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Abstract 

In this paper a new method for solving Goursat problem is introduced using Reduced differential transform 

method(RDTM).The approximate analytical solution of the problem is calculated in the form of series with easily 

computable components.The comparison of the methodology presented in this paper with some other well known 

techniques demonstrates the effectiveness and power of the newly proposed methodology. 
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1. Introduction            

    Up to now, more and more nonlinear equations were presented, which described the motion of the 

isolated waves, localized in a small part of space, in many fields such as hydro dynamic, plasma physics, nonlinear 

optic, and others. The investigation of these exact solutions of these nonlinear equations is interesting and 

important. In the past several decades, many authors mainly had paid attention to study solutions of nonlinear 

equations of various methods, such as Backlund transformation (Ablowitz and Clarkson, 1991;Coely ,2001), 

Darboux transformation ( Wadati et al.,1975), inverse scattering method (Gardner et al .,1967), Hirota’s bilinear 

method(Hirota,1971),the tanh method(Malfeit,1992) the sine cosine method (Yan,1996;Yan and Zhang,2000),the 

homogeneous balance method (Wang,1996;Yan and Zhang,2001),and the Riccati expansion method with 

constant coefficients(Yan,2001). Recently, an extended tanh-function method and symbolic computation are 

suggested in Fan (2001) for solving the newly coupled modified KdV equations to obtain four kinds of solitan 

solutions. This method has some merits in contrast with the tanh-function method. It not only uses a simpler 

algorithm to produce an algebraic system, but also can pick up singular solitan solutions with no extra effort(Fan 

and Zhang,1998;Hirota and Satsuma,1981;Malfliet,1992;Satsuma and Hirota,1982;Wu et al.,1999).The 

numerical solution of Burger’s equation is of great importance due to the equation’s application in the 

approximate theory of flow through a shock wave travelling in a viscous fluid(Cole,1951)and in the Burger’s 

model of turbulence(Burgers,1948).It is solved analytically for arbitrary initial conditions(Hopf,1950).Finite 

element methods have been applied to fluid problems, Galerkin and petrov - Galerkin finite element methods 

involving a time-dependent grid(Caldwell et al.,1981;Herbst et al.,1982).Numerical solution using cubic spline 

global functions were developed in (Rubin and Graves,1975)to obtain two systems or diagonally dominant 

equations which are solved to determine the evolution of the system. A collocation solution with cubic spline 
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interpolation functions used to produce three coupled sets of equations for the dependent variable and its two first 

derivatives (Caldwell and Hinton, 1987).Ali et al(1992) applied the finite element methods to the solution of 

Burger’s equation. The finite element approach is applied with collocation method over a constant grid of cubic 

spline element. Cubic spline had a resulting matrix system which is tri-diagonal and so solved by the Thomas 

algorithm. Soliman (2000) used the similarity reductions for the partial differential equations to develop a scheme 

for solving Burger’s equation. This scheme is based on similarity reductions of Burger’s equations on small sub-

domain. The resulting similarity equation is integrated analytically. The analytical solution is then used to 

approximate the flux vector in Burger’s equation. The coupled system is derived by Esipov (1992).It is a simple 

model of sedimentation or evolution of scaled volume concentrations of two kinds of particles in fluid suspensions 

or colloids, under the effect of gravity(Nee and Duan,1998). In this paper ,we consider the standard form of the 

Goursat problem as provided below 

                  uxt=f(x,t,u,ux,ut),0≤x≤a, 0≤t≤b       

u(x,0)=g(x), u(0,t)=h(t),g(0)=h(0)=u(0,0)                      

This equation has been examined by several numerical methods such as Runge-kutta method, finite difference 

method, finite elements method and Adomian Decomposition method(ADM). 

We will prove the applicability and effectiveness of RDTM on solving linear and non-linear Goursat problems. 

The main advantage of RDTM is that it can be applied directly to the problems without requiring linearization, 

discretization or perturbation.  

2.Methodology            

  To Illustrate the basic ideas of the DTM, we considered u ( x, t) is analytic and differentiated continuously 

in   the domain of interest, then let 

Uk(x)=
1

𝑘!
[

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘 ]t=t0                                         (1) 

Where the spectrum Uk (x) is the transformed function, which is called T-function in brief. The differential 

inverse transform of Uk (x) is defined as follows. 

U (x ,t)=∑ 𝑈𝑘(𝑥)(𝑡 − 𝑡0)𝑘∞
𝑘=0                             (2) 

Combining (1) and (2),it can be obtained that 

U(x ,t)=∑
1

𝑘!
[

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘
]∞

𝑘=0 t=t0(t-t0)
k                       (3) 

When (t0) is taken as (t0=0) then equation (3) is expressed as  

u(x,t)=∑
1

𝑘!

∞
𝑘=0 [

𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑡𝑘
]t=0 t

k                                    (4) 

and equation (2) is shown as  

u(x,t)=∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0                                                (5) 

In real application, the function u(x,t) by a finite series of equation (5) can be written as, 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1803209 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 789 

 

u(x,t)=∑ 𝑈𝑘(𝑥)𝑡𝑘𝑛
𝑘=0                                              (6) 

usually, the values of n is decided by convergence of the series coefficients. The following theorems that can be 

deduced from equation (3) and equation (4) are given as, 

Theorem 1: If the original function is u(x,t)=w(x,t)±v(x,t),then the transformed function is Uk(x)=Wk(x)±Vk(x). 

Theorem 2: If the original function is u(x,t)=αv(x,t),then the transformed function isUk(x)=αVk(x) 

Theorem 3:If the original function is u(x,t)=
𝜕𝑚𝑤(𝑥,𝑡)

𝜕𝑡𝑚 ,then the transformed function is Uk(x)=
(𝑘+𝑚)!

𝑘!
Wk(x) 

Theorem 4:If the original function is u(x,t)=
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
,then the transformed function is Uk(x)=

𝜕

𝜕𝑥
Wk(x) 

Theorem 5:If the original function is u(x,y,z)=
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑦
,then the transformed function is Uk(x,y)=

𝜕

𝜕𝑥
Wk(x,y) 

Theorem 6:If the original function is u(x,y,z,t)=
𝜕𝑤(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
,then the transformed function is Uk(x,y,z)=

𝜕

𝜕𝑧
Wk(x,y,z) 

Theorem 7: If the original function is u(x,t)=xmtn,then the transformed function is Uk(x)=xmδ(k-n) 

Theorem 8: If the original function is u(x,t)=xmtnw(x,t),then the transformed function is Uk(x)=xmWk-n(x) 

Theorem 9: If the original function is u(x,t)=w(x,t)v(x,t),then the transformed function is 

Uk(x)=∑ 𝑊𝑟(𝑥)𝑉𝑘−𝑟(𝑥)𝑘
𝑟=0  

To illustrate the a fore mentioned theory ,some examples of partial differential equations with variable 

coefficients are discussed in details and the obtained results are exactly the same which is found by variational 

iteration method. 

3.Applications  

Here, the extended differential transformation method (DTM) is used to find the solutions of the PDEs in one, 

two and three dimensions with variable coefficients, and compared with that obtained by other methods. 

Example 1 

Consider the homogeneous Goursat problem 

                                         uxt=nu                                                       (7) 

And the initial condition 

    u(x,0)=U0=ex 

                u(0,t)=et,u(0,0)=1                                         (8) 

The form is  
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                (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
nUK                                      (9) 

If k=0 

           
𝑑

𝑑𝑥
U1=nU0 

                    
𝑑 

𝑑𝑥
𝑈1 = 𝑛𝑒𝑥

 

On integrating, we get 

               U1= nex                                                  (10)                                                                                                                  

If k=1 

              2.
𝑑

𝑑𝑥
U2=nu1 

              2
𝑑

𝑑𝑥
U2=n.nex 

              2
𝑑

𝑑𝑥
U2=n2ex 

On integrating, we get 

  2U2=n2ex 

              U2=
𝑛2

2
ex                                                   (11) 

If k=2, 

              3
𝑑

𝑑𝑥
U3=nU2 

On integrating we get 

              3U3=n(
𝑛2

2
)exdx 

              3U3=
𝑛3

2
𝑒𝑥dx 

               U3=
𝑛3

3!
ex                                                          (12) 

In general,     

               Uk=
𝑛𝑘

𝑘!
𝑒𝑥                                                       (13) 
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Example 2: 

Consider the homogeneous Goursat problem 

              uxt=ux                                                             (14) 

And the initial condition  

              u(x,0)=U0=ex 

  u(x,0)=et, u(0,0)=1                                            (15) 

The form is,  

  (k+1)
𝑑

𝑑𝑥
𝑈𝑘+1=

𝑑

𝑑𝑥
𝑈𝑘                                          (16) 

If k=0 

              
𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
U0 

On integrating we get 

              U1=U0 

              U1=ex                                                                (17) 

If k=1, 

             2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
U1 

On integrating we get 

             2U2=U1 

             2U2=ex 

             U2=
𝑒𝑥

2
                                                                       (18) 

If k=2, 

             3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
U2 

On integrating we get 

              3U3=U2 
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              3U3=
𝑒𝑥

2
 

  U3=
𝑒𝑥

3!
                                                                       (19) 

In general,  

              UK=
𝑒𝑥

𝑘!
                                                                       (20) 

Example 3: 

Consider the homogeneous Goursat problem  

              uxt=nux                                                                      (21) 

And the initial condition  

              u(x,0)=U0=ex 

              u(0,t)=et,u(0,0)=1                                                      (22) 

The form is, 

              (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
nUk                                                   (23) 

If k=0, 

                
𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
nU0 

On integrating we get, 

               U1=nU0 

                                       U1=nex                                                                       (24) 

 

If k=1, 

              2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
U1 

On integrating we get 

               2U2=nU1 

               2U2=n(n)ex 
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   U2=𝑛2 𝑒𝑥

2
                                                                       (25) 

If k=2, 

   3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
𝑛U2 

On integrating we get 

                3U3=nU2 

                3U3=n.n2𝑒𝑥

2
 

                U3=𝑛3 𝑒𝑥

3!
                                                                        (26) 

In general,  

                UK=𝑛𝑘 𝑒𝑥

𝑘!
                                                                       (27) 

Example 4: 

Consider the homogeneous Goursat problem  

                 uxt=-2ux                                                                        (28) 

And the initial condition   

    u(x,0)=U0=ex    

    u(0,t)=et,u(0,0)=1                                                          (29) 

The form is, 

                (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
(-2Uk)                                                    (30) 

 

If k=0, 

                
𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
(-2U0) 

On integrating we get, 

                U1=-2U0 

                U1=-2ex                                                                             (31) 
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If k=1, 

                2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
(−2U1) 

On integrating we get 

                2U2=-2U1 

                2U2=-2(-2ex) 

                U2=4
𝑒𝑥

2
                                                                               (32) 

If k=2, 

               3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
(−2U2) 

On integrating we get 

                3U3=-2U2 

                3U3=-2(4
𝑒𝑥

2
) 

                U3=−8
𝑒𝑥

3!
                                                                               (33) 

In general,  

                 UK=(−2)𝑘 𝑒𝑥

𝑘!
                                                                        (34) 

Example 5: 

Consider the homogeneous Goursat problem  

                  uxt=3u                                                                                   (35) 

And the initial condition  

                 u(x,0)=U0=ex 

                 u(0,t)=et,u(0,0)=1                                                                   (36) 

The form is, 

                 (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
3uk                                                                 (37) 

If k=0 
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𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
3U0 

On integrating we get, 

                    U1=3U0 

                    U1=3ex                                                                                     (38) 

If k=1, 

                    2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
3𝑈1 

On integrating we get 

                   2U2=3U1 

                   2U2=3(3ex) 

                   U2=9
𝑒𝑥

2
                                                                                    (39) 

If k=2, 

                  3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
(3U2) 

On integrating we get 

                 3U3=3U2 

     3U3=(9
𝑒𝑥

2
) 

                 U3=27
𝑒𝑥

3!
                                                                                  (40) 

In general,  

                 UK=(3)𝑘 𝑒𝑥

𝑘!
                                                                              (41) 

Example 6: 

Consider the homogeneous Goursat problem  

                 uxt=-2ux+3u                                                                            (42)                                                

And the initial condition  

                 u(x,0)=U0=ex 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1803209 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 796 

 

                 u(0,t)=et,u(0,0)=1                                                                  (43) 

The form is, 

                (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
(-2Uk)+

𝑑

𝑑𝑥
(3Uk)                                             (44) 

If k=0 

                
𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
(-2U0)+

𝑑

𝑑𝑥
(3U0) 

On integrating we get, 

                U1=-2U0+3U0 

                U1=U0 

                U1=ex                                                                                     (45) 

 

If k=1, 

               2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
(−2𝑈1) +

𝑑

𝑑𝑥
3𝑈1 

On integrating we get 

               2U2=-2U1+3U1 

               2U2=U1 

               2U2=ex 

               U2=
𝑒𝑥

2
                                                                                       (46) 

If k=2, 

               3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
(−2𝑈2) +

𝑑

𝑑𝑥
(3U2) 

On integrating we get 

               3U3=-2𝑈2 +3U2 

               3U3=U2 

               3U3=
𝑒𝑥

2
 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1803209 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 797 

 

                U3=
𝑒𝑥

3!
                                                                                         (47) 

In general,  

    UK=
𝑒𝑥

𝑘!
                                                                                        (48) 

 

Example 7: 

Consider the homogeneous Goursat problem  

                uxt=mux+nu                                                                               (49) 

And the initial condition  

                u(x,0)=U0=ex 

                u(0,t)=et,u(0,0)=1                                                                     (50) 

The form is, 

                (k+1)
𝑑

𝑑𝑥
Uk+1=

𝑑

𝑑𝑥
(mUk)+

𝑑

𝑑𝑥
(nUk)                                                (51) 

If k=0 

                  
𝑑

𝑑𝑥
U1=

𝑑

𝑑𝑥
(mU0)+

𝑑

𝑑𝑥
(nU0) 

On integrating we get, 

                  U1=mU0+nU0 

                  U1=mex+nex 

                  U1=(m+n)ex                                                                              (52) 

 

 

If k=1, 

                 2
𝑑

𝑑𝑥
U2=

𝑑

𝑑𝑥
(𝑚𝑈1) +

𝑑

𝑑𝑥
𝑛𝑈1 

On integrating we get 
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                2U2=mU1+nU1 

                2U2=m(mex+nex)+n(mex+nex) 

                2U2=m2ex+mn ex+mn ex+n2ex 

                2U2=m2ex+2mn ex+n2ex 

                2U2=(m+n)2ex 

                U2=(𝑚 + 𝑛)2 𝑒𝑥

2
                                                                               (53) 

If k=2, 

                3
𝑑

𝑑𝑥
U3=

𝑑

𝑑𝑥
(𝑚𝑈2) +

𝑑

𝑑𝑥
(𝑛U2) 

On integrating we get 

                3U3=mU2+nU2 

                3U3=(m+n)U2
      

                3U3=(m+n)
(𝑚+𝑛)2

2
𝑒𝑥 

                3U3=(m+n)3𝑒𝑥

2
 

                U3=
(𝑚+𝑛)3

3!
𝑒𝑥                                                                                   (54) 

In general,  

                 UK=(m+n)k 
𝑒𝑥

𝑘!
                                                                                  (55) 

4.Conclusion  

The differential transform method has been successfully applied for solving partial differential equations with 

variable coefficients. The solution obtained by differential transform method is an infinite power series for 

approximate initial condition, which can in turn express the exact solution in a closed form. The result shows that 

the differential transform method is a powerful mathematical tool for solving partial differential equations with 

variable coefficients. The reliability of the differential transform method and the reduction in the size of 

computational domain give this method a wider applicability. Thus, we conclude that the proposed method can 

be extended to solve many PDEs with variable coefficients which arise in physical and engineering application 
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