) 4 for odd  $n \ge 2m+2$  and odd  $m \ge 3$ .

**Proof** Let  $v_1, v_2, \ldots, v_n$  be the vertices of the graph S(n,m) and its edges be denoted by  $(v_iv_{i+1}), (v_iv_{i+m}), (v_iv_{i+n-m})$  for  $i = 1, 2, 3, \ldots$  and  $(v_nv_1)$ . Let the coloring set of S(n,m) be  $\{1, 2, 3, \ldots\}$ . We define the function f from the vertex set of S(n,m) to the coloring set  $\{1, 2, 3, \ldots\}$  as follows:

Case (i): Even  $n \ge 2m+2$  and odd  $m \ge 3$ .

$$f(vi) = \begin{cases} 1, i - odd \ 1 \le i \le n \\ 2, i - even \ 1 \le i \le n. \end{cases}$$

Using the above pattern the graph S(n,m) for even  $n \ge 2m+2$  and odd  $m \ge 3$  admits

vertex coloring. The chromatic number  $\chi [S(n,m)] = 2$ .

Case (ii) : Odd  $n \ge 2m+2$  and odd  $m \ge 3$ .

$$f\left( \ v_i \ \right) = \begin{cases} 1, i - odd \ , & 1 \ \leq \ i \ \leq \ n - m \\ 2, i - even \ , & 1 \ \leq \ i \ \leq \ n - m \\ 3, i - odd \ , & n - (m - 1) \ \leq \ i \ \leq \ n \\ 4, i - even \ , & n - (m - 1) \ \leq \ i \ \leq \ n. \end{cases}$$

Using the above pattern S(n,m) for odd  $n \ge 2m+2$  and odd  $m \ge 3$ , admits vertex coloring. The chromatic number  $\chi [S(n,m)] = 4$ .

**Theorem 3.2.** The chromatic number of S(n,2) for  $n \ge 6$  is

(i) 3 for  $n \equiv 0 \pmod{6}$  and  $n \equiv 3 \pmod{6}$ 

(ii) 4 for  $n \equiv 1 \pmod{6}$  and  $n \equiv 4 \pmod{6}$ 

(iii) 5 for  $n \equiv 2 \pmod{6}$  and  $n \equiv 5 \pmod{6}$ .

Proof. Let  $v_1, v_2, \ldots, v_n$  be the vertices of the graph S(n,2) and its edges be denoted by  $(v_iv_{i+1}), (v_iv_{i+2}), (v_iv_{i+n-2})$  for  $i = 1, 2, 3, \ldots$  and  $(v_nv_1)$ . Let f be a function that maps vertex set of S(n,2) to the coloring set  $\{1, 2, 3, \ldots\}$ .

Case (i):  $n \equiv 0 \pmod{6}$  and  $n \equiv 3 \pmod{6}$ 

 $f\left(v_{i}\right) = \begin{cases} 1, & \text{ for all } i \equiv 1(\text{mod } 3) \ 1 \leq i \leq n \\ 2, & \text{ for all } i \equiv 2(\text{mod } 3) \ 1 \leq i \leq n \\ 3, & \text{ for all } i \equiv 0(\text{mod } 3) \ 1 \leq i \leq n \end{cases}$ 

By using above pattern S(n,2) admits vertex coloring. The chromatic number  $\chi[S(n,2)] = 3$ .

Case (ii) :  $n \equiv 1 \pmod{6}$  and  $n \equiv 4 \pmod{6}$ 

 $f(v_i) = \begin{cases} 1, & \text{ for all } i \equiv 1 \pmod{3} \ 1 \leq i \leq n-1 \\ 2, & \text{ for all } i \equiv 2 \pmod{3} \ 1 \leq i \leq n-1 \\ 3, & \text{ for all } i \equiv 0 \pmod{3} \ 1 \leq i \leq n-1. \end{cases}$ 

 $f(v_n) = 4$ . Using the above pattern S(n,2) admits vertex coloring. The chromatic number  $\chi[S(n,2)] = 4$ .

Case (iii) :  $n \equiv 2 \pmod{6}$  and  $n \equiv 5 \pmod{6}$ .

 $f(v_i) = \begin{cases} 1, & \text{for all } i \equiv 1 \pmod{3} \ 1 \leq i \leq n-2 \\ 2, & \text{for all } i \equiv 2 \pmod{3} \ 1 \leq i \leq n-2 \\ 3, & \text{for all } i \equiv 0 \pmod{3} \ 1 \leq i \leq n-2. \end{cases}$ 

f  $(v_{n-1}) = 4$  and f  $(v_n) = 5$ . Using the above pattern S(n,2) admits vertex coloring. The chromatic number  $\chi$  [S(n,2)] = 5.

**Theorem 3.3.** The chromatic number of S(n,4),  $n \ge 10$  is 3 for  $n \equiv 0 \pmod{3}$ ,  $n \equiv 2 \pmod{3}$  and  $n \equiv 1 \pmod{3}$ .

**Proof.** Let  $v_1, v_2, \ldots, v_n$  be the vertices of the graph S(n,4) and its edges be denoted by  $(v_i v_{i+1}), (v_i v_{i+4}), (v_i v_{i+n-4})$  for  $i = 1, 2, 3, \ldots$  and  $(v_n v_1)$ . Let f be a function that maps vertex set of S(n,4) to the coloring set  $\{1, 2, 3, \ldots\}$ .

Case (i) :  $n \equiv 0 \pmod{3}$  and  $n \equiv 2 \pmod{3}$ .

 $f\left(v_{i}\right) = \begin{cases} 1, & \text{ for all } i \equiv \ 1(\text{mod } 3) \ 1 \ \leq \ i \ \leq \ n \\ 2, & \text{ for all } i \equiv \ 2(\text{mod } 3) \ 1 \ \leq \ i \ \leq \ n \\ 3, & \text{ for all } i \equiv \ 0(\text{mod } 3) \ 1 \ \leq \ i \ \leq \ n \end{cases}$ 

Using the above pattern S(n,4) admits vertex coloring. The chromatic number  $\chi$  [S(n,4)] = 3.

Case (ii) :  $n \equiv 1 \pmod{3}$ 

$$f(v_i) = \begin{cases} 1, & \text{for all } i \equiv 1 \pmod{3} \\ 2, & \text{for all } i \equiv 2 \pmod{3} \\ 1 \leq i \leq n-4 \\ 3, & \text{for all } i \equiv 0 \pmod{3} \\ 1 \leq i \leq n-4 \end{cases}$$

 $f(v_{n-3}) = 2$ ,  $f(v_{n-2}) = 3$ ,  $f(v_{n-1}) = 1$  and  $f(v_n) = 2$ . Using the above pattern S(n,4) admits vertex coloring. The chromatic number  $\chi [S(n,4)] = 3$ .

4. Conclusion. We have found the lower and upper bounds on chromatic number of S(n,m),n≥2m+2. In general χ [S(n,m)],n≥2m+2 satisfies 2≤ χ [S(n,m)] ≤ 5. The chromatic number of S(n,m),n≥2m+2, when m = 2,3,4 are also discussed.

#### 5. References

- 1. Sudha S., Manikandan K., Total coloring of S(n. m) graph., *International Journal of Scientific and Innovative Mathematical Research*, 2(1) (2014), 16-22.
- 2. Clive Elphick, Pawel Wocjan, Unified spectral bounds on the chromatic number, *arXiv:1210.*7844v5 [math.CO] **29** Oct 2014.
- 3. L. S. de Lima, C. S. Oliveira, N. M. M. de Abreu, V. Nikiforov, The smallest eigenvalue of the signless Laplacian, *Linear Algebra and its Applications*, vol. 435, issue **10**, (2011), 2570 2584.

