
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1025

Efficient and Scalable Management of RDF Data Using

Diplo Cloud

G.Anurag, M.Devi Sri, P.Kiran Mai, A.Ramya,

Under the Guidance of G.Pushpa Rajitha

B.Tech, Department of Computer Science and Engineering,

St.Martin’s Engineering College, Hyderabad, Telangana, India.

ABSTRACT

Despite recent advances in distributed RDF data management,

processing large-amounts of RDF data in the cloud is still very

challenging. In spite of its seemingly simple data model, RDF

actually encodes rich and complex graphs mixing both

instance and schema-level data. Sharing such data using

classical techniques or partitioning the graph using traditional

min-cut algorithms leads to very inefficient distributed

operations and to a high number of joins. In this paper, we

describe DiploCloud, an efficient and scalable distributed

RDF data management system for the cloud. Contrary to

previous approaches, DiploCloud runs a physiological

analysis of both instance and schema information prior to

partitioning the data. In this paper, we describe the

architecture of DiploCloud, its main data structures, as well as

the new algorithms we use to partition and distribute data. We

also present an extensive evaluation of DiploCloud showing

that our system is often two orders of magnitude faster than

state-of-the-art systems on standard workloads.

1. INTRODUCTION

In the era of big data, a huge amount of data can be generated

quickly from various sources (e.g., smart phones, sensors,

machines, social networks, etc.). Towards these big data,

conventional computer systems are not competent to store and

process these data. Due to the flexible and elastic computing

resources, cloud computing is a natural fit for storing and

processing big data. With cloud computing, end-users store

their data into the cloud, and rely on the cloud server to share

their data to other users (data consumers). In order to only

share end-users’ data to authorized users, it is necessary to

design access control mechanisms according to the

requirements of end-users.

When outsourcing data into the cloud, end-users lose the

physical control of their data. Moreover, cloud service

providers are not fully-trusted by end-users, which make the

access control more challenging. For example, if the

traditional access control mechanisms (e.g., Access Control

Lists) are applied, the cloud server becomes the judge to

evaluate the access policy and make access decision. Thus,

end-users may worry that the cloud server may make wrong

access decision intentionally or unintentionally, and disclose

their data to some unauthorized users. In order to enable end-

users to control the access of their own data, some attribute-

based access control schemes are proposed by leveraging

attribute-based encryption. In attribute-based access control,

end-users first define access policies for their data and encrypt

the data under these access policies. Only the users whose

attributes can satisfy the access policy are eligible to decrypt

the data. Although the existing attribute-based access control

schemes can deal with the attribute revocation problem, they

all suffer from one problem: the access policy may leak

privacy. This is because the access policy is associated with

the encrypted data in plaintext form. From the plaintext of

access policy, the adversaries may obtain some privacy

information about the end-user. For example, Alice encrypts

her data to enable the “Psychology Doctor” to access. So, the

access policy may contain the attributes “Psychology” and

“Doctor”. If anyone sees this data, although he/she may not be

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1026

able to decrypt the data, he/she still can guess that Alice may

suffer from some psychological problems, which leaks the

privacy of Alice.

To prevent the privacy leakage from the access policy, a

straightforward method is to hide the attributes in the access

policy. However, when the attributes are hidden, not only the

unauthorized users but also the authorized users cannot know

which attributes are involved in the access policy, which

makes the decryption a challenging problem. Due to this

reason, existing methods do not hide or anonymize the

attributes. Instead, they only hide the values of each attribute

by using wildcards, Hidden Vector Encryption, and Inner

Product Encryption. Hiding the values of attributes can

somehow protect user privacy, but the attribute name may also

leak private information. Moreover, most of these partially

hidden policy schemes only support specific policy structures

(e.g., AND-gates on multi-valued attributes). In this paper, we

aim to hide the whole attribute instead of only partially hiding

the attribute values. Moreover, we do not restrict our method

to some specific access structures.

The basic idea is to express the access policy in LSSS access

structure (M;r) where M is a policy matrix and r matches each

row Mi of the matrix M to an attribute [6], and hide the

attributes by simply removing the attribute matching function

r. Without the attribute matching function r, it is necessary to

design an attribute localization algorithm to evaluate whether

an attribute is in the access policy and if so find the correct

position in the access policy. To this end, we further build a

novel Attribute Bloom Filter to locate the attributes to the

anonymous access policy, which can save a lot of storage

overhead and computation cost especially for large attribute

universe.

Our contributions are summarized as follows.

1) We propose an efficient and fine-gained big data access

control scheme with privacy-preserving policy, where the

whole attributes are hidden in the access policy rather than

only the values of the attributes.

2) We also design a novel Attribute Bloom Filter to evaluate

whether an attribute is in the access policy and locate the exact

position in the access policy if it is in the access policy.

3) We further give the security proof and performance

evaluation of our proposed scheme, which demonstrate that

our scheme can preserve the privacy from any LSSS access

policy without employing much overhead.

2. Literature Survey

1) Tracking RDF graph provenance using RDF molecules

This paper investigates lossless decomposition of RDF graph

and tracking the provenance of RDF graph using RDF

molecule, which is the finest and lossless component of an

RDF graph. A sub-graph is {em lossless} if it can be used to

restore the original graph without introducing new triples. A

sub-graph is {em finest} if it cannot be further decomposed

into lossless sub-graphs.

2) DOGMA: A Disk-Oriented Graph Matching Algorithm

for RDF Databases

In this paper, we first propose the DOGMA index for fast

subgraph matching on disk and then develop a basic algorithm

to answer queries over this index. This algorithm is then

significantly sped up via an optimized algorithm that uses

efficient (but correct) pruning strategies when combined with

two different extensions of the index.

3) The design and implementation of a clustered RDF

store

This paper describes the design and performance

characteristics of 4store, as well as discussing some of the

trade-offs and design decisions. These arose both from

immediate business requirements and a desire to engineer a

scalable system capable of reuse in a range of experimental

contexts where we were looking to explore new business

opportunities.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1027

4) WARP: Workload-aware replication and partitioning

for RDF

This paper proposes a distributed SPARQL engine that

combines a graph partitioning technique with workload-aware

replication of triples across partitions, enabling efficient query

execution even for complex queries from the workload.

5) Scaling queries over big RDF graphs with semantic

hash partitioning

In this paper we present a novel semantic hash partitioning

approach and implement a Semantic HAsh Partitioning-

Enabled distributed RDF data management system, called

Shape.

3. OVERVIEW OF THE SYSTEM

ARCHITECHTURE

Fig 3.1

System Architecture

EXISTING SYSTEM:

 While much more recent than relational data

management, RDF data management has borrowed many

relational techniques; Many RDF systems rely on hash-

partitioning and on distributed selections, projections, and

joins.

 Grid-Vine system was one of the first systems to do so in

the context of large-scale decentralized RDF

management.

 Approaches for storing RDF data can be broadly

categorized in three subcategories: triple-table

approaches, property-table approaches, and graph-based

approaches.

 Hexastore suggests to index RDF data using six possible

indices, one for each permutation of the set of columns in

the triple table. RDF-3X and YARS follow a similar

approach.

 BitMat maintains a three-dimensional bit-cube where

each cell represents a unique triple and the cell value

denotes presence or absence of the triple. Various

techniques propose to speed-up RDF query processing by

considering structures clustering RDF data based on their

properties.

DISADVANTAGES OF EXISTING SYSTEM:

 Existing system generates much inter-process traffic,

given that related triples (e.g.,that must be selected and

then joined) end up being scattered on all machines.

 RDF actually encodes rich and complex graphs mixing

both instance and schema-level data. Sharing such data

using classical techniques or partitioning the graph using

traditional min-cut algorithms leads to very inefficient

distributed operations and to a high number of joins.

 Existing system are not efficient and not scalable system

for managing RDF data in the cloud.

 In existing system lot of complex while query execution.

 Existing system are slower while handling the standard

workloads.

PROPOSED SYSTEM:

 In this article, we propose DiploCloud, an efficient,

distributed and scalable RDF data processing system for

distributed and cloud environments. Contrary to many

distributed systems, DiploCloud uses a resolutely non-

relational storage format, where semantically related data

patterns are mined both from the instance-level and the

schema-level data and get co-located to minimize

internode operations. The main contributions of this

article are:

 A new hybrid storage model that efficiently and

effectively partitions an RDF graph and physically co-

locates related instance data;

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1028

 A new system architecture for handling fine-grained RDF

partitions in large-scale

 Novel data placement techniques to co-locate

semantically related pieces of data

 New data loading and query execution strategies taking

advantage of our system’s data partitions and indices

 An extensive experimental evaluation showing that our

system is often two orders of magnitude faster than state-

of-the-art systems on standard workloads

ADVANTAGES OF PROPOSED SYSTEM:

 DiploCloud is an efficient and scalable system for

managing RDF data in the cloud.

 DiploCloud is particularly suited to clusters of

commodity machines and cloud environments where

network latencies can be high, since it systematically tries

to avoid all complex and distributed operations for query

execution.

4. MODULES

 System Construction Module

 Cloud Servers

 Data Users Module

 Diplo Cloud

MODULES DESCRIPTON:-

System Construction Module

 In the first module, we develop the system with the

entities required to prove and evaluate the proposed

system module. So first we develop the User process in

this module.

 Every user need to register to access the data in the diplo

cloud.

 Every user will activate by Cloud server.

 After activate by the cloud server, for each user the

private key will be send to corresponding user mail ID

Cloud Service Provider

 In this module, we develop Cloud Service Provider

module. This is an entity that provides a data storage

service in public cloud.

 The CS provides the data outsourcing service and stores

data on behalf of the users.

 To reduce the storage cost, the CS eliminates the storage

of redundant data via deduplication and keeps only

unique data.

 In this paper, we assume that CS is always online and has

abundant storage capacity and computation power.

Data Users Module

 A user is an entity that wants to outsource data storage to

the S-CSP and access the data later.

 In a storage system supporting deduplication, the user

only uploads unique data but does not upload any

duplicate data to save the upload bandwidth, which may

be owned by the same user or different users.

 In the authorized deduplication system, each user is

issued a set of privileges in the setup of the system. Each

file is protected with the convergent encryption key and

privilege keys to realize the authorized deduplication with

differential privileges.

There is two process of searching by the user in Diplo cloud:

o Template:

o Template roots are used to determine

which literals to store in template lists. Based on the

storage patterns, the system handles two main operations

in our system: i) it maintains a schema of triple templates

in main-memory and ii) it manages template lists.

o Molecule:

o All molecules are template-based, and hence store data

extremely compactly. Similarly to the template lists, the

molecule clusters are serialized in a very compact form,

both on disk and in main-memory.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1029

o For Example, where “Student” is the root node of the

molecule, and “StudentID” is the root node for the

template list.

Diplo Cloud:

 We say that DiploCloud is a hybrid system. DiploCloud

is a native, RDF database system. It was designed to run

on clusters of commodity machines in order to scale out

gracefully when handling bigger RDF file. Our system

design follows the architecture of many modern cloud-

based distributed systems.

 Where one (Master) node is responsible for interacting

with the clients and orchestrating the operations

performed by the other (Worker) nodes.

Master:

 The Master node is composed of three main

subcomponents: a key index in charge of encoding URIs

and literals into compact system identifiers and of

translating them back, a partition manager

responsible for the partitioning the RDF data and a

distributed query executor, responsible for parsing the

incoming query, rewriting the query plans into the

Workers.

Worker:

The Worker nodes hold the partitioned data and its

corresponding local indices, and are responsible for running

sub-queries and sending results back to the Master node.

Conceptually, the Workers are much simpler than the Master

node and are built on three main data structures: i) a

type index, clustering all keys based on their types ii) a series

of RDF molecules, storing RDF data as very compact

subgraphs, and iii) a molecule index, storing for each key the

list of molecules where the key can be found.

5. CONCLUSION AND FUTURE SCOPE

DiploCloud is an efficient and scalable system for managing

RDF data in the cloud. From our perspective, it strikes an

optimal balance between intra-operator parallelism and data

collocation by considering recurring, fine-grained

 physiological RDF partitions and distributed data

allocation schemes, leading however to potentially bigger data

(redundancy introduced by higher scopes or adaptive

molecules) and to more complex inserts and updates.

DiploCloud is particularly suited to clusters of commodity

machines and cloud environments where network latencies

can be high, since it systematically tries to avoid all complex

and distributed operations for query execution. Our

experimental evaluation showed that it very favorably

compares to state-of-the-art systems in such environments.

We plan to continue developing DiploCloud

in several directions: First, we plan to include some further

compression mechanism. We plan to work on an automatic

templates discovery based on frequent patterns and untyped

elements. Also, we plan to work on integrating an inference

engine into DiploCloud to support a larger set of semantic

constraints and queries natively. Finally, we are currently

testing and extending our system with several partners in

order to manage extremely-large scale, distributed RDF

datasets in the context of bioinformatics applications.

6. REFERENCES

[1] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. van

Pelt,

“GridVine: Building Internet-scale semantic overlay

networks,” in

Proc. Int. Semantic Web Conf., 2004, pp. 107–121.

[2] P. Cudr e-Mauroux, S. Agarwal, and K. Aberer,

“GridVine: An

infrastructure for peer information management,” IEEE

Internet

Comput., vol. 11, no. 5, pp. 36–44, Sep./Oct. 2007.

[3] M. Wylot, J. Pont, M. Wisniewski, and P. Cudr e-

Mauroux. (2011).

dipLODocus[RDF]: Short and long-tail RDF analytics for

massive

webs of data. Proc. 10th Int. Conf. Semantic Web - Vol. Part

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803246 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1030

I,

pp. 778–793 [Online]. Available:

http://dl.acm.org/citation.cfm?

id=2063016.2063066.

[4] M. Wylot, P. Cudre-Mauroux, and P. Groth, “TripleProv:

Efficient

processing of lineage queries in a native RDF store,” in Proc.

23rd

Int. Conf. World Wide Web, 2014, pp. 455–466.

[5] M. Wylot, P. Cudr e-Mauroux, and P. Groth, “Executing

provenance-enabled queries over web data,” in Proc. 24th Int.

Conf.

World Wide Web, 2015, pp. 1275–1285.

[6] B. Haslhofer, E. M. Roochi, B. Schandl, and S. Zander.

(2011).

Europeana RDF store report. Univ. Vienna, Wien, Austria,

Tech.

Rep. [Online]. Available: http://eprints.cs.univie.ac.at/2833/1/

europeana_ts_report.pdf

[7] Y. Guo, Z. Pan, and J. Heflin, “An evaluation of

knowledge base

systems for large OWL datasets,” in Proc. Int. Semantic Web

Conf.,

2004, pp 274–288.

[8] Faye, O. Cure, and Blin, “A survey of RDF storage

approaches,”

ARIMA J., vol. 15, pp. 11–35, 2012.

[9] B. Liu and B. Hu, “An Evaluation of RDF Storage

Systems for

Large Data Applications,” in Proc. 1st Int. Conf. Semantics,

Known.

Grid, Nov. 2005,

[10] Z. Kaoudi and I. Manolescu, “RDF in the clouds: A

survey,” VLDB

J. Int. J. Very Large Data Bases, vol. 24, no. 1, pp. 67–91,

2015.

[11] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:

sextuple indexing for semantic web data management,” Proc.

VLDB Endowment,

vol.1, no.1, pp.1008–1019,2008.

http://www.ijcrt.org/

