
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 317

AUTOMATED COLLEGE TIMETABLE

GENERATOR

1 K.Ajith Kumar, 2 S.Raja Durai, 3 Dr.J.V.Anchithalagammai
1, 2 UG Scholar-Department of CSE,Velammal College of Engineering and Technology,

Madurai, Tamilnadu,
3 Assistant Professor- Department of CSE, Velammal College of Engineering andTechnology,

Madurai, Tamilnadu.

Abstract: Most colleges have a number of different courses and each course has a number of subjects. Now there are limited

faculties, each faculty teaching more than one subjects. So now the time table needed to schedule the faculty at provided time slots in

such a way that their timings do not overlap and the time table schedule makes best use of all faculty subject demands. We use a

genetic algorithm for this purpose. In our Timetable Generation algorithm we propose to utilize a timetable object. This object

comprises of Classroom objects and the timetable for every them likewise a fitness score for the timetable. Fitness score relates to the

quantity of crashes the timetable has regarding alternate calendars for different classes. Classroom object comprises of week objects.

Week objects comprise of Days, Days comprises of Timeslots. Timeslot has an address in which a subject, student gathering going to

the address and educator showing the subject is related. Also, further on discussing the imperatives, We have utilized composite

configuration design, which make it well extendable to include or uproot as numerous obligations. In every obligation class the

condition as determined in our inquiry is now checked between two timetable objects. On the off chance that condition is fulfilled i.e.

there is a crash is available then the score is augmented by one.

INTRODUCTION

Time Table Scheduling Using Genetic Algorithm Time Table Scheduling is an NP-hard problem and hence polynomial time

verifiable using genetic algorithms. It a typical scheduling problem that appears to be a tedious job in every academic institute once or

twice a year. In earlier days, time table scheduling was done manually with a single person or some group involved in task of

scheduling it manually, which takes a lot of effort and time. Planning timetables is one of the most complex and errorprone

applications. Timetabling is the task of creating a timetable while satisfying some constraints. There are basically two types of

constraints, soft constraints and hard constraints.

Soft constraints are those if we violate them in scheduling, the output is still valid, but hard constraints are those which if we violate

them; the timetable is no longer valid. The search space of a timetabling problem is too vast, many solutions exist in the search space

and few of them are not feasible. Feasible solutions here mean those which do not violate hard constraints and as well try to satisfy

soft constraints. We need to choose the most appropriate one from feasible solutions. Most appropriate ones here mean those which do

not violate soft constraints to a greater extent. In this project hard-constraints have been taken care of strictly and it has been ensured

that soft-constraints are as well followed as much as possible.

Soft-constraints (flexible):

• More or less equal load is given to all faculties

• Required time (hours per week) given to every Batch

Hard-constraints (rigid):

• There should not be any single instance of a faculty taking two classes

simultaneously

• A class group must not have more than one

lectures at the same time

BACKGROUND

Let’s learn some biology first Our body is made up of trillions of cells. Each cell has a core structure (nucleus) that contains your

chromosomes.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 318

Each chromosome is made up of tightly coiled strands of deoxyribonucleic acid (DNA). Genes are segments of DNA that

determine specific traits, such as eye or hair color. You have more than 20,000 genes

A gene mutation is an alteration in your DNA. It can be inherited or acquired during your lifetime, as cells age or are exposed to

certain chemicals. Some changes in your genes result in

genetic disorders

Natural Selection: Darwin's theory of volution: only the organisms best adapted to their environment tend to survive and transmit

their genetic characteristics in increasing numbers to succeeding generations while those less adapted tend to be eliminated.

GA is inspired from Nature

• A genetic algorithm maintains a population of candidate solutions for the problem at hand, and makes it evolve by iteratively

applying a set of stochastic operators

Genetic algorithms are implemented as a computer simulation in which a population of abstract representations (called

chromosomes or the genotype or the genome) of candidate solutions (called individuals, creatures, or phenotypes) to an optimization

problem evolves toward better solutions.

• Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible.

• The evolution usually starts from a population of randomly generated individuals and happens in generations.

• In each generation, the fitness of every individual in the population is evaluated, multiple individuals are selected from the

current population (based on their fitness), and modified (recombined and possibly mutated) to form a new population.

• The new population is then used in the next iteration of the algorithm.

• Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory

fitness level has been reached for the population.

• If the algorithm has terminated due to a maximum number of generations, a satisfactory solution may or may not have been

reached. The Genetic Algorithm - a brief overview Before we can use a genetic algorithm to solve a

problem, a way must be found of encoding any potential solution to the problem. This could be as a string of real numbers or, as is

more typically the case, a binary bit string. We will refer to this bit string from now on as the chromosome. A typical chromosome

may look like this:

1001010111010100101001110110111011111110

1

At the beginning of a run of a genetic algorithm a large population of random chromosomes is created. Each one, when decoded will

represent a different solution to the problem at hand. Let's say there are N chromosomes in the initial population. Then, the following

steps are repeated until a solution is found

• Test each chromosome to see how good it is at solving the problem at hand and assign a Fitness Score accordingly.

The fitness score is a measure of how good that chromosome is at solving the problem to hand.

• Select two members from the current population. The chance of being selected is proportional to the chromosomes fitness.

Roulette Wheel

Selection is a commonly used method.

• Dependent on the Crossover rate crossover the bits from each chosen chromosome at a randomly chosen point.

• Step through the chosen chromosomes bits and flip dependent on the Mutation rate.

• Repeat step 2, 3, 4 until a new population of N members has been created.

• Keep repeating until required fitness is achieved.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 319

DESIGN AND IMPLEMENTATION

Objects of Time Table Scheduler

• Students Group The StudentGroup class has the ID, name of the student group, number of subjects, array of subject names and

hours of study required for each subject per week. It also contains the id of teachers who will teach those subjects.

• Teacher It is a class to hold the faculty information. It has an id, name of faculty, subject that he/she teaches and an in assigned

which represents the no. of batches assigned to the teacher.

• Slot A slot here is the most basic unit of Genetic algorithm. It represents a single characteristic of a Gene.

• Time Table This class’ object holds an array of Slot. This is basically a class to generate new slots initially for each Student group.

• Gene It is the main constituent of a Chromosome and is made up of a sequence of slot numbers. It represents a Time table of a

single class group

• Chromosome A chromosome here is a collection or an array of Genes. It is the main class of algorithm and it undergoes crossover

and mutation to furnish fitter individuals.

• Utility It is basically for testing purpose only.

It contains some mehods like print Slots() which help to keep track of algorithm through console.

Input data This is a class mainly to fetch the input from user either through text file or through form and provide it to the working

classes of the algorithm.

• SchedulerMain This is the main class of the algorithm which invokes other classes and calls methods for crossover, mutation ,

selection etc.

ALGORITHM

• First of all an initial generation of chromosomes is created randomly and their fitness value is analysed.

• New Generations are created after this. For each generation, it performs following basic operations:

a. First of all preserve few fittest chromosomes from the previous generation as it is. This is called Elitism and is necessary

 to preserve desired characteristics in the coming generations .

b. Randomly select a pair of chromosomes from the previous generation. Roulette wheel selection method has been used

here in this project.

c. Perform crossover depending on the crossover rate which is pretty high usually. Here single point crossover has been used.

d. Perform mutation on the more fit chromosome so obtained depending on the mutation rate which is kept pretty small

usually.

• Now analyze the fitness of the new generation of chromosomes and order them according to fitness values.

• Repeat creating new generations unless chromosomes of desired fitness value i.e. fitness=1, are obtained.

TESTING

• For the ease of testing and tracking, a lot of information is printed on the console itself. It involves input information, slots

generated, few chromosomes from each generation of chromosome, fitness of these chromosomes,

• Also a sample input has been provided below the form for testing purpose during development period. It helps the developer
to test the project without having to fill the complete form.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 320

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 321

CONCLUSION EVALUATION AND FURTHER WORK

CONCLUSION

 The process of Time Table generation has been fully automated with this software. This web app can now
cater to multiple colleges, universities and schools which can rely on it for their Time Table scheduling which earlier had to be done by

hand.

EVALUATION

Using Genetics Algorithm, a number of trade-off solutions, in terms of multiple objectives of the problem, could be obtained very

easily.

Moreover, each of the obtained solutions has been found much better than a manually prepared solution which is in use.

FURTHER WORK

• Though this web-app serves as a basic time table generator, there is a lot more which could be done to make this project even

better in terms of consideration of soft constraints like professor giving preference to particular class.

Automated Time Table Scheduler Using Genetic Algorithm Pranav Khurana

• The up-gradations I look up to currently will be Classroom size considerations, lab facility consideration and multiple

 subject selection for faculty. I will try to bring the following up-gradations very soon.

• More features such as schedule print for individual faculty etc. would also be involved to make this more useful

as a final product

References/Bibliography

BOOKS

• Artificial Intelligence by Stuart J. Russell and Peter Norvig

• Genetic Algorithms by David E. Goldberg

REFERENCES

• http://www.javatpoint.com

• http://www.ai-junkie.com/ga/intro/gat3.html

http://www.obitko.com/tutorials/genetic algorithms/encoding.php https://en.wikipedia.org/wiki/Genetic_algorithm

https://www.researchgate.net

• Automatic Timetable Generation using Genetic Algorithm-International Journal of Advanced Research in Computer and

Communication Engineering Vol. 4, Issue 2, February 2015

http://www.ijcrt.org/
http://www.javatpoint.com/
http://www.javatpoint.com/
http://www.ai-junkie.com/ga/intro/gat3.html
http://www.ai-junkie.com/ga/intro/gat3.html
http://www.ai-junkie.com/ga/intro/gat3.html
http://www.ai-junkie.com/ga/intro/gat3.html
http://www.obitko.com/tutorials/genetic
http://www.obitko.com/tutorials/genetic
http://www.obitko.com/tutorials/genetic

