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Abstract: In this paper we have done some investigation on some concepts of the theory of metric space to 

analyze fractal objects. If we iteratively apply a finite set of contraction mappings to any point on a compact 

metric space, we will come arbitrarily close to a set of points in the space which is very often fractal. The 

present work addresses the problem of how iterated function systems may be used to construct such fractal 

objects. For this purpose, we discuss two algorithms producing fractals, namely that of deterministic algorithm, 

and random iterated algorithm. We have also discussed about the connection between Hausdorff dimension and 

iterated function systems.  
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Introduction: 

We usually beleve that the shape of natural objects are determined by its characteristics scale and no new 

features of it revealed if we try to magnify it beyond that characteristic scale. To measure length, area, volume 

or other properties of the object we try to measure it at such a resolution which is finer than its characteristics 

resolution and we expect the value obtained by such method is a unique one for the object. The concept of 

Euclidean geometry is based on this simple idea.  

However, B.B. Mandelbrot brought to our attention that many objects in  nature simply do not have  this pre-

conceived form [14],[15]. In fact, many of the structure in nature such as coast line of a courtry , surface of a 

mountain or clouds have a very different form. As we zoom into these structures, new and ever finer structures 

are continuously revealed. When we measure a property like length, area, or volume the computed value 

depends on how many such finer features of the structure are included in our computation. As a result, the 

values we measure actually depends on the spatial ruler we used to compute our measurement. The study of 

such objects has resulted in a new area of mathematics called Fractal Geometry. Fractal geometry was 

popularized by the mathematician Benoit Mandelbrot, and it was he who coined the term fractal in 1977. 

Though  the mathematical work of fractal geometry was first initiated by Cayley, Fatou and Julia in the late 

19th and early 20th centuries[9], progress of research in this line was slow until the development of the 

electronic computer. Much of the current interest in fractals is a consequence of Mandelbrot's work. His 

computer simulations of maps of the complex plane have resulted in extremely complicated and beautiful 

fractals [16]. 

A fractal is a complex geometric shape  with details down to the smallest spatial scales. Fractals are self similar, 

whereby a subset of a fractal, and any subset thereof, may resemble the fractal as a whole e.g. see Falconer [8]. 

Consequently, a measure of the area of a fractal is often difficult to determine. For illustration let us begin with 
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a simple example, the Sierpinski Carpet. The process of generation of the Sierpinski Carpet is that one starts 

with the unit box and divide it into nine equal boxes, and then remove the open central box. This process is 

repeated for each eight remaining sub boxes. The limiting set is a fractal which is a generalization of the two 

dimensional cantor set. Although it can be shown that  the Sierpinski Carpet has zero area, it is still useful to 

make some kind of determination of its dimension. 

The values of the measured properties of many physical systems look random. It is believed that such random 

looking fluctuations must be the result of mechanisms driven by chance. However, today it was an established 

fact that everything that looks random may not be random in reality. On the other hand, there are  dynamical 

systems where the fluctuations of the values of the variables are so complex that they mimic random behavior, 

for example see [10] . The reason for this type of behavior is now called 'chaos', which may occur even in the 

simplest of physical systems. This is one of the major achievements of mathematics in last few years, the 

recognition that simple, deterministic physical or mathematical systems may behave unpredictably or randomly. 

The great enthusiasm of bonding the concept of chaos and fractals is to change our mind set. These concepts act 

as an agent to nag us for thinking of alternative approaches. The mathematical ideas behind fractal and chaos 

augment the set of analytical tools we have from our childhood. When we find the experimental values of the 

measured  properties of some physical system look random, we usually conclude that this must be the result  of 

mechanism  driven by chance. However, now a days there are methods to analyze random like experimental 

data to determine whether the data could have  been generated by some deterministic process[19]. If this is true 

, further, the analysis is able  to reconstruct the mathematical form of the deterministic relationship. The 

mathematics of 'non linear dynamical system' is based on this methods and they use many  of the idea and 

properties of fractals.  

Geometry is concerned with making our understanding about shape, size, position, area etc. of physical world, 

and fractal geometry extend that process. The theory of Iterated Function Systems (IFS) provides us new 

method to describe many of the natural fractals like leaf of a tree, fern, clouds etc. as clearly as an architect can 

describe a house. It express relation between parts of a generalized fractal objects by using classical geometical 

entities like affine transformation, scaling, shrinking, twiesting, shifting, contraction mapping etc. Using only 

these relations IFS theory defines and conveys intricate fractal structures of some natural objects.  

Barnsley and Demko first introduce the term 'Iterated fuction systems' to represent a method for generating 

fractals [2] but the essential concept is usually attributed to Hutchinson[12].The feasibility of using IFS in 

computer graphics was reviewed first at the SIGGRAPH meeting by Demko, Naylor, and Hodges [6]. The use 

of fractal geometry, both deterministic and non deterministic, to model natural objects, has been investigated by 

a number of authors, including Mandelbrot[6,7], Miller[17],  Kawaguchi[13], Smith[21], Openheimer[18], 

Ambum et. al.[1], Fournier et. al.[11]. A detailed introduction to IFS's is prsented in [3]. The approach 

presented in this paper has its roots in these investigations. 

The rest of the paper is organized as follows: in section 2, we provide a review of some definitions and 

preliminary concepts concerning metric spaces . In section 3, we have described about a mathematical space 

where we intended to work with together with some concepts of contraction mappings which is an important 

tool for our further investigation. Section 4 contains discussion about the effect of a finite set of contraction 

mappings acting iteratively on a point of the space defined in section 3 and hence find two algorithms for 

creating fractal objects. Section 5 concern with a method of finding Hausdorff dimension of the fractals 

produced by the method discussed in section 4  Finally, in section 6, we have given a concluding remark of our 

study. 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1803120 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 125 

 

2. Preliminaries:  

Topology, a branch of mathematics first formalized by France mathematician Henri Poincare by his 1895 

publication 'Analysis Situs'. The main topic of interest here are the properties that remain unchanged by 

continuous deformation like bending, twisting, stretching or shrinking. A metric space is a set for which 

distances between  all members of the set defined. Those distances, taken together, called a metric on the set. A 

metric on a space induces topological properties like open and closed set, which leads to the study of more 

abstract topological spaces. In order to carry our study, we first need to provide some definitions concerning 

metric space, which are discussed in this section.   

Definition 2.1[20]: A metric space  dX ,  consists of two objects, a non-empty set X  together with a real 

function d  of ordered pairs of elements of X  which satisfies the following three conditions for all Xzyx ,, : 

i.   0, yxd , and   yxyxd  0, ; 

ii.    xydyxd ,,  ; 

iii.      yzdzxdyxd ,,,  . 

Definition 2.2[20] : A sub set G  of the metric space  dX ,  is called an open set if, given any point y  in G , 

there exist a positive real number r  such that    GyS r  where,     ryxdXxyS r  ,:  is the open sphere 

center at y  and radius r . That is, G  is open if each point of it is the center of some open sphere contained in G

. 

Definition 2.3[20] : A point Xx , where  dX ,  is a metric space, is called a limit point of the sub set A  of X  

if each open sphere centered on x  contains at least  one point of A  different from x . 

Definition 2.4[20] : A subset F  of the metric space   dX ,  is called closed set if it contains each of its limit 

points. 

Definition 2.5[7] : A subset F  of the metric space  dX ,  is called bounded if there is an element x  in X  and a 

real number 0M  such that for each element a  in F ,   Mxad , . 

Definition 2.6[20] : A sequence 


1nna  of points in a metric space  dX ,  is called a Cauchy sequence if, for 

any given number 0 , there is an integer 00 N  such that   mn aad ,  for all 0, Nmn  . 

Definition 2.7[20] : A sequence 


1nna  of points in a metric space  dX ,  is said to converge to a point Xa 0  

if, for any given number 0 , there is an integer 00 N  such that   0, aad n  for all 0Nn  . The point 0a is 

called limit of the sequence 


1nna . 

Definition 2.8[20]: A metric space  dX ,  is complete if every Cauchy sequence 


1nna  in X  converges to a 

point in X . 

Definition 2.9[20]: A subset A  of a metric space  dX ,  is compact if every infinite sequence 


1nna  of points 

in A  contains a subsequence having a limit in A . 

Theorem 2.1  ( Generalized  Heine-Borel  Theorem):  Every closed and bounded subspace of nR   , where R  is 

the set of real numbers, is compact.  

Proof: The proof of this theorem can be found in [20]. 
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Definition 2.10[20] : Let  dX ,  be a metric space, then the distance from the point Xx   to the compact sub 

set A  of  X  is defined as  

                                     AaaxdAxd  :,min,1  

Definition 2.11[20] : The distance between two compact subsets A  and B  of the metric space  dX ,  is defined 

as  

                                      AxBxdBAd  :,max, 12    

This notion of distance is not symmetric as shown in the figure 2.1. 

 

 

]tan[1.2 setscompacttwobetweenceDisFigure  

Definition 2.12 : A linear transformation from ℝ2 to itself is a function f  from ℝ2  to ℝ2 with the properties: 

       yfxfyxf     and       xfaxaf  , where  yx ,   are vectors in ℝ2 and a  is any real number. In 

other words, the map f  is linear if it can be put in the form  

   ydxcybxayxf  ,,   i.e., in matrix notation f  can be expressed  as: 

 

















2

1

2

1

x

x
A

x

x
f    , where,  










dc

ba
A  is a 22  matrix in ℝ. 

Definition 2.13: A transformation f  from ℝ2  to ℝ2  of the form 

    fydxceybxayxf  ,,   

where  fedcba ,,,,,  are reals is called a two dimensional affine transformation. 

In matrix notation it can be put in the form,    tXAXf    where,   









dc

ba
A ,  










y

x
X  and  










f

e
t . 

Note that an affine transformation consists of a linear transformation followed by a translation. 

 

Definition 2.14: An affine transformation that preserves angles is called a similitude. It is formed by any 

combination of the following actions: 

(a)   Translation: A translation   T   moves  points by a fixed vector   fe ,  i.e.,  
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                    


























f

e

y

x

y

x
T                          

(b)   Rotation: A rotation T  rotates the points around a fixed point through an angle    i.e., 

                   














 










y

x

y

x
T





cossin

sincos
 

(c)  Reflection: If  x  and  y  be two points lying opposite sides of the line xmy   such that                      

the line  xmy   is the perpendicular bisector of the line segment joining  x  and  y , then a reflection 

through the line xmy   is the linear transformation T  which exchanges these two points and leave 

points on the line xmy   unmoved, i.e. 

                     




































y

x

mm

mm

my

x
T

12

21

1

1
2

2

2
 

(d)  Dilation:  The transformation T  action of which multiply the coordinates of all points on which it acts 

by a constant, say ''c  is called dilation i.e. 

                      

























y

x

c

c

y

x
T

0

0
 

Note that if  T  is a similitude then A  and  AT  have the same shape but not necessarily       the same 

size.             

 

                         

                        

][2.2 ssimilitudebasicsomeofActionFigure  

   Here we note that in a similitude T all distances are treated as       yxdcyTxTd ,,  . 

 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1803120 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 128 

 

3.  The Space of Fractal Objects: 

As our prime interest is to study images of fractal object we first try to define a space whose elements are 

images. Now every image is nothing  but collection of some points in Euclidean space ℝ2 which are compact. 

Thus we consider the set of all possible compact subsets of  ℝ2 , in general all possible compact subsets of a 

metric space. Therefore,  for the metric space  dX ,  we consider the set 

       compactisAAXAX ,, H  

Now we need to define a metric on  XH  . Since the distance between two compact sets A  and B  as defined in 

definition 11.2  is asymmetrical, it does not serve our purpose. Therefore, we choose the Hausdorff metric for 

this purpose which is defined below: 

Definition 3.1: For any  XBA H, , we define the Hausdorff metric RXXd :H  by  

      ABdBAdBAd ,,,max, 22H  

An easy way to understand the meaning of Hausdorff  metric is through the concept of collar  of a set which 

is given in figure 3.1, where   dBAd ,H  . 

Definition 3.2: Let A  be a subset of a metric space  dX ,  and 0 , then the collar  of the set A  is the set 

A  defined by 

  AasomeforaxdxA   ,: . 

Note that,  AA   for any 0 . For any  XBA H,  if  BA  then there exist  Bb   such that 

  bad ,   for all Aa  . Which confirms  that     Bbbad :,inf , that is   Bad ,1 . Taking 

supremum of all such  Bad ,1 for Aa  we have  

    AaBadSup :,1 , which shows that    BAd ,2 . 

Again for AB  , with similar argument one can show that    ABd ,2 . Thus the minimum of such  

0  must represent the Haudorff metric Hd .  

Definition 3.3: The Hausdorff metric for any  XBA H,  is  

    ABandBABAd  :inf,H . 
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][1.3 metricHausdorffofexibitionGraphicalFigure  

 

Theorem 3.1: Let  dX ,  be a metric space. Then   HH dX ,   is also a metric space. 

Proof: We have for each Aa  the minimum distance of  a  from an arbitrary point x  of  A  is zero and thus  

  AxAxd  0,1     which imply that for all  XA H  ,      0,..,0:,max 1  AAdeiAxAxd H . If 

 XBA H,  such that BA  then either  BA  or AB  .. Now, 

  0,2  ABdBA   and     0,2  BAdAB   and hence    0, BAd H .  

Thus    ABdBAd ,, HH   is a non-negative real number. 

To prove triangular inequality for Hd  we first prove it for 2d  . 

 

2.3Figure  

Let ''a  be the point on the set A whose distance from any point on the set C  is maximum and Cx   be 

closest to ''a  , as shown in the figure 3.2. 

     )1.3(,,2 xadCAd   

If  Bb   be the closest point from ''a  and  Cc    be the closest point to ''b  then  

     )2.3(,,1 badBad   
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     )3.3(,,1 cbdCbdand   

Therefore,       )4.3(,,, 12 badBadBAd   

       )5.3(,,, 12 cbdCbdCBdand   

Now, 

              CAdxadcadcbdbadCBdBAd ,,,,,,, 222    

Hence, 

          CAdCBdBAdCBdBAd ,,,,, 222  HH  

Also,               ACdABdBCdABdBCdCBdBAd ,,,,,,, 222  HHHH  

Therefore,             CAdACdCAdCBdBAd ,,,,max,, 22 HHH  .                               ■ 

Theorem 3.2: If the metric space  dX ,  is  complete then  XH  is also a complete with respect to the 

Hausdorff metric Hd . 

The proof of this theorem  can be found in [3]. 

Till now we have established a metric space, viz.  XH , where we intended to work with. For better 

understanding and to make use of  XH  we need another tool in the theory of metric space which are discussed 

below. 

Definition 3.4: A mapping XXT : , where   dX ,  is a metric space is called a contraction mapping if   

        yxdcyTxTd ,,   

For some  positive constant 1c  and for all Xyx , . Here c  is called contraction factor of the map T  .  

Theorem 3.3: Contraction mapping on a metric space is continuous.  

Proof: Let  dX ,  be a metric space and XXT :  be a contraction mapping with contraction factor ' c ' . 

Let 0  be given. We choose 
c


  , then for all  Xyx , , with   yxd ,  , we have 

          cyxdcyTxTd ,,  

Hence, T  is continuous on X .                                                                                             ■    
Theorem 3.4 (Contraction mapping): Contraction mapping on a complete metric space has a unique fixed 

point. 

Proof: Let XXT :  be a contraction mapping  on the complete metric space  dX , . Therefore, there exist 

a positive real number 1  such that  

        XyxyxdyTxTd  ,,,  .  

For any Xx 0 , we define the sequence 


 0nnx  in X  by 

   1,1   nxTx nn  

First we show that 


 0nnx is a Cauchy sequence. 

Let   nm ,  be two positive  integers with nm  , then we have 

        nnmmmmnm xxdxxdxxdxxd ,,,, 1211     

                       00
1

0
2

0
1

0
1

0 ,,, xTxTdxTxTdxTxTd nnmmmm     
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                 00
1

00
1

00 ,,, xTxdxTxdxTxd nmm      

               00

1

0

, xTxd

mn

i

im














 





  

        10

0

, xxd
i

im














 





  

   10 ,
1

xxd
m






  

Which shows that 


 0nnx  is a Cauchy sequence in .X  As the metric space  dX ,  is complete, there exist a 

point Xx *   such that  *lim xxn
n




. 

Now,      









n
n

xTxT lim*  . By continuity  of  T , we have 

     *
1

* limlim xxxTxT n
n

n
n

 


 

i.e.,  *x  is a fixed point of  T . 

For uniqueness, we assume that *x  and  **x  be two fixed points of  T . 

         ********* ,,, xxdxTxTdxxd   

As 10   , this is possible only when   0, *** xxd  which implies that  *** xx  . 

This completes the proof.                                                                                                       ■ 

   

Theorem 3.5:  If  T  is a contraction map on a metric space X   , then    XHXHT :  is also a contraction 

map as set-wise function. 

Proof:  Since  XXT :  is a contraction map , there exist a real number 1c  such that 

       yxdcyTxTd ,,   

Now for any two compact subset A  and  B  of  X  and  Aa   , 

           BTyyaTdBTaTd  :,min,1  

        BbbTaTd  :,min      where,  bTy   

     Bbbadc  :,min  

     Bbbadc  :,min  

    Badc ,1  

Now for the metric 2d , 

           ATxBTxdBTATd  :,max, 12  

         AaBTaTd  :,max 1  

      AaBadc  :,max 1  

      AaBadc  :,max 1  

     BAdc ,2  

Finally we have, 
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                ATBTdBTATdBTATd H ,,,max, 22  

             ABdcBAdc ,,,max 22  

         =     ABdBAdc ,,,max 22  

         BAdc H ,  

Hence, T  is a contraction map under  Hd .                                                                                   ■ 

Theorem 3.6 : If  1T  and 2T  are two contraction mappings on a metric space  dX ,  with contraction factor 1c  

and 2c , then     XHXHT :   defined by        XHAATATAT  21
 is also a contraction map with 

contraction factor  21 ,max cc . 

Proof: We first prove the following lemma, 

Lemma 3.6.1:  For any sets  XHDCBA ,,, ,   

        DBdCAdDCBAd HHH ,,,max,  . 

Proof: First we prove that        CBdCAdCBAd ,,,max, 222  . 

Consider the point Aa    such that      AxCxdCad  :,max, 11   and the point Bb  such that  

    ByCydCbd  :,max, 11 . Now, 

            CBdCAdCbdCadCBAd ,,,max,,,max, 22112    

Now for any Ax   we  have, 

     CorBxdCBxd   :,min,1  

Therefore,     BxdCBxd   :,min,1   or     CxdCBxd   :,min,1  

   BxdCBxdei ,,.,. 11           or        CxdCBxd ,, 11   

Thus if  x  is a point on A  farthest from CB , we have 

             CAdBAdCxdBxdCBxdCBAd ,,,min,,,min,, 221112   

Now, 

       BADCdDCBAdDCBAd H  ,,,max, 22  

          BADdBACdDCBdDCAdDCBAd H  ,,,,,,,max, 2222   

           BDdACdDBdCAd ,,,,,,,max 2222   

             BDdDBdACdCAd ,,,max,,,,maxmax 2222  

       DBdCAd HH ,,,max  

 

Proof of the main theorem: Let   XHBA ,   and   21 ,max     where   1 and  2  

are contraction factors of  1T   and  2T  respectively.  

Now, 

                  BTBTATATdBTTATTd HH 21212121 ,,   

                    BTATdBTATd HH 2211 ,,,max   

              BAdBAd HH ,,,max 21   

              BAdBAd HH ,,,max   

           BAd H ,  

Therefore,  21 TT   is a contraction mapping with contraction factor  21 ,max   .         ■ 
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4. Construction of fractal objects by Iterated Functions System: 

 

After setting the stage  for the space in  which fractal objects will live, we now  discuss the effect of a finite set of 

contraction mappings acting iteratively on a point of a complete metric space. Barnsley defines a iterated function  

system [3] in the following way:   

Definition 4.1: Let )2(,,, 21 nTTT n  be a finite collection of contraction mappings defined on a complete 

metric space  dX ,  . Suppose that  n ,,, 21    be their respective contraction factors. Then the system 

 niTX i ,,2,1:;   is called a iterated functions system ( abbreviated as "IFS") with contraction factor 

 n ,,,max 21  . 

Theorem 4.1: An IFS  niTX i ,,2,1:;   has a unique fixed point   XHL   such that   
n

i

i LTL
1

  . Also,  

   XHManyforMTL
n

i

i 


,
1

 . 

Proof: By theorem 3.5 each  niTi ,,2,1   is a contraction mapping on the Hausdorff space  XH  with 

contraction factor i  , on effect of which each compact subset of X  transform to another compact subset of X . 

Again, union of  any two contraction mapping is also a contraction mapping (Theorem 3.6) , the operator 

   XHXHTT
n

i

i 


:
1

  defined by  

       XHAATAT

n

i

i 



1

  

is also  a contraction mapping with contraction factor  n ,,,max 21  . As a consequence of theorem 

3.4, this contraction mapping  T  has a unique fixed point, say L  i.e.,       LLTLT

n

i

i 



1

which 

satisfies     XHManyforMTL
n

i

i 


,
1

 . 

Definition 4.2[3]: If  niTX i ,,2,1:;   is a IFS, then the operator     XHXHTT
n

i

i 


:
1

 , defined by 

     XHAATAT

n

i

i 



1

 has a unique fixed point, say L .  This  fixed  point  ' L ' is called the attractor 

of the IFS  niTX i ,,2,1:;  .  

 

Clearly each  niTi ,,2,1   transforms members of  XH  into geometrically similar sets. The attractor of 

such a collection sTi '  must be a self-similar set, being a number of smaller similar copies of itself. Hence, the 

fundamental property of an IFS is that it determines a unique attractor, which usually is a fractal.  Based on 

these knowledge  we now discuss the mathematical development to provide two algorithms for constructing 

pictures of attractors of an IFS. 

4.3 Algorithm 1( The Deterministic Algorithm): 

i.  Consider the IFS  niTX i ,,2,1:;  . 
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ii. Choose a compact set 2
0 RA  . 

iii. Compute successively the sequence  niAi ,2,1:   with the role 

     ,2,1,0;
1

1 


 iATA
n

j

iji  

iv. Plot  the sequence    XHniAi  ,2,1:  successively on the computer screen. 

This sequence of points converses to the attractor of the IFS in Hausdorff metric which is very often a fractal 

set. 

We illustrate this algorithm by considering the IFS  21
2 ,; TTR  where, 















 










y

x

y

x
T

5.05.0

5.05.0
1  and  








































0

1

5.05.0

5.05.0
2

y

x

y

x
T  . We can write this two affine transformations in tabular form of IFS codes as: 

 

Affine 

Transformations 

Rotation / Dilation Translation 

 a b c d e f 

1T  0.5 -0.5 0.5 0.5 0 0 

2T  -0.5 -0.5 0.5 -0.5 1 0 

 ],:[1.4 21
2 TTRforcodesIFSTable  

 

Considering the initial set 0A  as the straight line segment of unit length, the images constructed by the first four 

iterations are given in the figure 4.1 and its attractor is given in figure 4.2 which is the famous Harter-Heighway 

Dragon curve named after  NASA physicists William Harter and John  Heighway. 

 

  ],:[1.4 21
2 TTRIFStheofiterationfourFirstFigure  
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  ],:[[2.4 21
2 TTRIFStheofAttractorFigure  

Some other IFS codes and their respective attractors produced by this algorithm are given below: 

a) IFS codes for fractal 'K': 

Affine 

Transformations 

Rotation / Dilation Translation 

a  b  c  d  e  f  

1f  333.0  0  0  333.0  0  0  

2f  333.0  0  0  333.0  0  667.0  

3f  333.0  0  0  333.0  667.0  667.0  

4f  333.0  0  0  333.0  667.0  0  

5f  333.0  0  0  333.0  333.0  333.0  

2.4Table  

 

b) Fractal 'G': 

 

Affine 

Transformations 

Rotation / Dilation Translation 

a  b  c  d  e  f  

1g  5.0  0  0  5.0  0  0  

2g  25.0  0  0  25.0  0  75.0  

3g  25.0  0  0  25.0  25.0  5.0  

4g  25.0  0  0  25.0  5.0  25.0  

5g  5.0  0  0  5.0  5.0  5.0  

 

3.4Table  
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4.4 Algorithm 2( The Random Iteration Algorithm): 

In this algorithm, instead of choosing a compact set, we choose a singleton set or a point ( usually the origin). 

Form this point new points are iteratively computed by randomly applying one of the transformations involved 

in the IFS. Ignoring the issue of how the attractor is formed by discarding first few iterations ( in most of the 

practical purposes 50 iterations are sufficient) this algorithm reduces the computational time and memory cells 

of the computer involved in this process. Also in deterministic algorithm each of the transformation contributes 

equal points in the attractor set, but in most of the natural fractals we need different number of  points for  

different parts of the attractor. The random iteration algorithm suitably handled this problem by assigning 

probability density function  ip  to each transformation iT  involved in the IFS such that  1
1




n

i

ip . 

 

i. Consider the IFS  niTX i ,,2,1:;  . 

ii. Assign probability density function ip  to each transformation iT  involved in the IFS such that  1
1




n

i

ip . 

iii. Start with an arbitrary point in the plane ( usually the origin). 

iv. Randomly choose a transformation iT  according to the probability  ip . 

v. Transform the point using iT  and plot it. 

vi. Go to step iv. 

vii. Continue the process for some pre-defined number of iterations. 

 

 Below we have given some fractals together with their IFS codes  produce by using this random iteration  

algorithm: 
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]min[4.4 TreegBlooAFigure  
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]tan[5.4 FernofVarietiestMuThreeFigure  

 

IFS codes for fractal given in the figure 4.4: 

Affine 

Transformations 

Rotation / Dilation Translation Probability 

a  b  c  d  e  f  
ip  

1T  637.0  0  0  501.0  866.0  25.0  13.0  

2T  195.0  488.0  344.0  443.0  443.0  245.0  25.0  

3T  462.0  414.0  252.0  361.0  251.0  569.0  25.0  

4T  - 058.0  07.0  453.0  111.0  598.0  097.0  25.0  

5T  035.0  07.0  - 0 .469 022.0  488.0  507.0  12.0  

]'min'[4.4 TreegBlooforcodesIFSTable  

 

IFS codes for fractal given in the figure 4.5: 

Affine 

Transformations 

Rotation / Dilation Translation Probability 

a  b  c  d  e  f  
ip  

1T  0  0  0  16.0  0  0  01.0  

2T  85.0  04.0  04.0  85.0  0  6.1  85.0  

3T  2.0  26.0  23.0  22.0  0  6.1  07.0  

4T  - 15.0  28.0  26.0  24.0  0  4.0  07.0  

]''[5.4 FernforcodesIFSTable  

 

5. Computation of Fractal Dimension: 
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One of the typical characteristics of  fractals is its dimension, which is essentially a measure of self-similarity. It 

is sometimes referred  as similarity dimension. There are a number of non-equivalent ways of finding fractal 

dimension. One of the most theoretically strong concept of fractal dimension is Hausdorff dimension  . But in 

most of the practical purposes it is difficult to calculate. One of the advantages of using an iterated function 

system is that the Hausdorff dimension of the attractor is often relatively easy to calculate in terms of the 

defining contraction factors. Before begin to exploit concept of IFS to find Haudorff dimension of a fractal set 

we first define the definitions of Hausdorff  dimension. 

5.2. Hausdorff Dimension[4] :  Let  dX ,  be a metric space, XE  . The diameter of the set E , dented by 

E , and is defined as  

    XyxyxdE  ,:,sup  

Now for each positive number  , Consider the possible countable coverings  iB  of E   


















n

i

iBEei
1

..  

such that iBi  , . 

Now for each  non-negative real number k , we consider the sum   km  of  all thk  powers of  iB i.e.   

  
i

k

ik Bm  , where this sum might be infinite. An attempt to minimize this sum we define,  

    








 
i

ii

k

ikk BEBBBmEm ,:glbinf  , where this greatest lower bound  is taken over all 

possible countable covers of E  by sets of diameter at most  . Note that, when some number of elements from 

a set is deleted the infimum of the set may be increase, so as we decrease the value of  , the class of such 

coverings of  E diminishes and hence the value of   Em k
 increases. Thus the sequence of greatest lower 

bounds converges, i.e.  Em k


 0
lim


exist. Note that this limit may take the value infinite. we denote this limit as 

 EM k . 

Lemma 5.2.1: If   EM k  and  tk  , then   0EM t . 

Proof: Let  iB  be a countable cover of the set E with sets of diameter at most  . Then we have,    

          
i i

k

i
ktt

itt BBBmEm  inf  

Considering all such coverings of E  and then taking their greatest lower bound we obtain, 

    EmEm k
kt

t
    

Now taking limit as 0 , we obtain    0EM t .                                                                      ■ 

 

 

An immediate consequence  of this lemma is that there exist a non-negative number   Ed H  of k  where the value 

of  EM k jumps from infinity to zero, i.e,  

  
 

 








Edkif

Edkif
EM

H

H

k
,0

,
 

This number  Ed H  is called the Hausdorff dimension of the set E .  
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The Hausdorff dimension of a self-similar fractal set constructed by an IFS as attractor can be easily calculated 

if the fractal satisfies a certain condition called open set condition. 

Definition 5.3[5]: Consider the IFS  niTX i ,,2,1:;  . Now each iT  of this IFS has the open set condition 

if there exist a non-empty, bounded open set U  such that 

i.   niUUTi ,,2,1,   

ii.     jiUTUT ji  , . 

Theorem 5.1: Let  nici ,,2,1:   be the contraction factors of the affine transformations involved in the 

IFS  niTX i ,,2,1:;   whose attractor  is the fractal set A , then   dAd H   where d  is the solution to the 

equation: 

 1
1




n

i

d
ic . 

The proof of this theorem can be found in [3]. 

The following examples clarify the method of finding Haudorff dimensions of fractals produced by an IFS 

using Theorem 5.1: 

Consider the two fractals given in the figure 4.3(a) & (b). The IFS of both of these fractal consists of five 

contraction mappings. By considering the set U  as the open square connecting the points 

       1,1,1,0,0,1,0,0  it is easy to see that these two sets of contraction  mappings satisfies the open set 

condition. 

 Now all the contraction mappings of the  IFS of fractal 'K' (given in Table 4.2) are of contraction factor 
3

1
. 

Hence by Theorem 5.1, its Haudorff dimension d  is given by the equation: 

  
3log

5log
1

3

1
51

5

1













dc

d

i

d

i  

Again the contraction mappings involved in the fractal 'G' (given in Table 4.3) are of contraction factors 

2

1
,

4

1
,

4

1
,

4

1
,

2

1
 respectively. Therefore, the Haudorff dimension d  of the fractal 'G' satisfies the  equation, 
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                           . . .                      (5.1)   

Letting  dx 2 , this equation gives, 

 3,11
32
2

 xorx
xx

 

As  02  xx d , so we must have  3x , and so 
2log

3log
23  dd . 

Hence,    
2log

3log
Gd H . 

 

  

6.Conclusion: One main idea of IFS is that it formally encodes the idea of self-similarity which is one of the 

prime characteristics of a fractal object. Here two algorithms were presented. The deterministic algorithm was a 

direct consequence of the theorem 4.1. Another simpler way of constructing the attractor is random iteration 
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algorithm, which takes as argument one point Xx 0 , a set of contraction mappings  niT i ,,2,1:  , 

together with an probability set  nppp ,,, 21   such that 1
1




n

i

ip  and then generate a sequence of points 

 nx  where   1 nin xTx , here ip  acts as a probability of choosing  iT . As  n , this set of points 

clusters around a set called the attractor of the IFS. As this set is self similar, this set is often a fractal set. Note 

that, since the selection of the map iT  for generating the point  1 nin xTx  is random, in some initial stage of 

the construction process the attractor might not be the same with the attractor which we generated earlier with 

same IFS codes. However, in most of the natural fractals it is highly acceptable as if we more interested  in a 

certain region of the attractor, we may assigned higher probability to the mapping which maps points in that 

region.    
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